GEM Updates from China

Jianbei Liu

for the SoLID-GEM Chinese Collaboration

University of Science and Technology of China

SoLID Collaboration Meeting December 3, 2016 JLab

SoLID-GEM Chinese Collaboration

China Institute of Atomic Energy (CIAE)

Lanzhou University

Institute of Modern Physics, CAS (IMP)

Tsinghua University

新華大学 Tsinghua University

University of Science and Technology of China (USTC)

Words from CIAE (Xiaomei)

1) CIAE group are able to produce 40 cm x 40 cm foils;

2) CIAE group are able to do both single mask as well as double mask;

3)As CIAE does not allow to use bulk chemical reagents, CIAE group is working with a factory to transfer technology to them for production; so far, were able to produce 30 cm x 30 cm foils and success rate is not high (~10%);

4) CIAE is working with the company to improve the foil production success rate by supporting the company to procure a new small etching instrument, which will make it easy to change etching solution to keep solution fresh;

5) CIAE group is applying for a grant to continue R&D for large area foil production; if funding is available, it is expected that CIAE group will be bale to make the large area foil in one year;

6) the step after that will be to transfer the technology to the company for production, which is expect to be in another year.

Updates from LanZhou University

Spatial resolution~127um

energy resolution 18.9%

Imaging test

Cluster reconstruction principle

Reconstruction result with FPGA

Development board: ARRIA GX FPGA toolkit

EP1AGX60DF780C6N

Ratio VS Period

Processing speed VS signal coverage ratio

Resources consumption budget (2048 chs)

Î		also -	SDM v		abo	
	Elow Summar	~	SHIN		~	
1	Flow Status		Successful - Wed Aug 03 15:06:08 2016			
	Ouartus II 64-B	Bit Version	14. 1.0 Build 186 12/03/2014 SJ Full Version			
	Revision Name		retrack			
	Top-level Entity	Name	retrack			
	Family		Arria II GX			
	Device		EP2AGX125EF35C4			
	Timing Models		Final			
	Logic utilization		38 %			
	Combinatio	nal ALUTs	14,092 / 99,280 (14 %)			
	Memory AL	UTs	0/49,640(0%)			
	Dedicated I	ogic registers	32,224 / 99,280 (32 %)			
	Total registers		32224			
	Total pins		144 / 512 (28 %)			
	Total virtual pins		0			
	Total block men	nory bits	73,216 / 6,727,680 (1 %)			
	DSP block 18-bi	t elements	3/576(<1%)			
	Total GXB Receiver Channel PCS		0/12(0%)			
	Total GXB Rece	mitter Channel PMA	0/12(0%)			
	Total GXB Trans	smitter Channel PMA	0/12(0%)			
	Total PLLs	aniccer channer ma	0/6(0%)			
	Total DLLs		0/2(0%)			
l						

The fitting results without filters (actual version) are: : Logic utilization : 56 % : Combinational ALUTs : 21,247 / 48,080 (44 %) : Dedicated logic registers : 13,382 / 48,080 (28 %) : Total registers : 13661 : Total pins : 312 / 395 (79 %) : Total block memory bits : 1,808,252 / 2,528,640 (72 %) : DSP block 9-bit elements : 0 / 256 (0 %) : Total GXB Receiver Channels : 1 / 8 (13 %) : Total GXB Transmitter Channels : 1 / 8 (13 %) : Total PLLs : 3 / 4 (75 %) : Total DLLs : 1 / 2 (50 %)							
Iterms of resources	Total	Usage of current daq	Usage of out code				
Combinational ALUTs	48,080	21,247 (44%)	14,092 (29%)				
Dedicated registers	48,080	13,382 (28%)	32,224 (67%)				
DSP	256	0	3(1%)				
Block Memory Bits	2,528,640	1,808,252 (72%)	73,216 (3%)				

Source of MPD's FPGA is enough

MicroMesh: 400 mesh

Active area:100mm*100mm

Try to discriminate X-Ray background using signal rise time

Simulation result with Garfield++(20ns pre-amplifier input capacitance)

Updates from USTC

30cm×**30cm GEM** position resolution test

Readout using APV25

- > Pitch: 400um;
- Strip width: x(80um), y(350um)

Test results

Position resolution vs. x

> Typical resolution: $x \sim 65$ um; $y \sim 70$ um.

Impact of X-ray operation voltage on resolution

Copper X-ray

- Higher voltage produces harder X-rays that have longer range resulting in worse measurement for resolution.
- > harder X-rays produce more charge for signals that could saturate APV25

Imaging tests

Low-mass Design for large GEM with Self-stretching

- Work in progress
 - 0.5m*1m active area with no spacers.
 - Drift and readout boards are made of Kapton + Cu
 - All screws and nuts are plastic.
 - Honeycomb on both top and bottom sides for mechanical support.

APV25 FEE with Hirose connector

APV24 hybrid with Hirose connector

- We lately received a few samples of APV25 hybrids with a new connector of HIROSE from EES.
- We are testing the samples and will give our feedback to EES.
- Then EES will start largescale production for us.

The new APV24 hybrid being tested with GEM

Summary

- CIAE
 - Progressing in GEM foil industrialization
- LZU
 - Working on online gamma-rejection and clustering
- USTC
 - GEM characterization, low-mass design and APV25 readout with new connectors