GEM Detectors for SuperBigbite Nilanga Liyanage University of Virginia

<u>Outline</u>

- □ SBS tracking concept
- □ SBS GEM tracker overview
- □ SBS GEM R&D
- □ GEM construction plans under WBS 2 and WBS 3
- □ ESH&Q Integration
- \Box Conclusion

Why GEMs?

- Super Bigbite Spectrometer concept leads to high rate in trackers: up to 500 kHz per cm² in the front detector, and requires good resolution.
- Gas Electron Multiplier (GEM) detectors provide a cost effective solution for high resolution tracking under high rates over large areas.
- Rate capabilities higher than many MHz/cm²
- High position resolution (< 75 $\mu\text{m})$
- Ability to cover very large areas (10s 100s of m²) at modest cost.
- Low thickness (~ 0.5% radiation length)
- Already Used for many experiments around the world: COMPASS, KLOE, TOTEM, STAR FGT, Prototypes for CMS upgrade etc.

GEM foil: 50 μ m Kapton + few µm copper on both sides with 70 μ m holes, 140 μ m pitch

Novel technology: F. Sauli, Nucl. Instrum. Methods A386(1997)531

SBS GEM Trackers

SBS Back Tracker Chamber

SBS GEM pre R&D at UVa: August 2011-July 2013

Funding: Jlab SBS pre-R&D funding, and also UVa internal funds
 UVa GEM team: Liyanage (PI), Two Research scientists and Three graduate students; search for a full time technical post-doc currently underway.

Close collaboration with Jlab (Wojtsekhowski, Camsonne) and INFN (Cisbani, Musico).
 Nicely coupled with the EIC detector R&D effort: UVa project - construction of a ~ 1 m long GEM detector with 2D readout.

Ultra sonic bath with demineralized Water

Large area $(3 \times 7 \text{ m}^2)$ class 1000 Clean Room

Glue dispenser

Tacky roller \rightarrow dust removal

SBS GEM pre R&D

\square 2011-2012: constructed two 40 x 50 cm² SBS prototype modules

SBS GEM prototype I: operational, with 4 out of 20 sectors disabled.
 SBS GEM prototype II: operational, with 1 out of 20 sectors disabled.
 conclusion: basic design works, but needs design improvements to facilitate fabrication and operation.

SBS prototype I: in bench tests with cosmics

Data from the SBS prototype II - a powerful ⁹⁰Sr source was used for this test. One sector (out of 20 sectors) shows lower efficiency

SBS GEM pre R&D

□ New SBS Polarimeter GEM module design - Fall 2012

- Protection resistors moved to be outside the chamber: reliable, easy access.
- □ Large alignment pins, away from the active area
- Wider frames on the two sides not in active area: better mechanical rigidity and more room for gas inlets, HV traces etc.
- Electronics rearranged to minimize the material within active area.

SBS GEM pre R&D

□ 2013: - Constructed two SBS prototype modules based on the new design

- \square fabrication considerably improved with the new design.
- □ All sectors operational with results meeting SBS design criteria.
- □ SBS GEM module design and fabrication methods established.
- □ Beam test just concluded at Fermilab: test the SBS modules in beam conditions.

SBS Back Tracker Prototype III: fully operational

Polarimeter GEM module: components

GEM foil (CERN PCB workshop)

Flexible 2D readout board (CERN PCB workshop)

11/1/13

Support frame with spacers (RESARM Belgium)

Honeycomb support board (CERN PCB workshop)

Foil testing and Leakage Current Measurement

- Proposed by Rui De Oliveira at CERN
- Rapid HV ramp-up to 550 V -causes quick burn-up of dust without polymerization or damage to foil.
- At 550 V: the initial current is a few of μA (re: capacitance of the sector).
- Then quickly drops and stabilizes to less ~ 1 nA leakage current: far better than the 5 nA requirement.
- Initially a few μA level sparks; spark rate slows down to quickly after that.

If the test indicates that a foil is bad: send back to CERN

- The current drawn by the GEM foil measured using a picoammeter
 (through a Labview interface and saved into a text file.)
- the ~ 100 nA spike associated with someone moving near the HV test box.

Foil testing and Leakage Current Results

Preparation of the frames

Spacers sanded, then frames cleaned in Ultra-sonic bath with demineralized Water

Loading the frame into the dry N2 box for testing at 4000 V

Dried for 4 days under a filter hood .

Machined surfaces sealed with a layer of polyurethane (Nuvovern LW) to prevent surface irregularities, residual fibers or sharp edges in the active area of the chamber

Foil Stretching and Glueing

50 cm × 50 cm GEM stretcher at Uva

- Stretcher concept from LNF / Bencivenni et al. and INFN.
- \Box Stretching time ~ 1 hours
- □ Foil Tension: T ~ 0.3 kg/cm

Frame glued on. Overnight drying.

Final Assembly

Four large dowel pins at the corners used to align the frames to within 100 μ m

GEM foil glued to the readout board

Clean room equipped for the parallel production of two modules in 3

SBS GEM module full-size prototype results

- Bench test with cosmics: acceptance limited by trigger scintillators
- Gas: Argon/CO2 70:30, HV: 4300 V (a gain of ~8000)
- S/N ratio is ~ 25:1 on average
- Clean X-Y ADC correlation: critical for multi-hit tracking

2D X/Y strips hits event on prototype I

Hit Cluster Position in X (mm)

SBS Prototype I with Cosmic: Gain uniformity

SBS GEM module full-size prototype results

Test Beam T-1037 @ Fermilab: R&D on GEM for EIC Tracking and PID detectors

UVa & Florida tech: Large Size GEM for forward tracking

Yale Univ: 3D-Coordinate GEM setup

BNL: Mini drift GEM

Stony Brook Univ: GEM-RICH setup

The 8000 chan. SRS APV system test at Fermilab.

□ The 8000 channel APV25 readout system successfully tested in beam conditions at Fermilab.

- □ Noise level comparable to observed in bench tests.
- □ More on electronics in Evaristo Cisbani's talk.

Fermilab Beam test results

Average ADC distribution for data taken with beam hitting several different locations of the GEM module. (average particle rate ~ 10 kHz/cm²)

Data analysis currently going on to obtain

Efficiency
Resolution
2D hit distributions
Pedestal noise

□ GEM pre R&D completed in July 2013:

- □ Full size prototypes meeting design goals
- □ finalized the design for polarimeter GEM modules.
- □ GEM module fabrication methods established.
- \Box A team of personnel trained.
- □ GEM lab at UVa fully equipped to SBS GEM module production.
- □ Two APV-25 based readout systems (13,000 channels total) assembled and tested.
- □ Pre R&D report submitted to Jefferson lab..

UVa is ready for the construction of the polarimeter GEM tracker

• The required size of GEM foils of about 40 x 50 cm² is such that double-mask and single mask production procedures at the CERN could be used. It is strongly suggested to compare the procurement of CERN produced foils to foils manufactured in industry by Tech-Etch Inc. using glass masks rather than mylar foil masks. The optical uniformity of large foils as produced by Tech-Etch Inc. is superior compared to those produced at CERN. Another critical performance characteristic is the leakage current behavior, in particular the long-term performance regarding charge build-up. It is strongly suggested to purchase prototype foils at CERN and Tech-Etch Inc. and characterize those foils in terms of uniformity and leakage current. The delivery schedule for CERN-produced foils is a concern.

Response

- Tech-Etch has not acquired the single mask GEM production technology yet: single mask technology is better for large GEM foil production.
- The recent experience in the community: the quality of Tech-Etch produced foils has not been consistent
- The quality of CERN produced foils has been very high- 100% success rate in our stringent tests for the 16 large area CERN GEM foils so far.

• The required size of GEM foils of about 40 x 50 cm2 is such that double-mask and single mask production procedures at the CERN could be used. It is strongly suggested to compare the procurement of CERN produced foils to foils manufactured in industry by Tech-Etch Inc. using glass masks rather than mylar foil masks. The optical uniformity of large foils as produced by Tech-Etch Inc. is superior compared to those produced at CERN. Another critical performance characteristic is the leakage current behavior, in particular the long-term performance regarding charge build-up. It is strongly suggested to purchase prototype foils at CERN and Tech-Etch Inc. and characterize those foils in terms of uniformity and leakage current. The delivery schedule for CERN-produced foils is a concern.

Response

- The quality of CERN produced foils has been very high: 100% success rate in our stringent tests for the 16 large area CERN GEM foils so far.
- We have a contract with CERN to deliver the components for the first 32 modules by January 2015.

• The length of the readout strips of ~50 cm is such that care should be taken regarding the input capacitance for each APV25 chip. A careful evaluation of signal to noise

Response

- This was evaluated using calculations and real data: not an issue, the signal to noise ratio is still very high (> 25:1) for 50 cm strips.
- Noise calculation agrees well with observation

• Each Front-End electronics (FEE) module is mounted onto a carrier board at the edges of each triple GEM detector. The overall orientation of the FEE modules is appropriate. Appropriate care should be taken in inserting and extracting FEE modules. It is understood that some FEE modules are mounted at 90° requiring bending of the 2D readout board foil. Care must be taken to avoid breakage of readout strips.

Response

• This was checked with the actual detector and not a problem: 1 cm bending radius, ~ x 100 larger compared to the foil thickness.

- The high voltage (HV) distribution from a HV board should be designed in such a way that one can disable one sector individually in case it develops a large leakage current.
 Response: New design feature according to this recommendation: described in the presentation.
- Once a vendor is selected a clear list of specifications in terms of uniformity and leakage current performance should be formulated and agreed upon, followed by a small-scale procurement for the purpose of confirming each agreed upon specification. Those specifications should include explicitly the need for clean handling in particular in the case of Tech-Etch Inc. produced foils. It is strongly suggested to assemble several full scale prototype modules and test their performance to practice all assembly steps in the local UVA clean room environment

Response: Four full size prototypes successfully built at Uva.

• The The production of spacer grid frames could turn into a rather labor intensive effort. The collaboration should consider water jet cutting which provides a rather cost effective solution Response: This has not been an issue. Resarm Inc. from Belgium provides machining of the frames at a reasonable cost.

GEM production Plans: WBS 2

Goal: build 29 GEM modules by 03/2015
 Funding: \$ 541 k

Date	Milestone	Notes
08/15/2013	WBS 2 GEM contract in place	Done as of 09/30/2013
09/30/2013	Orders for GEM chamber components placed	Done
02/01/2014	First Batch of GEM foils arrived	
05/30/2014	Complete the production of 5 modules, test and deliver to Jlab	
09/30/2014	Complete the production of another 10 modules	
03/01/2014	Complete the production of the remaining 14 modules	

- Assumes production of ~ 2 modules per month: feasible with established procedures.
- Related Goals: Design and fabricate two holding frame, assemble and test with a full complement of electronics.

GEM production Plans: WBS 3

□ PMP Plan: 35 GEM modules (assume GEMs for coordinate detector)

- □ Fabricate 35 GEM modules.
- □ Assemble eight 50 cm x 200 cm GEM detector layers for polarimeter.
- □ Assemble two 80 cm x 300 cm GEM detector layers for coordinate detector.
- □ Equip all GEM modules with electronics and test.
 - □ Time required: 24 months starting March 2015.
- □ If PMT-based coordinate detector approved: 11 GEM modules
 - □ Fabricate 11 GEM modules.
 - □ Assemble eight 50 cm x 200 cm GEM detector layers for polarimeter.
 - □ Equip all GEM modules with electronics and test.

□ Time required: 12 months starting March 2015.

ESH&Q Integration for SBS GEM trackers

□ Safety features:

- \Box No flammable gasses used: operate with Ar+CO₂ mixture.
- High-Voltage power supplies with 1 mA current limits and fast trip feature.
- \square The light weight of chambers: each module ~ 5 kg including electronics and cables.

□ ESH&Q plan:

- □ Proper coordination between INFN, UVa and Jefferson lab.
- Once the design for module holding frames are complete, perform a design and safety review.
- □ Freeze the holding frame design after this review to prevent surprises for installation and running.

Pre R&D for SBS Polarimeter GEM tracker modules at UVa highly successful:

- □ New design with improvements.
- □ GEM module production procedures established.
- □Lab setup for production.
- □ Full size prototypes built and working meeting design
- goals as stated in PMP
- □ Ready for final production
- □ SBS WBS2 production contract is now in place
 - □ Build 29 Modules by March 2015
- Evaluation of Electronics being finalized now
 - □ Report by December
 - □ Setup contract by January