GMN ERR: Radiation Levels and Local shielding

Andrew Puckett
University of Connecticut and Jefferson Lab
GMN experiment readiness review
June 16, 2017

Acknowledgements:

- The vast majority of the MC simulation work presented here was performed by UConn postdoc Eric Fuchey and UConn graduate student Freddy Obrecht
- Support from US Department of Energy, Award ID #DE-SC0014230

Outline

- Radiation Budget Form
- GEANT4 Monte Carlo simulation of GMN layout
 - Background rates in low-threshold detectors
 - Radiation dose rates in rad-sensitive detectors
 - Radiation levels in GEM electronics but and SBS bunker
 - Local shielding design
- Beamline activation
 - Detailed run plan of config. changes.
 - Expected radiological survey map as a function of time.
 - Personnel exposure during configuration changes

6/16/2017

Summary and conclusions

Hall: A

RADIATION BUDGET FORM

page: 1 of 2

Exp. # GMn

rev: 0

run dates: 2019

name of liaison: Eric Fuchey

	E12-09-016																		
S	etup number		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
beam	energy	GeV	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	6.6	6.6	6.6	8.8	8.8	8.8	8.8	8.8
	current	uA(CW)	19.2	52.4	30.9	19.2	39.0	30.9	24.0	58.1	24.0	24.0	52.5	22.5	30.0	52.5	30.0	30.0	53.3
radiator	element																		
	thickness	mg/cm2																	
	dist. to pivot	m																	
	Z		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	A		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
exp't	element		D	H	Al	D	H												
target	thickness	mg/cm2	2435	1062	935	2435	1062	935	2435	1062	935	2435	1062	935	2435	1062	935	2435	1062
	dist. to pivot	m	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Z		1	1	13	1	1	13	1	1	13	1	1	13	1	1	13	1	1
	A		2	1	27	2	1	27	2	1	27	2	1	27	2	1	27	2	1
cryo tgt	element		Al	Al		Al	Al		Al	Al		Al	Al		Al	Al		Al	Al
window	thickness	mg/cm2	83	83		83	83		83	83		83	83		83	83		83	83
	dist. to pivot	m	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0
	Z		13	13	0	13	13	0	13	13	0	13	13	0			0		13
	A		27	27	0	27	27	0	27	27	0	27	27	0	27	27	0	27	27
critical	radius	cm	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8
window	dist. to pivot	m	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10
scattering weig	ghting factor		0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	run time	hours	30	69	7	30	24	7	30	32	6	30	8	4	24	8	3	48	9
time	(100% eff.)	days	1.3	2.9	0.3	1.3	1.0	0.3	1.3	1.3	0.3	1.3	0.3	0.2	1.0	0.3	0.1	2.0	0.4
	installation	hours																	
	time	days	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
dose rate at	method 1	urem/hr	0.97	0.53	1.35	0.97	0.39	1.35	1.21	0.59	1.05	1.37	0.53	1.10	1.87	0.55	1.58	1.87	0.56
the fence post	method 2	urem/hr																	
(run time)	conservative	urem/hr	0.97	0.53	1.35	0.97	0.39	1.35	1.21	0.59	1.05	1.37	0.53	1.10	1.87	0.55	1.58	1.87	0.50
dose per setup		urem	29	36	9	29	9	9	36	19	6	41	4	4	45	4	5	90	
% of annual do	se budget	%	0.3	0.4	0.1	0.3	0.1	0.1	0.4	0.2	0.1	0.4	0.0	0.0	0.4	0.0	0.0	0.9	0.1

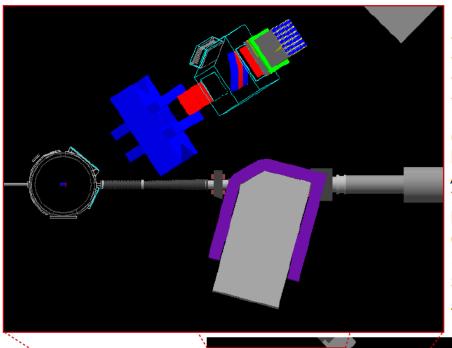
date form issued:

May 15, 2017

authors: P.Degtiarenko

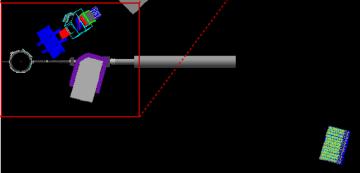
Hall:	Α					RAL	<u>IAT</u>	<u>ION</u>	BU	DGE	T F	<u>ORN</u>	p age: 2 of 2
Exp. #	GMn E12-09-016	rev:	0		run	dates:	2019				nan	ne of li	aison: Eric Fuchey
S	setup number		18	19	20	21	22	23	24	25	26	27	
beam	energy	GeV	8.8	11.0	11.0	11.0		4.4			4.4	4.4	totals:
	current	uA(CW)	30.0	30.0	55.4	30.0	20.0	20.0	60.0	20.0	20.0	60.0	
radiator	element						Cu	Cu		Cu	Cu		
	thickness	mg/cm2					772	772		772	772		
	dist. to pivot	m					-0.15	-0.15		-0.15	-0.15		
	Z		0	0	0	0	29	29		29	29	0	
	A		0	0	0	0	64	64		64	64	0	
exp't	element		Al	D	H	Al	H		Н	H		H	
target	thickness	mg/cm2	935	2435	1062	935	1062	935	1062	1062	935	1062	
	dist. to pivot	m	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Z		13	1	1	13	1	13	1	1	13	1	
	A		27	2	1	27	1	27	1	1	27	1	
cryo tgt	element			Al	Al		Al		Al	Al		Al	
window	thickness	mg/cm2		83	83		83		83	83		83	
	dist. to pivot	m		0.0	0.0		0.0		0.0	0.0		0.0	
	Z		0	13	13	0	13	0	13	13	0	13	
	A		0	27	27	0	27	0	27	27	0	27	
critical	radius	cm	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	
window	dist. to pivot	m	5.10	5.10	5.10	5.10	5.10	5.10			5.10	5.10	
scattering wei	ghting factor		0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
	run time	hours	4	100	13	8	12	2	3	24	2	6	543
time	(100% eff.)	days	0.2	4.2	0.5	0.3	0.5	0.1	0.1	1.0	0.1	0.3	22.6
	installation	hours											(
	time	days	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
lose rate at	method 1	urem/hr	1.58	1.94	0.59	1.65	1.57	2.53	0.61	1.57	2.53	0.61	
he fence post	method 2	urem/hr											
(run time)	conservative	urem/hr	1.58	1.94	0.59	1.65	1.57	2.53	0.61	1.57	2.53	0.61	
lose per setup		urem	6	194	8	13	19	5	2	38	5	4	676.46
% of annual do	se budget	%	0.1	1.9	0.1	0.1	0.2	0.1	0.0	0.4	0.1	0.0	6.7646
						% of a	llowed d	ose for t	he total	time			109.13
							wed dos			-			109.13
										search EF			

date form issued: May 15, 2017


authors: P.Degtiarenko

Reminder: **G**_Mⁿ setup update

Updated G_{M}^{n} beamline in g4sbs with the actual design:



- Conic vacuum line weldment;
- spool piece;
- inner and outer magnetic shieldings;
- beam corrector magnets;

Configuration of the two later items can be changed with a new command: /g4sbs/beamlineconfig <int> The integer being equal to the beamline configuration number convention used by the engineers: 1 for G_{E}^{p} , 2 for G_{E}^{n} ,

3 for G_M^n (all Q2 but higher),

4 for G_{M}^{n} (higher Q2 + calibrations).

2017/05/10

2

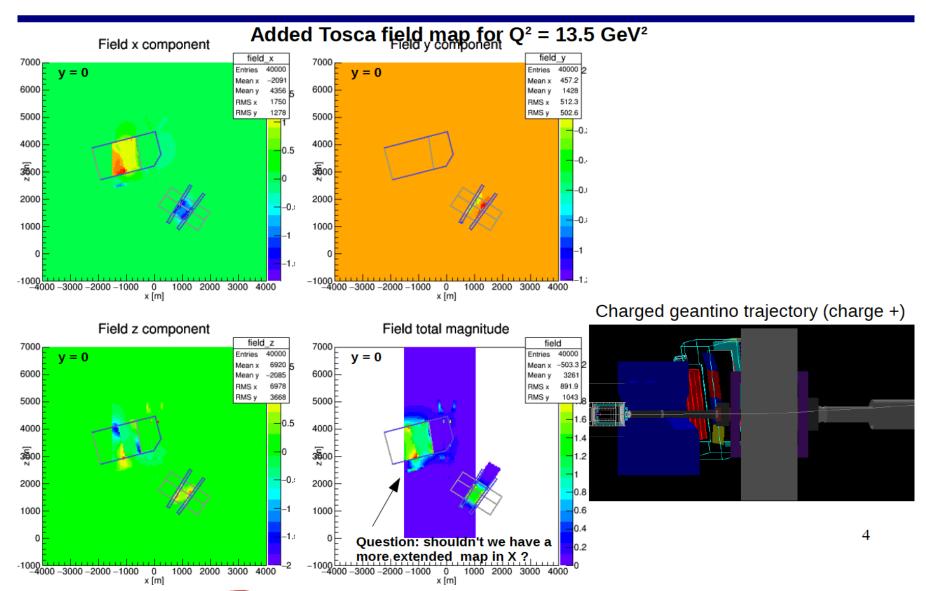
Reminder: settings for $G_{_{M}}^{^{n}}$ kinematics

Considered settings for all kinematics:

G _M ⁿ BigBite settings: (10 cm LD ₂ target)										
Q ² (*) [GeV ²]	θ _{BB} (*) [deg]	d _{BB} (*) [m]	E _{beam} (**) [GeV]	上 (**) [A ⁻¹ cm ⁻² s ⁻¹]	I _{beam} (**) [μΑ]	Beam time [h] (**)				
3.5	32.5	1.80	4.4	0.7 x 10 ³⁸	11.0 (44.0)	12				
4.5	41.9	1.55	4.4	1.4 x 10 ³⁸	22.0 (44.0)	12				
5.7 (6.0)	58.4	1.55	4.4	2.8 x 10 ³⁸	44.0	18				
8.1 (8.5)	43.0	1.55	6.6	2.8 x 10 ³⁸	44.0	18				
10.2 (10.0)	34.0	1.75	8.8	1.4 x 10 ³⁸	22.0 (44.0)	24				
12.0	44.2	1.55	8.8	2.8 x 10 ³⁸	44.0	48				
13.5	33.0	1.55	8.8 11.0	2.8 x 10 ³⁸	44.0	96				

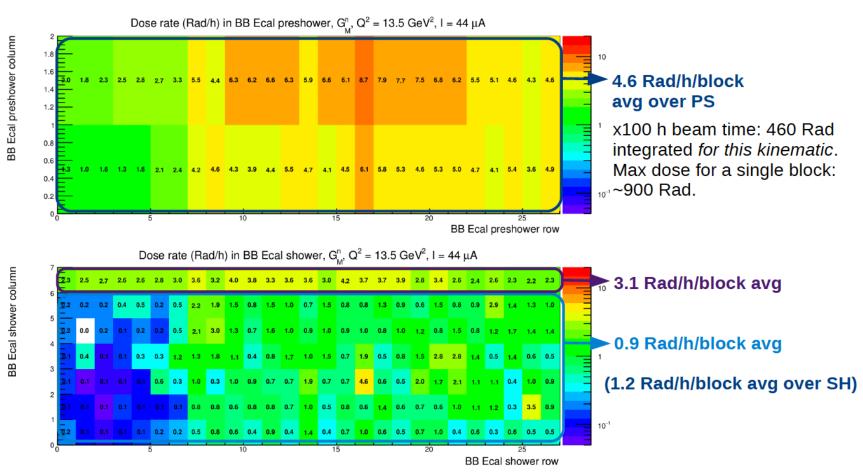
^(*) Taken from Robin Wines slides at last collaboration meeting

NB: we may tentatively consider 2.8 10³⁸ cm^{-2s-1} (i.e. 44μA) for *all* kinematics


2017/05/10

^(**) taken from $G_{\rm M}^{\ \ n}$ update (E-09-019) at PAC35, obviously assuming 10cm ${\rm LD}_2$.

Reminder: Update of G_{M}^{n} setup in g4sbs



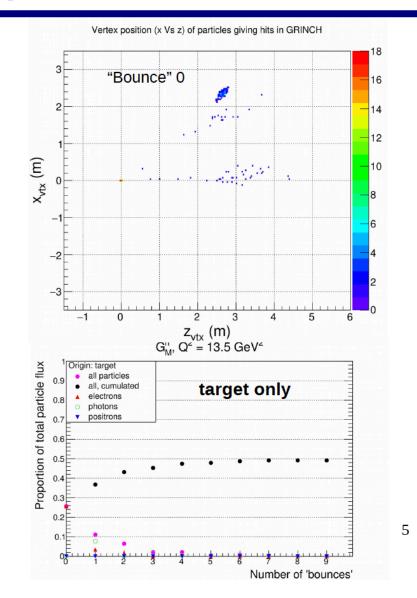
BB Ecal dose rate for G_{M}^{n}

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{beam} = 44 \mu A$, 10 cm LD_2 , new setup, Tosca field map

No additional shielding: Previous studies (SBS soft/simu meeting 2017/03/22) 2017/05/10 showed it could be shielded easily


JEDNN Jefferson Lab

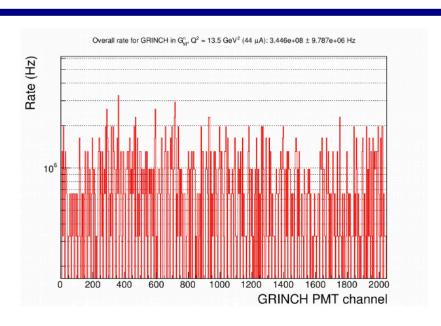
GRINCH rates for G_Mⁿ


 $Q^2 = 13.5 \text{ GeV}^2$, $I_{beam} = 44 \mu A$, 10 cm LD_2 , new setup, uniform SBS field map

96 MHz over detector => ~190kHz/PMT; (including 50% from target and 30% from 48D48)

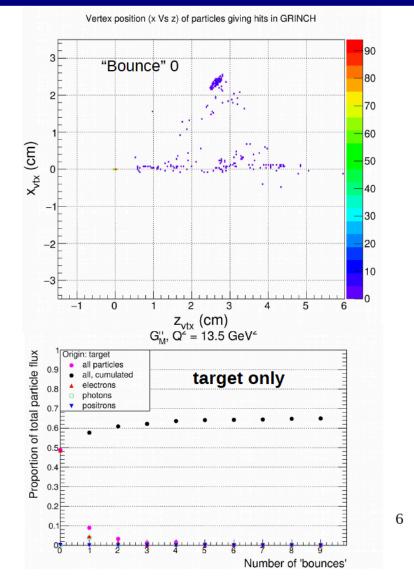
=> ~95 kHz from **target**; (rough agreement with previous calculations); => ~55 kHz from 48D48 magnet; => the rest (~40 kHz) from beamline, scattering chamber;

2017/05/10



6/16/2017

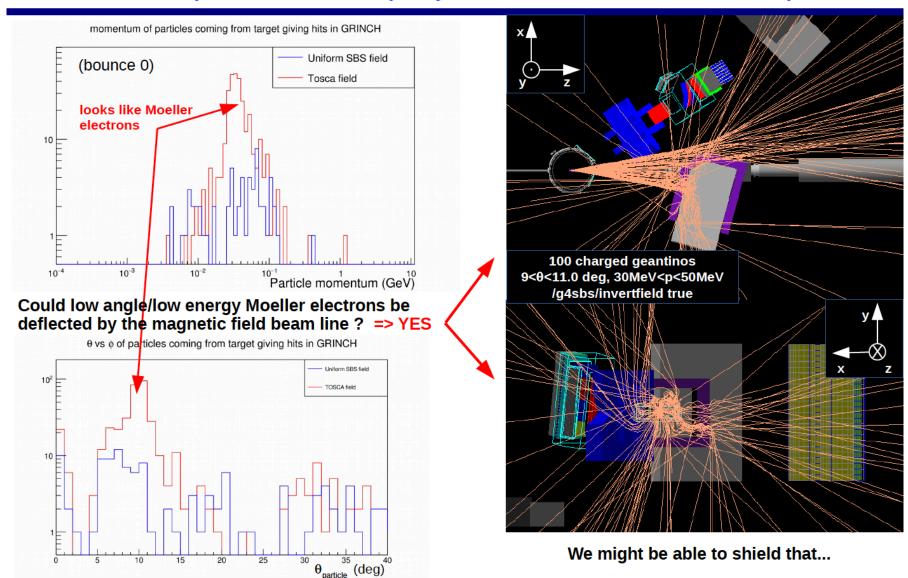
GRINCH rates for G_M^n


 $Q^2 = 13.5 \text{ GeV}^2$, $I_{beam} = 44 \mu A$, 10 cm LD_2 , new setup, Tosca field map

345 MHz over detector => ~680kHz/PMT; (including 65% from target and 10% from 48D48); not easy to deal with, but handleable;

- => ~440 kHz from target;
- → clear discrepency with "no Tosca field" simulations: to be understood! (next slide)
- => ~70 kHz from 48D48 magnet;
- => the rest (~170 kHz) from beamline, scattering chamber;

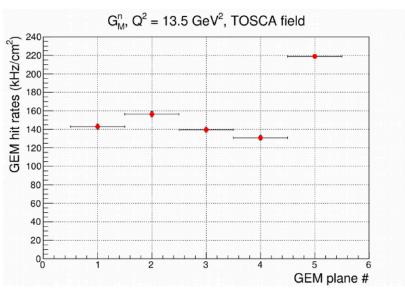
2017/05/10



6/16/2017

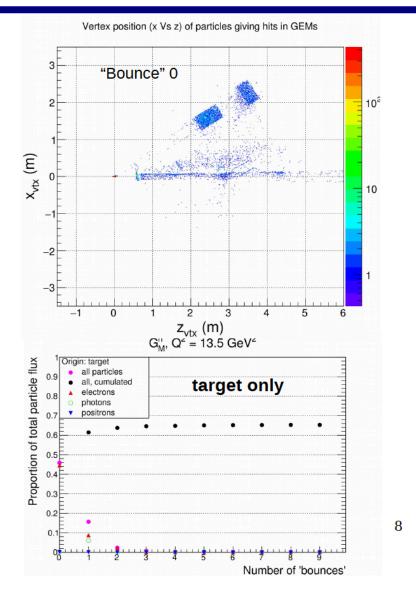
GRINCH rates for G_M^n

Explaination for discrepency of TOSCA vs uniform SBS field map



GEM rates for G_M^{-n}

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 44 \mu A$, 10 cm LD_2 , new setup, Tosca field map

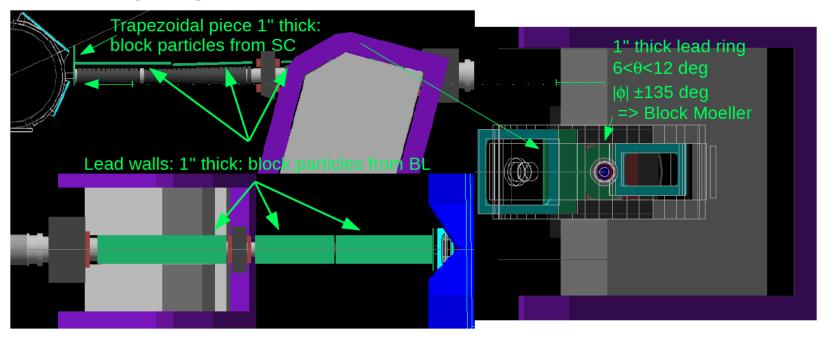


New setup, TOSCA field map: ~140kHz/cm² per GEM for INFN GEMs (front), 220kHz/cm², for UVA GEM (behind GRINCH) including 65% from target and 5% from 48D48;

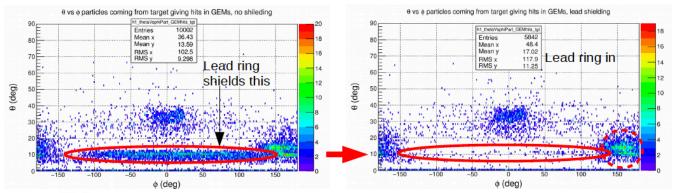
=> consistent with the rate change observed on GRINCH: the back of the detector package seems more affected by the front.

Again, rates are rather high, but can be handled...

2017/05/10



Beamline shielding for G_{M}^{n}


First Iteration

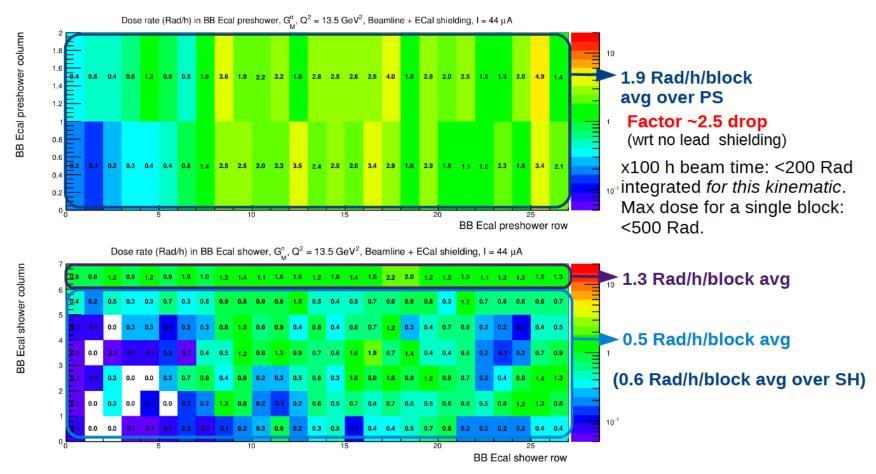
 $Q^2 = 13.5 \text{ GeV}^2$, $I_{beam} = 44 \mu A$, 10 cm LD_2 , new setup, Tosca field map

Preliminary design:

6/16/2017

2017/05/10

UCONN

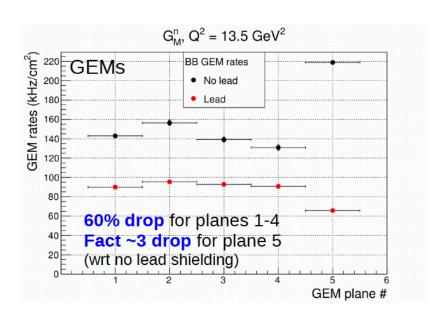

10

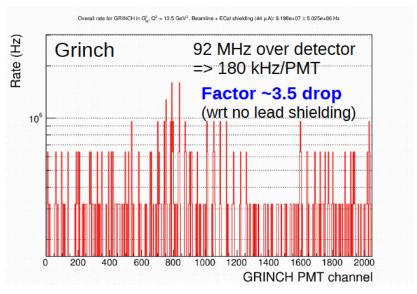
BB Ecal dose rate for G_Mⁿ

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{beam} = 44 \mu A$, 10 cm LD_2 , new setup, Tosca field map

Beamline shielding + ECal shielding (1 cm steel + 5cm Al)

2017/05/10




All detector rates for G_{M}^{n}

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{beam} = 44 \mu A$, 10 cm LD_2 , new setup, Tosca field map

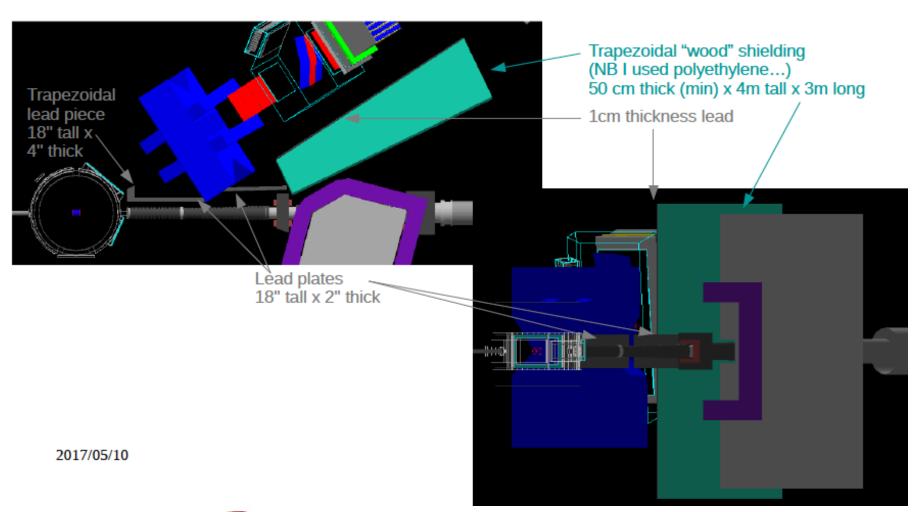
Beamline shielding + ECal shielding (1 cm steel + 5cm Al)

(~75% from target and 5% from 48D48);

(~50% from target and 10% from 48D48);

- => ~45 kHz/PMT from target;
- => <20 kHz/PMT from 48D48 magnet;
- => the rest (~35 kHz/PMT) from beamline;

2017/05/10

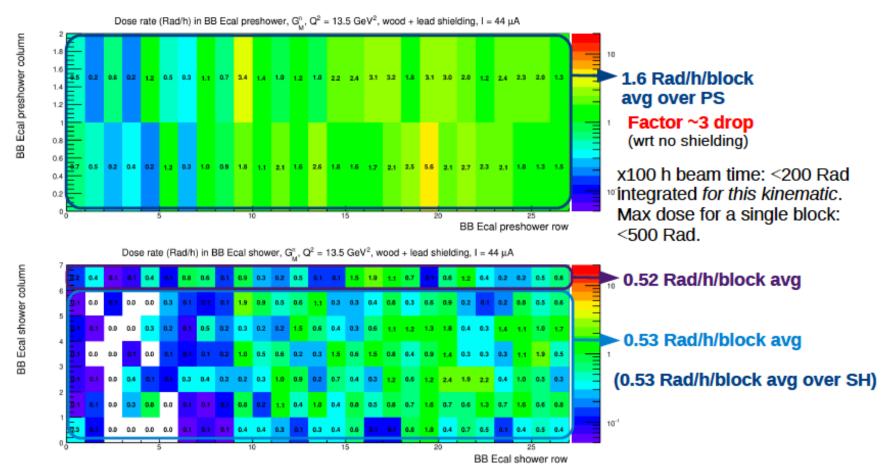


Beamline shielding for G_Mⁿ

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{beam} = 44\mu\text{A}$, 10 cm LD₂, new setup, Tosca field map

Preliminary design:

ITERATION 2

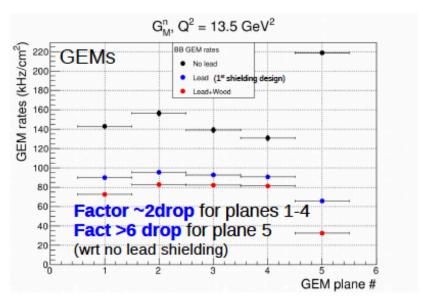


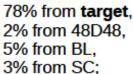
BB Ecal dose rate for G_Mⁿ

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{beam} = 44\mu\text{A}$, 10 cm LD_2 , new setup, Tosca field map

Beamline shielding + ECal shielding (1 cm steel + 5cm Al)

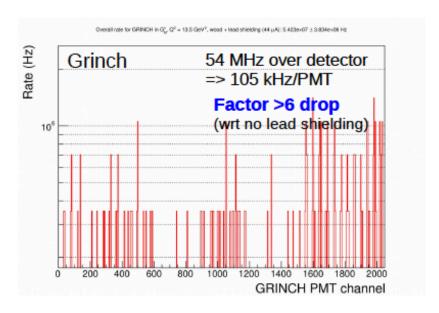
2017/05/10


9



All detector rates for $G_{M}^{\ n}$

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{beam} = 44\mu\text{A}$, 10 cm LD_2 , new setup, Tosca field map


Beamline shielding + ECal shielding (1 cm steel + 5cm Al)

Rest (12%) ? from shielding

82 kHz/PMT (78%) from **target**, (-80%*) 3 kHz/PMT (3%) from 48D48, (-95%*) 7 kHz/PMT (7%) from BL, (-95%*) 3 kHz/PMT (3%) from SC, (-95%*)

Rest (9%) ? from shielding

(* wrt no lead shielding)

8

GEOMETRY

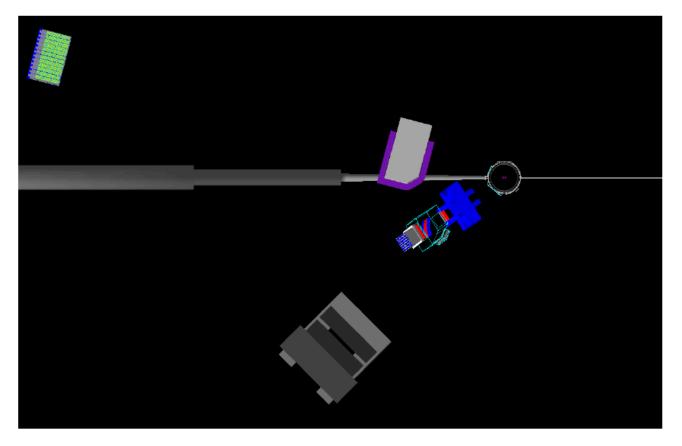


Figure: The hut face is located roughly 7.2 m from the target in the xz plane at a central angle of 45 degrees. All hut materials are steel.

G_M^n ELECTRONICS HUT

$Q^2(GeV^2)$	$\theta_{BB}(deg)$	$d_{BB}(m)$	$E_{beam}(GeV)$	$I_{beam}(\mu A)$
13.5	33.0	1.55	11.0	44.0

- ▶ Ran 15×10^9 events with the beam generator
- ► Silicon sensitive region is 101.6 x 101.6 x 2.54 cm³
- ▶ Density of Silicon used = 2.33 g/cm^3
- ▶ Total energy deposited = 910 MeV
- ► Results:

Dose rate = 0.016 rad/hr

6/16

Beamline Activation

- Most important question: will the radiation exposure levels to personnel working near beamline during config. changes be acceptable?
- RadCon group in contact with Hall A engineers; drawings needed for calculations "almost done" as of 5/16
- Detailed, time-ordered run plan of beam-times, targets, currents, energies and configuration changes of SBS during GMN has been provided by the GMN spokespeople and sent to RadCon
- No new updates on these calculations since 5/16
- No promises from RadCon on completing these calculations prior to review
- Before ERR: timeline for completion = ??

Summary and Conclusions

- (To be confirmed by RadCon) Standard LH₂/LD₂ targets at luminosities routinely used during 6 GeV era present no major challenges in terms of Rad. budget/personnel exposure during config. changes
- Exhaustively detailed GEANT4 Monte Carlo simulations of GMN in all configurations show tolerable radiation levels in rad-sensitive detectors and readout electronics
- Rates in low-threshold detectors (GRINCH and GEMs) are tolerable even in the absence of local shielding
 - Simulations with TOSCA map show importance of SBS fringe field for detector background rates
 - Moller electrons bent by SBS fringe field significant source of GRINCH background
 - Photon-induced backgrounds most important for GEMs
- Modest local shielding of the downstream beamline and/or BigBite detectors can potentially reduce the background rate by ~2X in GEMs and ~6X in GRINCH PMTs—not critical, but definitely worthwhile.

