GMN ERR: Radiation Levels and Local shielding (Item 8 of ERR Charge)

Andrew Puckett University of Connecticut and Jefferson Lab GMN experiment readiness review June 16, 2017

Acknowledgements:

- The vast majority of the MC simulation work presented here was performed by UConn postdoc Eric Fuchey and UConn graduate student Freddy Obrecht
- Thanks to Pavel Degtiarenko for timely calculation of preliminary Radiation Budget
- Support from US Department of Energy, Award ID #DE-SC0014230

Outline

- Response to item 8 of the charge: "Are the radiation levels expected to be generated in the hall acceptable? Is any local shielding required to minimize the effects of radiation in the hall equipment?"
- Radiation Budget Form
- GEANT4 Monte Carlo simulation of GMN layout

6/16/2017

- Radiation dose rates in rad-sensitive detectors
- Background rates in low-threshold detectors
- Radiation levels in GEM electronics hut
- Status of beamline activation estimates
- Summary and conclusions

LCONN Jefferson Lab

Hall:	Α					RAI	DIAT	ION	BU	DGE	ΤF	ORM	1					page:	1 of 2
Exp. #	≠ GMn E12-09-016	rev:	. 0		run	dates:	2019				nan	ne of li	aison:	Eric]	Fuchey	Y			
5	setup number		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
beam	energy	GeV	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	6.6	6.6	6.6	8.8	8.8	8.8	8.8	8.8
	current	uA(CW)	19.2	52.4	30.9	19.2	39.0	30.9	24.0	58.1	24.0	24.0	52.5	22.5	30.0	52.5	30.0	30.0	53.3
radiator	element																		
	thickness	mg/cm2																	
	dist. to pivot	m																	
	Ζ		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	А		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
exp't	element		D	н	Al	D	H	Al	D	н	Al	D	н	Al	D	H	Al	D	н
target	thickness	mg/cm2	2435	1062	935	2435	1062	935	2435	1062	935	2435	1062	935	2435	1062	935	2435	1062
	dist. to pivot	m	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Z		1	1	13	1	1	13	1	1	13	1	1	13	1	. 1	13	1	1
	А		2	1	27	2	1	27	2	1	27	2	1	27	2	1	27	2	1
cryo tgt	element		Al	Al		Al	Al		Al	Al		Al	Al		Al	Al		Al	Al
window	thickness	mg/cm2	83	83		83	83	i	83	83		83	83		83	83		83	83
	dist. to pivot	m	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0
	Z		13	13	0	13	13	0	13	13	0	13	13	0	13	13	0	13	13
	Α		27	27	0	27	27	0	27	27	0	27	27	0	27	27	0	27	27
critical	radius	cm	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8
window	dist. to pivot	m	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10
scattering weighting factor			0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	run time	hours	30	69	7	30	24	7	30	32	6	30	8	4	24	8	3	48	9
time	(100% eff.)	days	1.3	2.9	0.3	1.3	1.0	0.3	1.3	1.3	0.3	1.3	0.3	0.2	1.0	0.3	0.1	2.0	0.4
	installation	hours																	
	time	days	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
dose rate at	method 1	urem/hr	0.97	0.53	1.35	0.97	0.39	1.35	1.21	0.59	1.05	1.37	0.53	1.10	1.87	0.55	1.58	1.87	0.56
the fence post	method 2	urem/hr																	
(run time)	conservative	urem/hr	0.97	0.53	1.35	0.97	0.39	1.35	1.21	0.59	1.05	1.37	0.53	1.10	1.87	0.55	1.58	1.87	0.56
dose per setup		urem	29	36	9	29	9	9	36	19	6	41	4	4	45	4	5	90	5
% of annual do	ose budget	%	0.3	0.4	0.1	0.3	0.1	0.1	0.4	0.2	0.1	0.4	0.0	0.0	0.4	0.0	0.0	0.9	0.1

date form issued:

May 15, 2017

authors: P.Degtiarenko

Hall:	Α					RAI	DIAT	ION	BU	DGE	ΤF	ORN	<u>I</u> page:	2 of 2
Exp. #	∮ GMn	rev	0		run	dates:	2019				nan	ne of lia	aison: Eric Fuchey	
	E12-09-016												U U	
S	setup number		18	19	20	21	22	23	24	25	26	27		
beam	energy	GeV	8.8	11.0	11.0	11.0	4.4	4.4	4.4	4.4	4.4	4.4		totals:
	current	uA(CW)	30.0	30.0	55.4	30.0	20.0	20.0	60.0	20.0	20.0	60.0	1	
radiator	element						Cu	Cu		Cu	Cu		1	
	thickness	mg/cm2					772	772		772	772			
	dist. to pivot	m					-0.15	-0.15		-0.15	-0.15			
	Ζ		0	0	0	0	29	29	0	29	29	0		
	А		0	0	0	0	64	64	0	64	64	0		
exp't	element		Al	D	H	Al	Н	Al	Н	H	Al	H		
target	thickness	mg/cm2	935	2435	1062	935	1062	935	1062	1062	935	1062		
	dist. to pivot	m	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Ζ		13	1	1	13	1	13	1	1	13	1		
	А		27	2	1	27	1	27	1	1	27	1		
cryo tgt	element			Al	Al		Al		Al	Al		Al		
window	thickness	mg/cm2		83	83		83		83	83		83		
	dist. to pivot	m		0.0	0.0		0.0		0.0	0.0		0.0		
	Ζ		0	13	13	0	13	0	13	13	0	13		
	Α		0	27	27	0	27	0	27	27	0	27		
critical	radius	cm	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8		
window	dist. to pivot	m	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10		
scattering wei	ghting factor		0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50		
	run time	hours	4	100	13	8	12	2	3	24	2	6		543
time	(100% eff.)	days	0.2	4.2	0.5	0.3	0.5	0.1	0.1	1.0	0.1	0.3		22.6
	installation	hours												0
	time	days	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
dose rate at	method 1	urem/hr	1.58	1.94	0.59	1.65	1.57	2.53	0.61	1.57	2.53	0.61		
the fence post	method 2	urem/hr												
(run time)	conservative	urem/hr	1.58	1.94	0.59	1.65	1.57	2.53	0.61	1.57	2.53	0.61		
dose per setup		urem	6	194	8	13	19	5	2	38	5	4		676.46
% of annual do	se budget	%	0.1	1.9	0.1	0.1	0.2	0.1	0.0	0.4	0.1	0.0		6.7646
						% of a	llowed d	lose for t	he total	time				109.13
						% of all	owed do	se for the	e run tim	e only				109.13
		-			If > I	200%, dis	scuss resi	ilt with Pl	iysics Re	search EF	I&S offic	er		
	date f	<u>orm issued:</u>		May 1	5, 2017	,		a	uthors:	P.Degt	tiarenko	0		

6/16/2017

UCONN Jefferson Lab

GEANT4 Monte Carlo simulation of GMN layout

6/16/2017

Reminder: G_Mⁿ setup update

Updated G_{M}^{n} beamline in g4sbs with the actual design:

- Conic vacuum line weldment;
- spool piece;
- inner and outer magnetic shieldings;
- beam corrector magnets;

Configuration of the two later items can be changed with a new command: /g4sbs/beamlineconfig <int> The integer being equal to the beamline configuration number convention used by the engineers: 1 for G_{E}^{p} , 2 for G_{E}^{n} , 3 for G_{M}^{n} (all Q2 but higher), 4 for G_{M}^{n} (higher Q2 + calibrations).

2017/05/10

6/16/2017

GMN ERR 2017 (Charge item 8)

Detector Backgrounds: Baseline Scenario

- No additional shielding of downstream beamline nor local shielding of detectors
- TOSCA-generated realistic field maps for SBS and BigBite magnets
- Beam currents/kinematics/luminosities as shown in the table in Brian Quinn's overview talk
- $Q^2 = 13.5 \text{ GeV}^2$ is worst-case scenario for radiation dose rates and detector background rates (also, nearly half the total production beam time is spent at this kinematic)

6/16/2017

UCONN Jefferson Lab

• Unless otherwise noted, all simulation results shown here are for the $Q^2 = 13.5 \text{ GeV}^2$ case

BB Ecal dose rate for G_M^{n}

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 44 \mu A$, 10 cm LD_2 , new setup, Tosca field map

Detector Background Rates for GMN $@Q^2 = 13.5 \text{ GeV}^2$

Baseline Scenario (TOSCA field map, NO SHIELDING)

- For GEM layers 1-4 (5), located in front of (behind) the GRINCH, baseline scenario for GEM hit rate is ~140 (220) kHz/cm², of which:
 - $\sim 70\%$ is "direct" from target
 - The rest is from SBS magnet, downstream beamline, scattering chamber

Jefferson Lab

6/16/2017

Overall rate for GRINCH in $G_{M^{1}}^{n}$, Q^{2} = 13.5 GeV² (44 μ A): 3.446e+08 \pm 9.787e+06 Hz

- For the GRINCH, the baseline is 345 MHz total counting rate for the whole detector or ~680 kHz per PMT, of which:
 - ~60% "direct" from target
 - $\sim 20\%$ from downstream beam line
 - Rest from SBS magnet and scattering chamber

Source of large background rate in GRINCH

momentum of particles coming from target giving hits in GRINCH

 θ vs ϕ of particles coming from target giving hits in GRINCH

6/16/2017

UCONN Jefferson Lab

Summary of baseline scenario

- Without additional shielding of the BigBite detectors from backgrounds, the rates are high but manageable (in principle).
- GEM background hit rates (particularly in layers 1-4) are dominated by soft photon-induced backgrounds; i.e., Compton scattering, pair production in GEM materials and subsequent ionization
- GRINCH background rates experience a large contribution from electrons produced in a narrow angular and momentum range, bent around the BigBite magnet into the GRINCH
- As shown below, significant reductions are possible with modest volume of additional shielding with simple geometry, low-cost materials

"First" proposed shielding concept (Iteration 2'')

GMN ERR 2017 (Charge item 8)

All detector rates for G_Mⁿ

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 44 \mu A$, 10 cm LD_2 , new setup, Tosca field map

Beamline shielding + ECal shielding (1 cm steel + 5cm Al)

64% from **target**, 6% from 48D48, 14% from BL, 6% from SC;

Rest (10%) ?

2017/05/10

With lead shielding of the downstream beamline and scattering chamber ONLY, GEM hit rates reduced to 100 kHz/cm² or less. GRINCH rates down by a factor of 2 wrt baseline scenario.

146 kHz/PMT (45%) from **target**, 62 kHz/PMT (19%) from 48D48, 84 kHz/PMT (26%) from BL, 32 kHz/PMT (10%) from SC.

This shielding layout (Iteration 2'') is assumed in GEM occupancy/DAQ projections (* wrt no lead shielding) ¹¹

6/16/2017

BB Ecal dose rate for G_Mⁿ

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 44 \mu A$, 10 cm LD_2 , new setup, Tosca field map

12

^{2017/05/10} Shielding reduces cumulative radiation dose in BigBite lead-glass to a level well below the "threshold" for performance degradation

GMN ERR 2017 (Charge item 8)

6/16/2017

Jefferson Lab

"Iteration 3" of shielding concept

- Earlier studies (Iteration 2 and Iteration 2') using unrealistic/impractical shielding geometries had indicated that further background suppression (especially for the GRINCH) would be possible by shielding the area of the downstream beamline between the two corrector magnets close to the SBS magnet
- In this region, the ideal shielding design is a "hybrid" of low-Z material such as aluminum with sufficient thickness to stop low-energy (tens of MeV) electrons, followed by a small thickness of high-Z material (e.g. lead) to absorb soft photons

GMN ERR 2017 (Charge item 8)

6/16/2017

LCONN Jefferson Lab

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 44 \mu \text{A}$, 10 cm LD_2 , new setup, Tosca field map

Preliminary design:

ITERATION 3

GMN ERR 2017 (Charge item 8)

6/16/2017

Reminder: GEM rates for G_M^n

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 44 \mu A$, 10 cm LD_2 , new setup, Tosca field map, SHIELDING

Rates < 100 kHz/cm2 for all planes: ~90 kHz/cm2 for INFN GEM (planes 1-4), ~55 kHz / cm2 for UVA GEM (plane 5)

~73 % from **target**, ~2% from 48D48, ~6% from BL, ~4% from SC; Rest (15%) from shielding

2017/05/10

TERATION 3

61 MHz over detector => average rate per PMT: 120 kHz

~58% (~70 kHz/PMT) from **target**, ~13% (~16 kHz/PMT) from 48D48 ~18% (~22 kHz/PMT) from BL, ~8% (~10 kHz/PMT) from SC Rest (3%) from shielding

UCONN Jefferson Lab

6/16/2017

GMN ERR 2017 (Charge item 8)

University of Connecticut Reminder: BB Ecal dose rate for G_Mⁿ

 $Q^2 = 13.5 \text{ GeV}^2$, $I_{\text{beam}} = 44 \mu A$, 10 cm LD_2 , new setup, Tosca field map, SHIELDING

^{2017/05/10} Shielding reduces cumulative radiation dose in BigBite lead-glass to a level well below the "threshold" for performance degradation

6/16/2017

Jefferson Lab

|]/

GMN ERR 2017 (Charge item 8)

GEOMETRY

Figure: The hut face is located roughly 7.2 m from the target in the xz plane at a central angle of 45 degrees. All hut materials are steel.

6/16/2017

4 ロ ト 4 団 ト 4 巨 ト 4 巨 ト 三 少へで
4/16

G_M^n Electronics Hut

$Q^2(GeV^2)$	$\theta_{BB}(deg)$	$d_{BB}(m)$	$E_{beam}(GeV)$	$I_{beam}(\mu A)$
13.5	33.0	1.55	11.0	44.0

- ► Ran 15 ×10⁹ events with the beam generator
- ► Silicon sensitive region is 101.6 x 101.6 x 2.54 cm³
- Density of Silicon used = 2.33 g/cm^3
- Total energy deposited = 910 MeV

Note: This estimate was performed for the "baseline" scenario (no beamline shielding)

► Results:

Dose rate = 0.016 rad/hr

< ロ ト < 団 ト < 三 ト < 三 ト 三 の Q ()
 6/16

UCONN Jefferson Lab

Status of beamline activation estimates

- Motivation: Need to confirm that the radiation exposure levels to personnel working near the beamline during config. changes will be acceptable, and determine whether or not a special RWP will be required for those changes
- A detailed, time-ordered run plan of beam times, targets, currents, energies and configuration changes of SBS during GMN has been provided by the GMN spokespeople and communicated to RadCon (V. Vylet and P. Degtiarenko)
- RadCon group has made contact with Hall A engineers; has requested necessary inputs for calculation.
- Current status:
 - Awaiting simplified engineering drawings and tables of parameters for the beamline geometry needed to specify the model and start the calculations
 - After this information is furnished, estimated time to completion of the model and execution of the simulation is 3-4 weeks.

Summary and Conclusions

- Standard LH₂/LD₂ targets at luminosities well within the range of luminosities routinely used during 6 GeV operations present no major challenges in terms of the annual radiation budget of Jefferson Lab.
 - Preliminary radiation budget estimate shows that the total rad. budget of the experiment is about 7% of the annual dose budget of the lab and approximately 109% of the "allowed" dose for the allocated beam time (the threshold of concern for this metric to trigger higher-level review is 200%).
- Exhaustively detailed GEANT4 Monte Carlo simulations of GMN in all configurations show acceptable radiation levels in rad-sensitive detectors and readout electronics
- Rates in low-threshold detectors (GRINCH and GEMs) are tolerable, *even in the absence of local shielding*
 - Simulations with realistic TOSCA map show importance of SBS fringe field for detector background rates (GRINCH in particular)
 - 30-50 MeV electrons in a narrow range of angles (9-11 degrees) bent by SBS fringe field are the dominant source of GRINCH background in the absence of shielding
 - Photon-induced backgrounds most important for GEMs
- Modest local shielding of the downstream beamline and/or BigBite detectors will reduce the background rate by $\sim 1/3$ ($\sim 4X$) in GEM layers 1-4 (5) and $\sim 6X$ in GRINCH PMTs.

6/16/2017

- Shielding also reduces rad. dose rate in BigBite lead-glass calorimeter by >2X, to a level well below the threshold for performance degradation
- Since the data rate to disk/tape is dominated by the GEM hit rates, shielding that reduces the GEM hit rate leads to a roughly proportional reduction in the data volume of the experiment.

UCONN Jefferson Lab