Software and Tracking

Seamus Riordan seamus@anl.gov

June 15, 2017

- Software Overview and Scope
- Task Responsibilities
- Status and Timeline
- Tracking Simulations

Charge Item 3

Are the responsibilities for carrying out each job identified, and are the manpower and other resources necessary to complete them on time in place?

Charge Item 5a

Have the specific equipment been demonstrated f or readiness to operate the spectrometers (SBS and BigBite) and to achieve the scientific goals of the experiment ? This includes demonstrating: a) GEM reconstruction efficiency at high rate

• Several major new systems -Experiments have different combinations

SBS Full Event rate	up to ${\sim}5~{ m kHz}$
Several sets of GEM trackers	${\sim}100$ k strips
Hadronic Calorimeter	288 FADC ch
Electromagnetic Calorimeter	1700 ADC ch
Scint. Coord. Det	2k TDC ch
Gas Cherenkov	550 TDC ch
Scintillator Timing Plane	360 TDC/ADC ch

• Reuse of existing Bigbite EM calorimetery (${\sim}200$ PMTs), HERMES RICH (${\sim}2k$ PMTs)

Seamus Riordan (ANL)

Software Goals

Need full software chain before start of running

- Need for all stages: development, commissioning, and running
- Event reconstruction and inter-detector correlations will be critical to ensure experimental operation
- Open geometry and high luminosity are new challenge
- Coordinating between subgroups to produce single software package
- Progress tracking now in redmine

Seamus Riordan (ANL)

Detector Subsystem Software

- Add to analyzer framework GEMs, CDet, GRINCH, ECal, RICH, Bigbite
- Have GEM classes from previous experiments integrated with TreeSearch tracking
 - Probably single most difficult task
- New decoders written
 - MPD and F250 written and available in repository
- Event displays required
- Individual hardware development groups have taken on responsibility

Seamus Riordan (ANL)

Software and Tracking

General Purpose Software

analyzer Development	Hansen
Front End Decoders	Camsonne
Event Reassembly	JLab DAQ Group

SBS Specific					
	Contact	Supporting Groups			
Repository Maintenance	Riordan	JLab			
MPD Decoding	Riordan	JLab, UVA, INFN			
GEM Tracking	Puckett	UConn, INFN, JLab			
HCal Analysis	Franklin	CMU			
Coord. Det	Monaghan	CNU			
GRINCH	Averett	WM			
BigBite Legacy	Riordan	JLab			

GMn Analysis GMn Quinn

Experiment Analysis Software

- Need development for analysis of each specific experiment
- Algorithms for PID and associating between detectors/arms needs to be in place
- Optics, target specific analysis very important
- Scripts for commissioning and calibration
- Framework for offline analysis software

http://github.com/JeffersonLab/g4sbs

- Full Geant4 Monte Carlo for all experiments
- Under continuous development since 2010
- Event generators to cover physics and backgrounds
 - Elastic, quasielastic, DIS, π , Pythia, ...
 - Random backgrounds
- Detailed detectors with full responses, optical photon production
- Includes beamline, shielding, support structures for backgrounds and radiation studies

Further Experiment Analysis Software

- Major goal of "end to end" simulation with production of pseudodata - simulation of data sizes
- Requires realistic digitization of new subsystems from Geant4 responses
- Ultimate demonstration of event-by-event analysis for full experiment
- Non-trivial and requires well defined standards/interfaces for flexible design

Current Status

Have working whitepaper and repository

http://hallaweb.jlab.org/12GeV/SuperBigBite/documents/sbs_soft_whitepaper.pdf http://github.com/JeffersonLab/SBS-offline

- Now transitioning from hardware development to analysis
- Responsibilities within subgroups defined
- Raw data analysis chain partially defined
 - Reusing existing framework from legacy detectors
 - GEM MPD decoding with examples
 - UVA, INFN, Hampton collaborators with production GEM experience
 - Remaining systems need skeletal definition for subgroups to fill in
- Postdoc Eric Fuchey (UConn) actively working on next iteration of tracking

Jeffersor	nLab / SBS-office			0.000 1 4	The 1 YPath
O Code	Classes # ().Pul	veçueste 🕸 — Palse 🔄 Graphe			
econstructi	ion and analysis code I	or SuperBigDita (SBS) experiments			
	a the committee	(> % branch	C@misson	20	t contributors
Parch Bad	M . Nov put request]		Field fits	Dote at developed
-	riordan Charge default one	t init to all events		Labort o	unnit Mitcata 7 diyo ay
de COltana		Renove debugging surgert			7 days sp
g gespoor		Add in plagname			10 days ap
E MPCMod	uk.cm	Set up with our own GEM desses to avoid	Chapermentan for new		6 days ap
S MICANO	ule à	Initial commit of 10PO decoder Eighte-re-	quive asparate Tredenich		10-0419-040
S Mokelle		Set up with our own GEM dessets in avoid	Chapterevertage for new		E-days ag
R FEASA	and	Add in pedeatal and zero suppression			7 days ag
8 0000404	64.000	Initial commit of WPO decoder BigBits - re	drasbarf strages criup		10 days ap
a secondar	De.B	Initial control of 16PO decoder Eighte-re-	drasher? otrapata		10 days ag
8 000CCM	Plane.com	Add in pelestal and zare suppression			7 days sp
SISCEN.	Planet	Add in pedeetal and zero suppression			7 days ag
8 000CCM	Dand out	Add in polestal and zare suppression			7 days ap
B SECON	Rand h	Bet up with our own EEM dasses to avor	d hape reverties for new		E days ag
S durate	map dat	Initial commit of NPO decoder BigBits in	rpäras separate Tradisarch		10 days ag
🖯 da nar da	×.	Set up with our own SAM dasses to avoir	d hope covertain for new		E days ag

sbs.gems.x1.adc1:sbs.gems.x1.strip

Jun 15, 2017 11 / 20

- Nov 2016 Software Review
- Jan 2017 Start Digitized Simulation Output
- Apr 2017 Decoders for all DAQ modules written
- Jul 2017 Each detector system in analyzer, experiment configurations, basic reconstruction algorithms
 - Can analyze channel-level raw data at this point
- Dec 2017 Simulation Interfaced to analysis, Have detector event displays, calibration scripts
- Jan 2018 Start simulated analysis for detector reconstruction
- Jun 2018 Begin simulated experimental analysis for core form factor experiments
- Jan 2019 Ready for beam for form factor, start simulated experimental analysis for SIDIS and TDIS
- Spring 2019 likely earliest start of neutron experiments
- Spring 2020 likely earliest start for GEp

Common: straight tracks (field-free region)

- BigBite: GEMs, assisted by ECAL; low rate; BigBite optics
- SIDIS H-arm: GEMs, assisted by HCAL; low rate; 48D48 optics
- **GEp(5)** front: GEMs, restricted to narrow search region; very high rate; requires iterative kinematic correlation analysis; 48D48 optics
- **GEp(5) back:** GEMs, similar search region; high rate; requires bridging between tracker regions

Each item involves (somewhat) different reconstruction algorithm. Significant code sharing possible, <u>if</u> well planned

- $\bullet~{\rm Expect}$ rates up to $\sim 500~{\rm kHz/cm^2}$ for GEp
- $\bullet\,$ Expect rates up to $\sim 100~{\rm kHz}/{\rm cm}^2$ for this experiment

GEM Rates for GMn

- Rates on GEMs depending on implemented shielding design need to iterate with engineers
- Deconvoluted occupancy will be about 10-15%
- \bullet Pedestal noise and cross talk increases factor ${\sim}1.3$

Digitization description

- GEM responses based on observed data for charge cloud strength and size
- Ionization in gas volumes amplified with statistical process and over several strips
- APV25 time response applied based on shaping circuit (width $\sim 200~{\rm ns})$ with 3-sample deconvolution applied
- Background and pedestal noise superimposed out of time

Seamus Riordan (ANL)

Software and Tracking

2011 GEp(5) Tracking Study: Proton Arm GEM Track Reconstruction

- Reconstruction algorithm implemented in 2010/11 based on Hall A BigBite MWDC code
- APV25 decoder & analysis
 - Pulse shape deconvolution
 - Noise rejection
 - Cluster finding
- Pattern recognition: TreeSearch in coordinate projections
 - Very fast recursive template matching algorithm
 - ► Efficiently finds straight lines of hits (within configurable bin width) → roads
 - Used by HERMES, Qweak, OLYMPUS, ...
- Correlation of roads from different projections via hit amplitude correlation in shared readout planes
- Simple linear minimization fit of correlated hits in 3D

SBS Tracking

Track reconstruction accuracy

Resolution \sim 40 μm Will provide $\delta p/p \sim 1\%$

- Significant work already done in tracking under realistic requirements with Hall A TreeSearch algorithm
- Have only done realistic tracking for Front (most difficult) tracker to prove feasibility
- Additional neural network algorithms developed by INFN collaborators to test
- Have Postdoc Eric Fuchey (UConn) who is presently engaged with using latest simulation and integrating into SBS package

Seamus Riordan (ANL)

GEM Test Data

- GEMs are being tested in cosmic stand with scintillator trigger
- Have run in Hall from Fall 2016 - ~1.5% occupancy
- Working to add into SBS analysis chain

Charge Item 3

Are the responsibilities for carrying out each job identified, and are the manpower and other resources necessary to complete them on time in place?

	Contact	Supporting Groups
analyzer Development	Hansen	
Front End Decoders	Camsonne	
Repository Maintenance	Riordan	JLab
MPD Decoding	Riordan	JLab, UVA, INFN
GEM Tracking	Puckett	UConn, INFN, JLab
HCal Analysis	Franklin	CMU
Coord. Det	Monaghan	CNU
GRINCH	Averett	WM
BigBite Legacy	Riordan	JLab
Experiment Analysis	Quinn	

Charge Item 5a

Have the specific equipment been demonstrated for readiness to operate the spectrometers (SBS and BigBite) and to achieve the scientific goals of the experiment ? This includes demonstrating:

(a) GEM reconstruction efficiency at high rate

Tracking has been designed and demonstrated for GEp requirements which is a factor of five higher rate. Further analysis is ongoing with test data and GMn simulations.

Seamus Riordan (ANL)

Software and Tracking

- Software efforts by collaboration have been well defined with timeline and milestones
- Responsibilities have been delegated to subgroups under core repository and framework with regular meetings
- Work is transitioning to raw data analysis and revisiting tracking and will move to full event reconstruction in next months