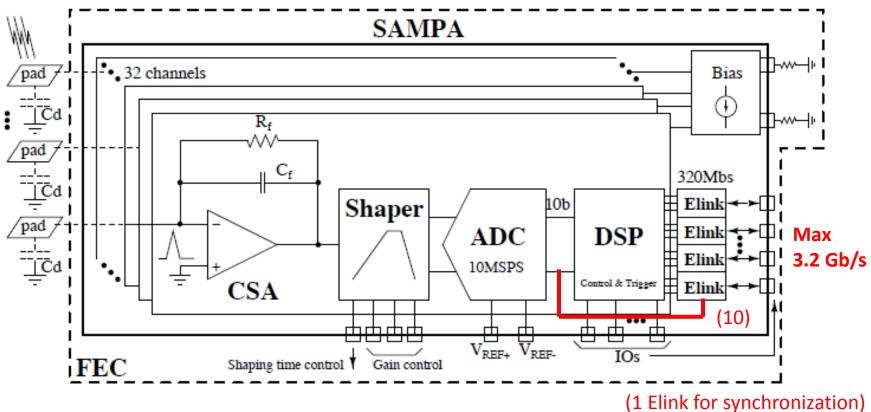

SAMPA Test Stand

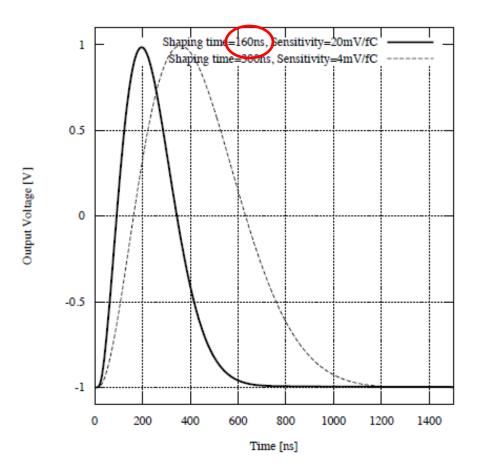
Ed Jastrzembski Jefferson Lab DAQ Group – 9/28/18


"SAMPA" - nickname for the city of São Paulo, Brazil

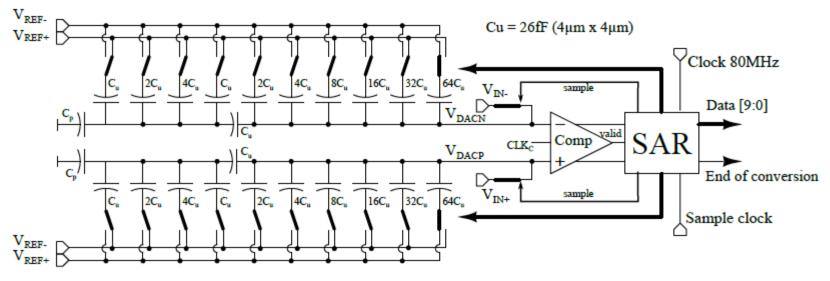
- New ASIC for the ALICE TPC and Muon Chamber (MCH) upgrades
- Combines functions of the PASA (analog) and ALTRO (digital) chips currently being used
- Design effort led by University of São Paulo, Brazil
- Chosen for TPC readout by sPHENIX and STAR upgrade at RHIC
- ALICE alone > 50,000 chips (1.5 M channels)
- All plan to use **continuous readout mode** for their TPCs

SAMPA Block Diagram

SAMPA Block Diagram



Direct Mode – bypass DSP


(Raw data rate (10MHz) = 3.2Gb/s = MAX output of chip)

- <u>Charge Sensitive Amplifier (CSA)</u>
 - Integrates and amplifies short current pulse
 - Output is a Voltage signal with amplitude proportional to the total charge Q
 - Tail of Voltage pulse is long (T = Rf*Cf)
 - Vulnerable to pile-up unless followed by a shaping filter
- <u>Shaper</u>
 - Creates a 4th order semi-Gaussian pulse shape
 - Available shaping times (TS): ⁸Q, 160, 300 ns
 - Permits sampling by ADC at reasonable rates (10, 20 MHz)
 - 80 ns option eliminated in order to reduce noise in CSA

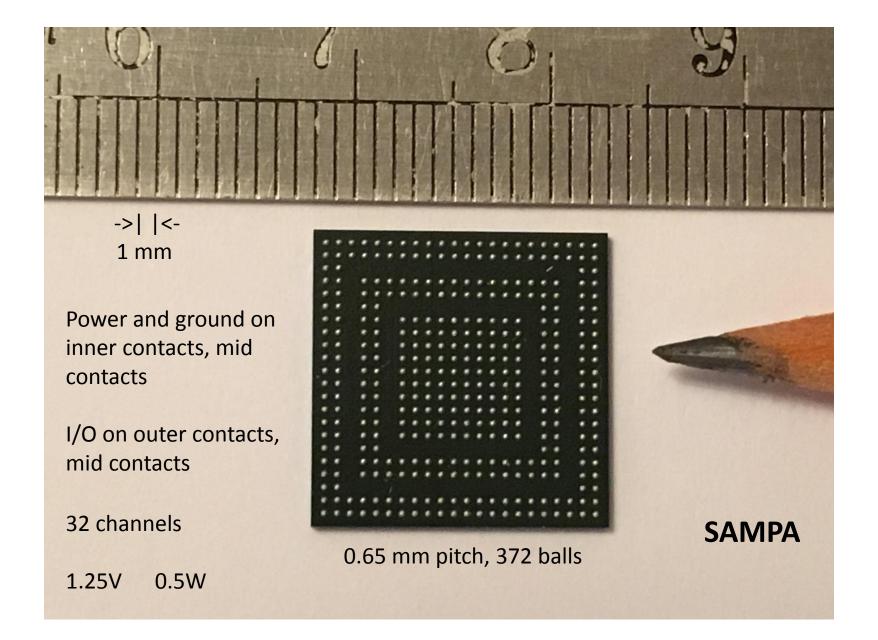
Pulse from Shaper

- <u>ADC</u>
 - 10 bit precision
 - 10 MSPS or 20 MSPS (5 MHz for ALICE TPC)
 - Split capacitor fully differential SAR architecture (low power)
 - ADC data rate = 10 MSPS * 10 bits * 32 channels = 3.2Gb/s (6.4 Gb/s)

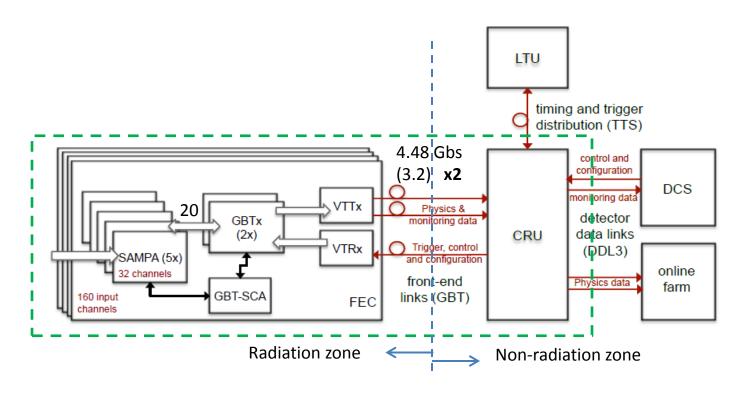
Successive Approximation Register

• <u>DSP</u>

- <u>Baseline Correction 1 (BC1)</u> removes low frequency perturbations and systematic effects
- <u>Digital Shaper</u> (DS) tail cancellation or peaking time correction (IIR filter)
- <u>Baseline Correction 2 (BC2)</u> moving average filter
- <u>Baseline Correction 3 (BC3)</u> slope based filter (alternative to BC2)
- <u>Zero suppression</u> fixed threshold
- Formatting; encoding for compression Huffman
- Buffering (16K x 10 bit)

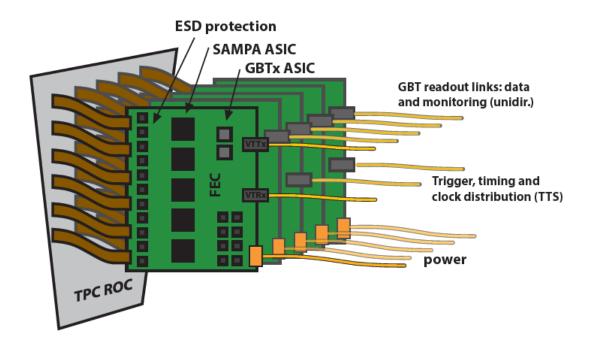

- <u>e-link</u>
 - Electrical interface for transmission of serial data over PCB traces or electrical cables, for distances of several meters
 - Up to 320 Mb/s
 - Developed by CERN for the connection between Front-end ASICs and their GigaBit Transceiver (GBTx) chip
 - Based on SLVS standard (Scalable Low-Voltage Signaling) supply voltage as low as 0.8 V
 - Radiation-hard IP blocks for integration into ASICs
 - SAMPA: 11 e-links \rightarrow 3.52 Gb/s max data output
 - <u>Number and speed of SAMPA e-links used is programmable</u>

SAMPA Specifications (ALICE)


Specification	TPC	МСН
Voltage supply	1.25 V	1.25 V
Polarity	Negative	Positive
Detector capacitance (Cd)	18.5 pF	40 pF - 80 pF
Peaking time (ts)	160 ns	300 ns
Shaping order	4th	4th
Equivalent Noise Charge (ENC)	< 600e@ts=160 ns*	< 950e @ Cd=40 pF*
		< 1600e @ Cd=80 pF*
Linear Range	100 fC or 67 fC	500 fC
Sensitivity	20 mV/fC or 30 mV/fC	4 mV/fC
Non-Linearity (CSA + Shaper)	< 1%	< 1%
Crosstalk	< 0.3%@ts=160 ns	< 0.2%@ts=300 ns
ADC effective input range	2 Vpp	2 Vpp
ADC resolution	10-bit	10-bit
Sampling Frequency	10 (20) Msamples/s	10 Msamples/s
INL (ADC)	<0.65 LSB	<0.65 LSB
DNL (ADC)	<0.6 LSB	<0.6 LSB
ENOB (ADC)**	> 9.2-bit	> 9.2-bit
Power consumption (per channel)		
CSA + Shaper + ADC	< 15 mW	< 15 mW
Channels per chip	32	32

 $R_{esd} = 70\Omega$

** @ 0.5MHz, 10Msamples/s



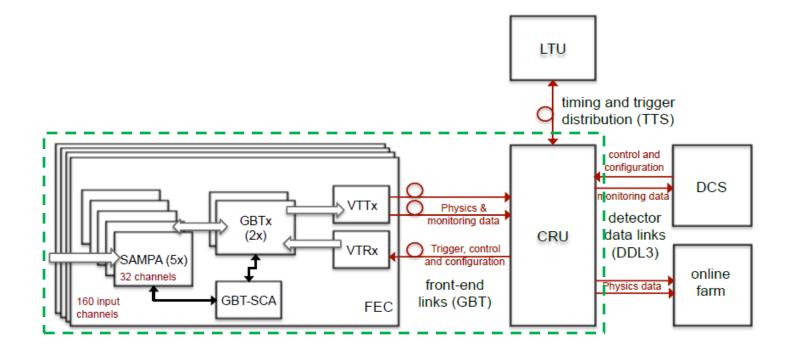
ALICE SYSTEM

- FEC Front End Card (160 ch / FEC)
- CRU Common Readout Unit (12 FECs / CRU = 1920 ch / CRU
- DCS Detector Control System
- LTU Local Trigger Unit

ALICE Front-end Card (FEC)

Schematic of the readout system of the GEM TPC. Each FEC supports 5 SAMPA chips (160 ch). The **20 e-links** from the SAMPAs are routed into 2 GBTx chips (**10 per**). Each GBTx drives a fiber transmitter (VTTx) at 3.2Gb/s. Trigger, timing, clock, configuration data, and control commands are received on a separate fiber by a pair of FECs. (**Original plan**)

Common Readout Unit (CRU)


- Interface between the on-detector systems, the online computing system, and the Central Trigger Processor
- Multiplexes data from several front-end links into higher speed data links
- Can do processing on data
- Sends trigger, control, and configuration data to front-ends
- Based on commercial high-performance FPGA
- Located outside of radiation area, so no worry of SEUs
- PCIe platform

JLab Test Stand Goal

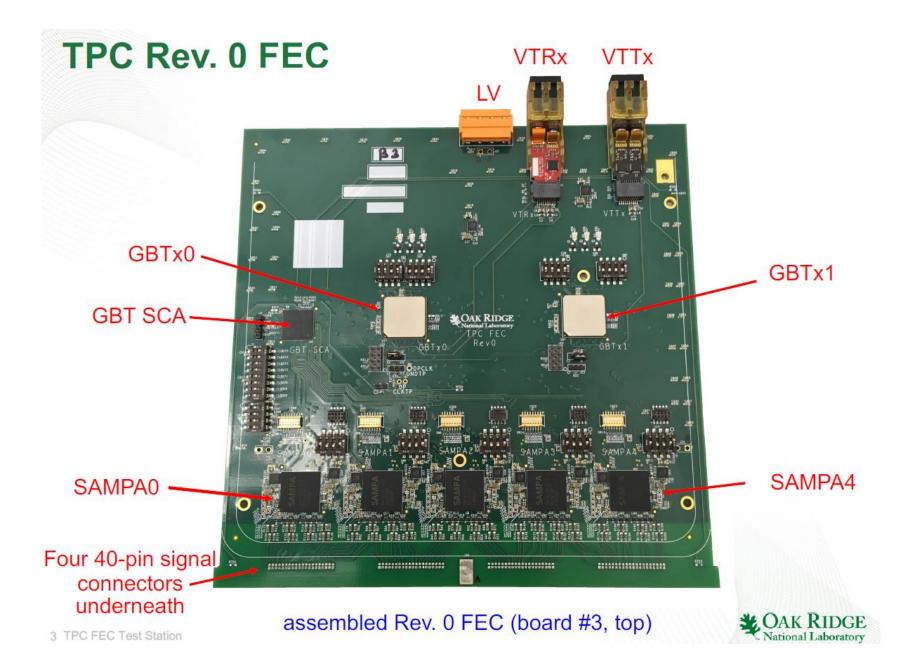
- Determine if the **SAMPA** chip is appropriate for the TDIS TPC as well as other detectors systems at JLab
- To achieve this goal we should:
 - Understand the SAMPA front end response to detector signals
 - Learn how to utilize the complex SAMPA DSP functionality to reduce data volume
 - Deal with a continuous readout data stream and link it with triggered data streams from other sources
- The last point goes beyond the SAMPA chip. <u>Continuous readout systems</u> <u>are expected to be used in many future experiments</u>.

- Ideally we should have a test system that can be <u>scaled up</u> and used for the final detector
- We should be able to connect the test system to an existing detector (e.g. prototype GEM detector at JLab or UVA)
- We should have a mechanism to pulse the inputs in a controlled fashion to study the effects of pileup and high rates on the SAMPA's DSP functions

Fast Track – use as many components of the ALICE TPC readout/control chain as possible

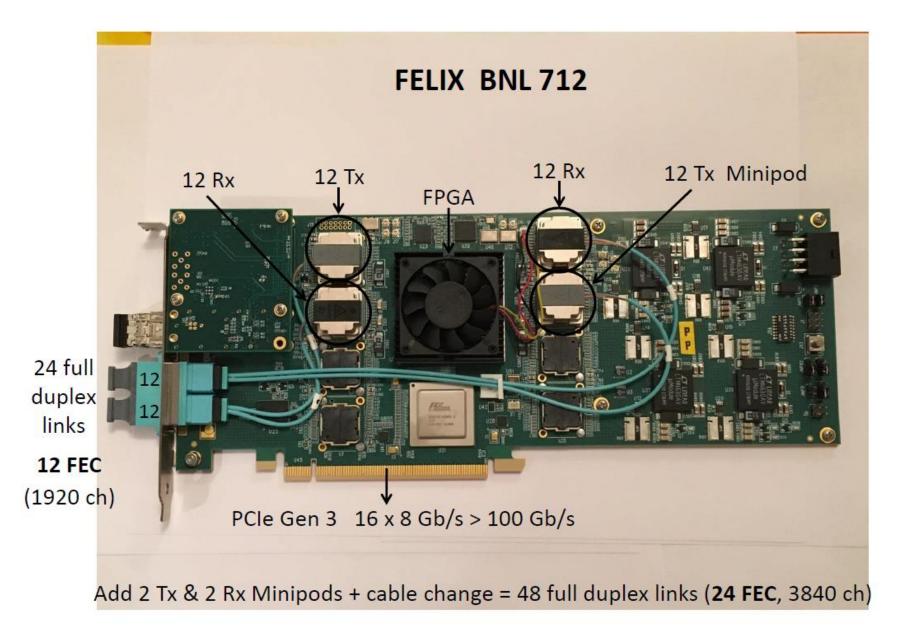
FEC – Front End Card (160 ch / FEC)

- <u>CRU Common Readout Unit</u> (12 FECs / CRU = 1920 ch / CRU)
- DCS Detector Control System
- LTU Local Trigger Unit


Advantages of Fast Track Solution

- System components have been verified and tested together.
- Almost "plug and play".
- Development is reduced to coding (VHDL for data processing and formatting in FPGA, and software integration into CODA).
- Although the FEC would have to be redesigned to match the detector, the data transport model and sub-components (GBTx, GBT-SCA, VTRx, VTTx) can be used in the final solution.
- The CRU can be used in the final solution.
- What we learn from the test setup can be carried over to the actual system implemented.
- We are acquiring 5 FECs and 1 CRU

ALICE Front End Card (FEC)


- Contact Chuck Britton, Oak Ridge National Lab (ORNL) (<u>brittoncl@ornl.gov</u>)
- Plan
 - ORNL gives us all manufacturing files and details necessary to duplicate FEC circuit board
 - We purchase the specialized components (SAMPA, GBTx, ...) and have the board assembled
 - Request ORNL to run our assembled FECs through their rigorous testing station

- 5 FECs shipped - delivery October 2

Alternative to ALICE CRU

- <u>ATLAS Readout Unit</u> (BNL-712)
- Contact Hucheng Chen, BNL, ATLAS (<u>chc@bnl.gov</u>)
- Part of their **FELIX** (<u>Front-End</u> <u>LI</u>nk e<u>X</u>change) system
- PCIe based custom designed <u>identical in concept to ALICE CRU</u>
- Firmware exists to implement GBTx custom protocol and PCIe interface
- Currently installed in high-end PC in DAQ lab

