HRS TOF setup

Alexandre Camsonne

Single arm and coincidence

- TOF between S0 and S2
 - information on particle momentum (usually much worse than momentum), can be used for PID
- TOF between Left S2m and Right S2m
 - best timing resolution
 - long path length
 - also used for PID
 - useful for ee'p, Kaon, APEX

Corrections

- Offsets : cable, TDC offset fixed, usually use overlap or reference scintillator to calibrate
- Time propagation in scintillator
- Timewalk effect
- Pathlength correction
- RF timing

Example transversity experiment

- <u>http://hallaweb.jlab.org/data_reduc/AnaWork2009/Big_Bite-Coincidence-Time-Calibration-Jin.pdf</u>
 - Reached a 1σ resolution ≤ 140 ps
 - Checked with RF Structure RF Time_{Spectrometer} t_{RF}

Coincidence TOF

BigBite was 270 ps timing resolution : should be able to do better with two HRS

Readout

• Old way : Fastbus 1875 50 ps

- New TDCs
 - F1 : 60 ps 32 channels
 - V1290 : 25 ps 32 channels
 - VETROC : 20 ps 128 channels

RF signal

- 499 MHz signal from accelerator
- Allow to know the time with reference to the bunch
- 250 MHz now if 4 halls are running

Plan

- Deploy 2F1 TDC in both HRS
 - copy of S2m
 - test V1290 and VETROC in Test Lab
 - add V1290 and VETROC in one arm to compare performance and split F1 signal
- Send RF signal to TDC
 - found signal
 - most likely prescaled by 8 to be easier to handle