
MEASUREMENTS OF THE DEUTERON, PROTON AND HE-3

MAGNETIC FORM FACTORS AT LARGE MOMENTUM TRANSFERS

Jefferson Lab PAC33 Proposal

December 2007

R. Alarcon, B. D. Anderson, K. A. Aniol, E. J. Beise, L. Bimbot, J. R. Calarco,

A. Camsonne, J.-P. Chen, M. B. Epstein, S. Gilad, J. Gomez, F. Gross,

J.-O. Hansen, D. Higinbotham, J. Huang, C. W. de Jager, X. Jiang, A. T. Katramatou,

E. Khrosinkova, R. De Leo, L. Lagamba, J. LeRose, N. Liyanage, D. M. Manley,

S. Marrone, Z.-E. Meziani, M. Mihovilovič, B. Moffit, P. Monaghan,
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Abstract

We propose an experiment on a precision measurement of the deuteron B(Q2) magnetic

form factor around its diffraction minimum and at large momentum transfers, possibly up to

Q2 = 6 (GeV/c)2, limited only by cross section sensitivity. The experiment can be performed

in the JLab Hall A Facility using i) two backward (∼170◦) custom-made spectrometers to

detect back-scattered electrons and ii) two 3.5◦ spectrometers using a dual-septum dipole

magnet and the two High Resolution Spectrometers to detect forward-recoiling deuterons in

coincidence. The experiment will also be able to measure a) elastic electron-proton scattering

in the Q2 range from 0.4 to 4.3 (GeV/c)2 and provide precision data on the proton Gp
M

magnetic form factor, free of Rosenbluth separation experimental deficiencies, and b) elastic

electron-3He scattering to measure precisely the FM magnetic form factor of the nucleus

around its 1st first diffraction minimum and at Q2 = 75 fm−2. The B(Q2) results are

expected to play a crucial role in understanding the internal structure and dynamics of

the deuteron. The new B(Q2) data will offer unique grounds for testing non-relativistic and

relativistic models of the nucleon-nucleon interaction and meson-exchange currents, as well as

ideas based on quark degrees of freedom and perturbative QCD. The precision of the B(Q2)

data will constrain the theoretical uncertainties and hopefully result in a consistent canonical

hadronic model describing the electromagnetic structure of the simplest nucleus in nature.

The new Gp
M data will be highly complementary to recent precise JLab polarization data

on the proton Gp
E electric form factor and will provide valuable input in understanding the

extraction of the proton elastic form factors from polarized and unpolarized measurements.

The 3He data are expected to provide severe constraints in analytic Faddeev or Monte Carlo

method three-body problem approaches and play a major role in the establishment of a

standard meson-nucleon model describing the few-body nuclear systems. The experiment

will use a cryogenic deuterium/hydrogen/3He system with 5, 10 and 15 cm long cells. The

experiment requires beam energies in the range of 0.5 to 2.7 GeV, beam currents of up to

120 µA, 38 days of deuterium, hydrogen and 3He data taking at 100% efficiency, and 3 days

of check-out time at low beam current.
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1 Precision Measurement of the Deuteron Magnetic Form factor

1.1 Theory Overview

Electron scattering from the deuteron has long been a crucial tool in understanding the in-

ternal structure and dynamics of the nuclear two-body system [1, 2, 3, 4]. In particular, the

deuteron electromagnetic form factors, measured in elastic scattering, offer unique oppor-

tunities to test models of the short-range nucleon-nucleon interaction and meson-exchange

currents as well as the possible influence of explicit quark degrees of freedom [5].

The cross section for elastic electron-deuteron scattering is described, in the one-photon

exchange approximation, by the Rosenbluth formula:

dσ

dΩ
=

α2E ′

4E3 sin4
(

Θ

2

)

[

A(Q2) cos2

(

Θ

2

)

+ B(Q2) sin2

(

Θ

2

)]

, (1)

where E and E ′ are the incident and scattered electron energies, Θ is the electron scat-

tering angle, Q2 = 4EE ′ sin2(Θ/2) is the four-momentum transfer squared and α is the

fine-structure constant. The elastic structure functions A(Q2) and B(Q2) are given in terms

of the charge, quadrupole and magnetic form factors of the deuteron GC(Q2), GQ(Q2) and

GM(Q2):

A(Q2) = G2
C(Q2) +

8

9
τ 2G2

Q(Q2) +
2

3
τG2

M (Q2), (2)

B(Q2) =
4

3
τ(1 + τ)G2

M(Q2), (3)

where τ = Q2/4M2
d , with Md being the deuteron mass. Since A(Q2) is dominated by the

two electric form factors and since B(Q2) is directly proportional to the magnetic one, it

is customary to call A(Q2) and B(Q2) the electric and magnetic deuteron form factors,

respectively. This convention will be followed throughout the text.

Separation of the two A(Q2) and B(Q2) elastic structure functions is accomplished by

cross section measurements at different scattering angles. Forward angle scattering [6] yields

A(Q2), while backward angle scattering [7] allows for the determination of B(Q2). Separation

of all three GC(Q2), GQ(Q2) and GM(Q2) form factors is achieved by measuring a polarization

observable in a single- or double-scattering experiment [8, 9]. Single-scattering experiments
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have used unpolarized electron beams and tensor-polarized deuteron targets [10]. Double-

scattering experiments have used unpolarized electron beams and recoil deuteron tensor

polarimeters [11].

Cross section asymmetry measurements with an electron beam and a tensor-polarized

target or a deuteron tensor polarimeter, result in the extraction of the deuteron tensor

polarization observable t20(Q
2), which is given in terms of the deuteron form factors as:

t20(Q
2) = − 1√

2S(Q2)

[

8

3
τGC(Q2)GQ(Q2) +

8

9
τ 2G2

Q(Q2) +
1

3
τf(Θ)G2

M(Q2)
]

, (4)

where S(Q2) = A(Q2)+B(Q2)tan2(Θ/2) and f(Θ) = 1+2(1+τ)tan2(Θ/2). It is customary

to neglect the small contribution of GM(Q2) in t20(Q
2) and use the alternate quantity t̃20(Q

2),

defined as:

t̃20(Q
2) =

√
2
y(2 + y)

1 + 2y2
, y =

2τGQ(Q2)

3GC(Q2)
. (5)

The advantage of this quantity is that, in both the non-relativistic and relativistic impulse

approximation, it is independent of the nucleon electromagnetic form factors, as they cancel

in the ratio GQ(Q2)/GC(Q2).

In the non-relativistic impulse approximation (IA), the electron interacts, through the

exchange of a virtual photon, with one of the two moving nucleons in the deuteron (see Figure

1a), and the two-body bound state is solved using the Schrödinger equation with a realistic

nucleon-nucleon (N-N) potential. The deuteron form factors are then described in terms of

the deuteron wave function and the electromagnetic form factors of the nucleons [12]:

GC = (Gp
E + Gn

E)CE, (6)

GQ = (Gp
E + Gn

E)CQ, (7)

GM =
Md

M

[

(Gp
M + Gn

M)CS +
1

2
(Gp

E + Gn
E)CL

]

, (8)

where Gp
E and Gp

M are the electric and magnetic form factors of the proton, Gn
E and Gn

M

are the electric and magnetic form factors of the neutron, and M is the nucleon mass. The

factors CE, CQ, CS and CL give the distribution of the proton and neutron point currents

inside the deuteron as determined by the deuteron wave function. They are integrals of

quadratic combinations of the S- and D-state wave functions u(r) and w(r) of the deuteron,

with r being the internucleon separation, expressed as:
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Figure 1: Non-relativistic diagrammatic representation of elastic electron-deuteron scattering. (a):

impulse approximation; (b-e): selected meson-exchange current diagrams (retardation correction,

two-pion exchange current, pair current and ρπγ interaction current) ; (f): isobar configuration.

CE =
∫

∞

0

[

u2(r) + w2(r)
]

j0(k)dr, (9)

CQ =
3√
2τ

∫

∞

0

w(r)

[

u(r) − w(r)

2
√

2

]

j2(k)dr, (10)

CS =
∫

∞

0

[

u2(r) − w2(r)

2

]

j0(k) +
w(r)

2

[√
2u(r) + w(r)

]

j2(k)dr, (11)

CL =
3

2

∫

∞

0

w2(r) [j0(k) + j2(k)] dr, (12)

where j0(k) and j2(k) are spherical Bessel functions, with k = Qr/2.

Theoretical calculations based on the IA approach using various nucleon-nucleon poten-

tials and parametrizations of the nucleon form factors underestimate the A(Q2) data and fail

to reproduce the position of the first diffraction minimum and the height of the secondary

maximum of the charge and magnetic form factor data (for extended theory and experiment

reviews, and compilations of experimental data see References [1], [2], [3], [4] and [13]). It

has long been known that the deuteron form factors are very sensitive to the presence of
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meson-exchange currents (MEC) and/or relativistic effects in the deuteron. The inclusion

of “model independent” (Figure 1b, 1c, 1d) and “model dependent” (Figure 1e) MEC to

the IA brings the theory into better agreement with the data but still fails to describe at

the same time all available deuteron form factor data for moderate and large momentum

transfer measurements [2, 3]. It should be noted that some calculations of the deuteron

form factors show also sensitivity to possible presence of isobar configurations (Figure 1f) in

the deuteron wave function [14, 15], but the magnitude of these configurations is essentially

unknown. In general, inclusion of reasonable isobar configurations in the IA does not bring

the non-relativistic calculations in agreement with all available deuteron form factor data.

= +

+ +

Figure 2: Feynman diagrams representing elastic electron-deuteron scattering in the Complete

Impulse Approximation relativistic approach of Gross and collaborators [20]. The crosses on the

nucleon lines denote on-shell particles. The shaded box depicts the ρπγ interaction current.

The failure of the non-relativistic calculations with increasing momentum transfers dic-

tates the need for relativistic calculations. There are two relativistic approaches: Hamil-

tonian Dynamics [16, 17] and Propagator Dynamics [18]. In the first approach, the basic

dynamics contains a finite number of particles and has a corresponding Hilbert space when

quantized. The quantization is performed along constant time surfaces (instant-form dynam-

ics), along spacelike surfaces with constant interval (point-form dynamics ), or along the light
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cone (light-front dynamics). The advantage of the hamiltonian dynamics framework is that

it can lead to equations of motion of the same form as the two-body Schrödinger equation,

where it is possible to use non-relativistic nucleon-nucleon potentials without modification.

The disadvantage of this formalism is, in general, the loss of locality and manifest covariance.

Also, no consensus has been reached concerning consistent techniques for the construction

of electromagnetic currents in this framework [2, 3].

The second approach is based on a field theory description of two interacting nucle-

ons using three-dimensional reductions of the Bethe-Salpeter (BS) equation [19], which is

a four-dimensional integral equation with a complicated analytical structure. The three-

dimensional reduction to so called quasipotential equations is accomplished by replacing the

free propagator in the BS equation with a new one, chosen to include a constraint in the

form of a delta function involving either the relative energy [20, 21] or time [22] of the inter-

acting nucleons. The advantage of the propagator dynamics is the retainment of locality and

manifest covariance. The disadvantage of this approach is the inclusion of negative energy

states in the particle propagators, which tends to make the calculations technically more dif-

ficult and their physical interpretation harder. A diagrammatic representation of one of the

propagator dynamics approaches by Gross and collaborators [20] is shown in Figure 2. The

Figure includes also the ρπγ interaction current (shaded box). Recent dramatic advances in

the refinement of the propagation dynamics approach have brought the theory in reasonable

agreement with the experimental data (see below).

It is widely recognized that at distances much less than the nucleon size, the underlying

quark-gluon dynamics of the deuteron cannot be ignored. This has led to the formulation of

so called hybrid quark models [23, 24, 25], which try to simultaneously incorporate the quark-

and gluon-exchange mechanism at short distances and the meson-exchange mechanism at

long and intermediate distances. A commonly used approach divides the deuteron in two

regions: an exterior one described by baryon configurations and an interior one described

by a quark cluster. When the internucleon separation becomes smaller than ∼1 fm, the

deuteron is treated as a six-quark configuration with a certain probability. Hybrid models

are still in a phenomenological stage but the hope is that they could provide a consistent

basis of bridging the meson-nucleon and quark-gluon descriptions of the few-body systems.
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Figure 3: Elastic electron-deuteron scattering in the quark-dimensional scaling model [26, 27]

showing the rescattering of the six deuteron constituent quarks (solid lines) via the exchange of

hard gluons (wavy lines); (a): democratic six-quark chain model, (b) quark-interchange model.

At sufficiently large momentum transfers the deuteron form factors are expected to be

calculable in terms of only quarks and gluons within the framework of Quantum Chromody-

namics (QCD). The first attempt at a quark-gluon description of the deuteron form factors

was based on quark-dimensional scaling (QDS) [26, 27]: the underlying dynamical mechanism

during elastic electron-deuteron scattering is the rescattering of the constituent quarks via

the exchange of hard gluons, as shown in Figure 3, which implies that
√

A(Q2) ∼ (Q2)−5.

This prediction was later substantiated in the framework of perturbative QCD (pQCD),

where it was shown [28] that to leading-order:

√

A(Q2) =

[

αs(Q
2)

Q2

]5
∑

m,n

dmn

[

ln
Q2

Λ2
QCD

]

−γn−γm

, (13)

where αs(Q
2) and ΛQCD are the QCD strong coupling constant and scale parameter, and

γm,n and dmn are QCD anomalous dimensions and constants.
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Figure 4: Plan view of the JLab Hall A Facility as used for the recent measurement of the deuteron

A(Q2) at large momentum transfers [6]. Shown are the target scattering chamber, and the two

identical high resolution spectrometers with their detectors, each consisting of three quadrupole

Q1, Q2, Q3 magnets and a dipole D magnet.

A trend consistent with the QDS and pQCD predictions for the deuteron electric form

factor has been observed in recent Jefferson Lab (JLab) measurements (see below) [6]. Ex-

tension of the above pQCD calculations for the magnetic form factor has resulted in the

prediction [29]:
B(Q2)

A(Q2)
' 4τ(τ + 1)

τ 2 + τ + 3/4
, (14)

for Q2 >> 2MdΛQCD ∼ 0.8 (GeV/c)2, which fails to account for the presence of a diffraction

minimum in the magnetic form factor. A refinement [30] of the above prediction, which

includes helicity-flip matrix elements assumed to be negligible in the original calculation,

preserves the asymptotic behavior of the ratio but at the same time allows for the existence

of a diffraction minimum in the magnetic form factor.
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1.2 Overview of Large Q2 Measurements

The unique features of the Continuous Electron Beam Accelerator and Hall A Facilities of

JLab offered recently the opportunity to extend the kinematical range of A(Q2) and to resolve

inconsistencies in previous data sets from different laboratories by measuring [6] forward

scattering angle elastic electron-deuteron scattering for 0.7 ≤ Q2 ≤ 6.0 (GeV/c)2. Backward

angle measurements [31] in conjunction with the forward angle measurements enabled also

determination of B(Q2) in the kinematical range 0.7 ≤ Q2 ≤ 1.4 (GeV/c)2. Electron beams

were scattered off a liquid deuterium target. Scattered electrons were detected in the electron

High Resolution Spectrometer (HRS). To suppress backgrounds and separate elastic from

inelastic scattering events, recoil deuterons were detected in coincidence with the scattered

electrons in the hadron HRS. A schematic of the Hall A Facility as used in this experiment

(E91-26) is shown in Figure 4.

Deuteron
channel

HMS spectrometer

LD2 target

POLDER
polarimeter

e   Beam-

Figure 5: Plan view of the JLab Hall C Facility as used for the recent measurement [11] of the

deuteron t20(Q
2). Shown are the electron High Momentum Spectrometer, the deuteron cryotarget,

and the recoil deuteron spectrometer with the POLDER polarimeter.
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Figure 6: Plan view of the 180◦ electron and 0◦ deuteron magnetic spectrometer systems [35, 34]

used for the SLAC End Station A measurement [7] of the deuteron B(Q2) (see text).

Recent advances in deuteron polarimetry and the high luminosity of the JLab Hall C

Facility enabled also large Q2 measurements of t20(Q
2) [11] for 0.7 ≤ Q2 ≤ 1.7 (GeV/c)2.

The experiment (E94-18) also measured precisely A(Q2) in the same Q2 region [32]. The

experimental setup used the Hall C High Momentum Spectrometer (HMS) to detect scat-

tered electrons and a special deuteron channel to detect and spin-analyze recoil deuterons in

coincidence with the electrons (see Figure 5). The deuteron channel consisted of a large solid

angle magnetic spectrometer comprised of three quadrupole and one dipole magnets, and

the POLDER deuteron tensor polarimeter, calibrated previously at the Saturn Laboratory.

The polarimeter was based on the charge exchange reaction H(~d, pp)n induced by the recoil

deuterons in a liquid hydrogen cell. Deuterons incident on the polarimeter were identified

with two scintillator trigger planes and two sets of wire chambers. The pairs of protons from

the charge exchange reactions were identified with two pairs of scintillator hodoscopes and

a wire chamber set.
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The highest Q2 measurements of B(Q2) were performed [7] in the mid-1980’s with a novel

double-arm spectrometer system [33, 34, 35] in the SLAC End Station A (Experiment NE4),

as shown in Figure 6. Electron beams from the Nuclear Physics Injector were directed on a

deuteron target through a chicane of dipole magnets (B1, B2 and B3). Electrons scattered

at 180◦ were transported through a large solid angle spectrometer system consisting of three

quadrupole (Q1, Q2, and Q3) and two dipole (B3 and B4) magnets to a set of detectors. The

spectrometer system comprised of these magnets had medium resolution. Deuterons recoiling

at 0◦ were transported through a spectrometer system consisting of three quadrupole (Q4,

Q5, and Q6) and four dipole (B5, B6, B7 and B8) magnets to another set of detectors.

The spectrometer system comprised of these magnets had poor resolution. The primary

(unscattered) beams were directed onto a beam dump located inside the End Station. Elastic

electron-deuteron coincidence events were identified by the time-of-flight (TOF) method

between the electron and recoil spectrometer trigger signals. The kinematical parameters of

the coincidence events were defined through the reconstructed momentum and angle of the

scattered electrons. The recoil spectrometer was used to tag the coincidence, as the electron

spectrometer alone could not identify elastic electrons, due to a combination of its moderate

resolution and long target lengths.

1.3 Experiment versus Theory

The experimental data for A(Q2), B(Q2) and t20(Q
2) are shown (with the exception of

recent t20(Q
2) data from Novosibirsk [10]) in Figures 7–10 together with non-relativistic and

relativistic theoretical calculations. The data for A(Q2) indicate a smooth fall off with no

apparent diffractive structure. The data for B(Q2) indicate the presence of a diffraction

minimum in the vicinity of Q2 = 1.8 (GeV/c)2. The large error bars of the SLAC NE4

data are due to limited statistics and to systematics associated with a large photoproduction

background mimicking elastic electron-deuteron coincidences. The t20(Q
2) data together

with the A(Q2) and B(Q2) data show that the charge form factor exhibits a diffractive

structure with a minimum at Q2 = 0.7 (GeV/c)2 and that the quadrupole form factor falls

off exponentially in the measured Q2 region [11].
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Figure 7: Low Q2 data [6, 7, 31] on the deuteron A(Q2) and B(Q2) electric and magnetic form

factors compared with non-relativistic impulse approximation calculations by Schiavilla and col-

laborators [36] with and without inclusion of meson-exchange currents.
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Figure 7 shows A(Q2) and B(Q2) data for Q2 < 2 (GeV/c)2 compared with a state-of-

the-art non-relativistic calculation by Schiavilla and collaborators [36] using the Argonne v18

nucleon-nucleon potential. The calculation is based on the impulse approximation approach

and includes relativistic corrections and meson-exchange currents. The solid dots in the

B(Q2) plot are the recent data from the JLab E91-26 Hall A experiment [31]. The dashed

curve is the impulse approximation calculation. The dot-dashed curve is the full calculation.

It is evident from the Figure that this non-relativistic calculation cannot describe both form

factors at the same time. This is a pattern present in all non-relativistic calculations.

Figure 8 shows all the available A(Q2), B(Q2) and t̃20(Q
2) experimental data and theo-

retical calculations based on the propagator dynamics approach [sometimes referred to as the

relativistic impulse approximation (RIA)] by three different groups. The solid, dotted and

dashed curves represent the RIA calculations of Van Orden, Devine and Gross (VDG) [20],

Hummel and Tjon (HT) [21], and Phillips, Wallace and Devine (PWD) [22], respectively.

The VDG curve is based on the Gross quasipotential equation [37] with a one-boson-exchange

interaction and assumes that the electron interacts with an off-mass-shell nucleon or a nu-

cleon that is on-mass-shell right before or after the interaction (see Figure 2). The HT curve

is based on a one-boson-exchange quasipotential approximation of the Bethe-Salpeter equa-

tion [38], where the two nucleons are treated symmetrically by putting them equally off their

mass-shell with zero relative energy. The PWD curve is also based on a one-boson-exchange

interaction but with a single-time equation that constraints the relative time to be zero.

In all three cases the relativistic impulse approximation fails to describe the data. All

three theory groups have augmented their models by including the ρπγ MEC contribution as

shown in Figure 9. The magnitude of this contribution depends on the ρπγ coupling constant

and vertex form factor choices [39]. The VDG model (solid curve) uses a soft ρπγ form factor.

The HT model (thin dotted curve) uses a Vector Meson Dominance model hard form factor.

The PWD model (dashed curve) uses an intermediate form factor. The inclusion of the

ρπγ MEC contribution has a small effect on B(Q2) and t̃20(Q
2) but increases dramatically

A(Q2). The A(Q2) data favor use of the softest possible form factor. The thick dotted

curve is an alternate calculation by the VDG group with a different nucleon form factor

choice in the off-shell modification of the single nucleon current as required to insure current

15
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Figure 8: Experimental data [6, 7, 10, 11] on the deuteron A(Q2), B(Q2) and t̃20(Q
2) compared

with theoretical calculations based on propagator dynamics (RIA) [20, 21, 22] (see text).

conservation (see next section). This modification affects significantly B(Q2) and to a lesser

degree t̃20(Q
2). Although the difference in the models is indicative of the size of theoretical

uncertainties and ambiguities, it appears that the relativistic impulse approximation can, as

in the case of the alternate VDG model, reproduce the deuteron form factor data fairly well.

Figure 10 shows a comparison of selected recent hamiltonian dynamics calculations with

the available experimental A(Q2), B(Q2) and t̃20(Q
2) data. The solid curve is a point form
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Figure 9: Experimental data [6, 7, 10, 11] on the deuteron A(Q2), B(Q2) and t̃20(Q
2) compared with

theoretical calculations based on propagator dynamics (RIA) with inclusion of the ρπγ interaction

current [20, 21, 22] (see text).

calculation by Allen, Klink and Polyzou [40] using the Argonne v18 potential. The dashed

curve is a front form calculation by Lev, Pace and Salmè [41] using the Nijmegen potential.

The dot-dashed curve is an instant form calculation by Schiavilla and Pandharipande [42]

using the Argonne v18 potential. These three calculations employ different approaches for

the construction of the electromagnetic current. It is evident that none of these admittedly
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Figure 10: Experimental data [6, 7, 10, 11] on the deuteron A(Q2), B(Q2) and t̃20(Q
2) compared

with selected theoretical calculations based on hamiltonian dynamics [40, 41, 42] (see text).

promising approaches is able, at this stage, to describe simultaneously all three A(Q2), B(Q2)

and t̃20(Q
2) deuteron observables.

Figure 11 (top) shows values for the “deuteron form factor” Fd(Q
2) ≡

√

A(Q2) from JLab

experiment E91-26 [6] and SLAC experiment E101 [43] multiplied by (Q2)5. It is evident

that the data exhibit a behavior consistent with the power law of QDS and pQCD. Figure 11

(bottom) shows values for the “reduced” deuteron form factor fd(Q
2) ≡ Fd(Q

2)/F 2
N(Q2/4),
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Figure 11: The deuteron form factor Fd(Q
2) times (Q2)5 (top) and the reduced deuteron form

factor fd(Q
2) (bottom) from JLab [6] and SLAC [43] data. The curve is the asymptotic pQCD

prediction [28] for ΛQCD = 100 MeV, arbitrarily normalized to the data at Q2 = 4 (GeV/c)2.

where the two powers of the nucleon form factor FN(Q2) = (1 + Q2/0.71)−2 remove in a

minimal and approximate way the effects of nucleon compositeness [44]. The fd(Q
2) data

appear to follow, for Q2 > 2 (GeV/c)2, the asymptotic Q2 prediction of pQCD [28]:

fd(Q
2) ∼ αs(Q

2)

Q2

[

ln
Q2

Λ2
QCD

]

−Γ

. (15)

Here Γ = −(2CF/5β), where CF = (n2
c − 1)/2nc, β = 11 − (2/3)nf , with nc = 3 and

nf = 2 being the numbers of QCD colors and effective flavors. Although several authors

have questioned the validity of QDS and pQCD at the momentum transfers of the JLab ex-

periment [45, 46], similar scaling behavior has been reported in deuteron photodisintegration
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at moderate photon energies [47]. New large momentum transfer data on many observables,

including the deuteron magnetic form factor as well as the three- and four-body form factors

will be necessary, before drawing any definitive conclusion for the applicability of pQCD in

exclusive processes in the kinematical domain accessible by today’s machines.

1.4 Motivation for New B(Q2) Measurements

Jefferson Lab is the ideal place to study experimentally the deuteron form factors, “ob-

servables of choice” [48] for testing meson-nucleon models describing the electromagnetic

structure of the deuteron. The unique capability of its high luminosity and the availabil-

ity of its superior resolution large acceptance magnetic spectrometers, were instrumental

in extending, with an unprecedented precision, the measurements of the deuteron electric

form factor A(Q2) and tensor polarization t20(Q
2) to momentum transfers not accessible by

other electron machines. The same features of JLab can by utilized to study the diffraction

minimum and the secondary maximum of the deuteron magnetic form factor B(Q2), and

probably more than double the Q2 range of the existing B(Q2) data.

The B(Q2) SLAC data acquired in the “heroic effort” [3] of SLAC experiment NE4 un-

covered the diffractive feature of B(Q2) predicted by the theory (although not beyond any

doubt, as has been stressed in Ref. [3]) but were unable to determine reliably the location of

its diffraction minimum and the strength of its secondary maximum. The NE4 results were

limited primarily by large statistical uncertainties, and to a lesser extend by systematic un-

certainties from an unexpected large background from two-step photoproduction processes

in the target [7]. The possible sources of this background, located predominantly on the ra-

diative tail, were considered to be electron-deuteron coincidences from γd → γd (Compton

scattering) and/or γd → π◦d reactions initiated by bremsstrahlung photons in the target.

The second reaction also results in photon production as the π◦ decays in the target into

two photons. In both cases the outcome can be a coincidence between a deuteron in the

recoil spectrometer and an electron in the electron spectrometer, originating from pair pro-

duction of a final state photon in the target. The effect of this unforeseen background,

which mimicked elastic coincidence events, was inadvertently magnified by the long targets
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Figure 12: Cross section for the reaction γd → π◦d, as extracted by experiment SLAC NE4 [7],

compared with Tokyo [49] and JLab [50] measurements. The dashed curve is an eye fit to the data.

The solid curve is a model for the elastic electron-deuteron cross at the backward NE4 kinematics.

used in NE4, as it grows at least with the square of the target length (all but one kine-

matical points used 20 and 40 cm long targets), and by the modest (poor) resolution of the

electron (recoil) spectrometer. A detailed analysis of these events showed that they were

coming overwhelmingly from the γd → π◦d reaction. The measured value of the ratio of

double-arm electron-deuteron coincidences to single-arm deuterons in the recoil spectrome-

ter was compared to a Monte Carlo ratio calculation of the two types of background. The

χ2/df for the π◦ reaction was 1.9 and for the Compton one 105. Also, the cross section for

the π◦ reaction, calculated from single-arm deuterons in the recoil spectrometer under the

assumption that Compton scattering is negligible, is an excellent agreement with old data

from Tokyo [49] and recent data from JLab Hall C [50], as shown in Figure 12. The effect of

this background is shown for all Q2 points of NE4 in Figure 13, where spectra of coincidence

events are plotted versus the double-arm missing momentum δmm defined as the sum of the

relative electron and deuteron momenta (with respect to the central electron and deuteron
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spectrometer momenta). It is evident from the Figure that the number of background events

on the radiative tail grows about quadratically with target length. JLab can overcome the

limitations of the SLAC experiment by using in a high luminosity experiment a short target

and a recoil spectrometer with very good resolution as the hadron HRS (see below).

Figure 13: Spectra of elastic electron-deuteron coincidence events versus missing momentum for

nine Q2 kinematics from SLAC experiment NE4 [7] (see text). The Q2 point 1.21 (GeV/c)2 used

10 cm target, the Q2 points 1.49, 1.61, 2.23, 2.53 and 2.77 used 20 cm target, and the Q2 points 1.74,

1.98 and 2.48 used 40 cm target. The data were fitted to a sum of three curves: elastic scattering,

γd → π◦d background, and random background. The shapes of the elastic and background curves

were determined by Monte Carlo simulation.

It is well known that the deuteron magnetic form factor is extremely sensitive to the

details of the theoretical calculations [1, 2, 3]. All non-relativistic calculations show a large

sensitivity in the nucleon-nucleon potential used, the modeling in the inclusion of MEC

and the possible admixtures of nucleon isobars and six-quark states in the deuteron wave
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function. Small variations of unconstrained parameters of the models result in big differences

in the location of the diffraction minimum of B(Q2) and the strength and Q2 evolution of the

secondary maximum. Typical examples on this sensitivity can be found in References [2],

[14], [25] and [36]. A similar degree of sensitivity is observed in the relativistic calculations

using hamiltonian dynamics or propagator dynamics as it is evident by inspection of Figures

8, 9 and 10 (see also Ref. [51]).

In the most complete study of the deuteron form factors using propagator dynamics

with the Gross equation, the VDG group observed that B(Q2) is extremely sensitive to the

presence of small P -state components of the deuteron wave function of relativistic origin. In

particular, the position of the minimum of B(Q2) is very sensitive to the sign of the singlet

P state vs. This observation is very surprising, because the probability of the vs state is only

0.01%. The reason such a small component can have such a large effect is due to a double

interference between the small P states and the larger S- and D-state components. This is

easily seen when one considers the decomposition of the magnetic form factor in electric and

magnetic parts (similarly to the non-relativistic impulse approximation case):

GM = (Gp
E + Gn

E)DE
M + (Gp

M + Gn
M)DM

M , (16)

and obtains, to first order in (Q/M)2, the low-Q2 limit for the relativistic impulse approxi-

mation:

DE
M =

∫

∞

0

dr

{

3

2
w2(r) +

2Mr√
3

[

vt(r)

(

1√
2
u(r) − w(r)

)

−vs(r)

(

u(r) +
1√
2
w(r)

)]}

[j0(k) + j2(k)] , (17)

DM
M =

∫

∞

0

dr
[(

2u2(r) − w2(r)
)

j0(k) +
(√

2u(r)w(r) + w2(r)
)

j2(k)
]

, (18)

where vt is the triplet P state of the relativistic four-component deuteron wave function. All

terms quadratic in the P states are very small in this region but the small-P components

of the terms in DE
M interfere with the large components, enhancing the overall effect of the

small components. Also if the sign of the vs component is opposite to that of vt, the two

separate interference terms will add coherently enhancing their effect.

Another source of uncertainty in the VDG model is the off-shell modification of the single-

nucleon current. This is necessary to insure current conservation, by satisfying the Ward-
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Takahashi identity. The VDG solution of this constraint results in a nucleon electromagnetic

current requiring an unconstrained form factor, F3(Q
2), in addition to the Dirac and Pauli

form factors F1(Q
2) and F2(Q

2), and three associated, partly constrained, functions of the

off-shell virtuality of the nucleon. Recent studies by Van Orden and Gross [20] have shown

that the secondary maximum of B(Q2) is very sensitive to the hardness of the F3(Q
2) off-

shell form factor and that reasonable variations in the F3(Q
2) choices have a small effect in

t̃20(Q
2) and minimal effect on A(Q2). This can be seen by comparing the curves of Figures

8 and 9. The solid curve of Figure 9 uses a dipole-type form for the F3(Q
2) form factor

meanwhile the thick-dotted curve uses a tripole-type form.

A third source of uncertainty in the VDG model is the hardness of the ρπγ form factor.

The particular choice for this form factor has a large effect on A(Q2) but a small effect

on B(Q2) and almost no effect in t̃20(Q
2), as can be seen by examination of Figures 8 and

9, given that the VDG, HT and PWD groups use significantly different ρπγ form factor

choices. Since the above three uncertainties affect primarily three different aspects of the

data, namely the location of the B(Q2) diffraction minimum, the height of the secondary

maximum of B(Q2) and its evolution to larger Q2, and the overall magnitude of A(Q2), a

precise measurement of the location of the diffraction minimum and of the height and shape

of the secondary maximum of B(Q2) and beyond, will constrain the theoretical model and

provide a consistent description of both elastic form factors A(Q2) and B(Q2).

The importance of precise B(Q2) measurements in discriminating among the differing

theoretical calculations is demonstrated in Figure 14, which contains a representative sam-

ple of recent propagator and hamiltonian dynamics calculations and an older quark-cluster

hybrid model calculation compared to A(Q2), B(Q2) and t20(Q
2) data. The theory curves in

the Figure are, in order of the Q2 of their minima in B(Q2), by: Carbonnel and Kar-

manov [52] (hamiltonian dynamics/ front-form, long dot-dashed line); Phillips, Wallace

and Devine [22] (propagator dynamics, dashed double-dotted line); Allen, Klink and Poly-

zou [40](hamiltonian dynamics/point-form, short dot-dashed line); Van Orden and Gross [20]

(propagator dynamics/full calculation, solid line); Van Orden, Devine and Gross [20] (propa-

gator dynamics/RIA only, long dashed line); Lev, Pace and Salmè [41] (hamiltonian dynam-

ics/ front-form, dotted line); Dijk and Bakker [25] (quark-cluster hybrid, widely spaced dot-
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Figure 14: Comparison of available deuteron A(Q2), B(Q2) and t20(Q

2) data [6, 7, 10, 11, 31] with

selected theoretical calculations [20, 22, 25, 40, 41, 42, 52, 53] (see text). Of note is the large model

dependence of the predictions for B(Q2).

ted line); Schiavilla and Pandharipande [42] (hamiltonian dynamics/instant form, medium

dashed line); and Arenhövel, Ritz and Wilbois [53] (hamiltonian dynamics, short dashed

line). The “most striking feature of this plot is the large model dependence of the predictions

for B(Q2)”, as has been stressed in the review work of Ref. [3]. A new precise measure-
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ment of B(Q2) can obviously provide severe constraints in the parameters of the calculations

with an unprecedented discriminative power. The second obvious striking feature of the

plot are the very large error bars of the higher Q2 SLAC data of B(Q2) that offer a limited

discriminative power, necessitating the need for new precise measurements.

The pQCD calculations predict fairly large values for B(Q2) for Q2 > 2.5 (GeV/c)2,

easily measurable in a JLab experiment. The expected values are, in general, significantly

larger than the ones predicted by conventional non-relativistic or relativistic meson-nucleon

calculations. The original pQCD prediction for the ratio B(Q2)/A(Q2) by Brodsky and

Hiller [29] and its improvement by Kobushkin and Syamtomov [30] are shown in Figure 15.

Shown also in the Figure are data from SLAC [7], Bonn [54] and Saclay [55]. A new JLab

experiment will offer large Q2 B(Q2) data that can provide some finality to the, unresolved

for more than a quarter of a century, issue of the applicability of pQCD to the deuteron form

factor description and either validate the apparent success of QDS and pQCD in describing

A(Q2), or put it to rest.

It should be noted that there has been a tremendous amount of theoretical work on the

deuteron form factors in the last decade and in particular after the publication of the JLab

A(Q2) and t20(Q
2) data. A successful completion of this work will require new improved data

on the deuteron B(Q2) over the Q2 region of its apparent diffraction minimum and beyond

to larger Q2 to constrain remaining theoretical uncertainties. A JLab measurement of the

deuteron B(Q2) with a precision comparable to the previous A(Q2) JLab measurements

will significantly advance our understanding of the internal structure and dynamics of the

deuteron, and quite possibly establish a canonical consistent hadronic model describing the

electromagnetic structure of the deuteron.

The importance of the previous SLAC and JLab experiments on the deuteron form factors

for our understanding of the simplest nucleus in nature is universally accepted. Both the 1990

DOE/NSF Long Range Plan by NSAC [56], which proceeded the SLAC NE4 experiment, and

the 2002 Long Range Plan [57], which proceeded the JLab experiments, acknowledged the

deuteron form factor measurements as major nuclear physics achievements and called their

extensions to the highest momentum transfers possible as essential for the advancement of

nuclear physics. While the extension of A(Q2) [58] will have to wait for the 12 GeV upgrade
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Figure 15: Perturbative QCD predictions for the deuteron A(Q2)/B(Q2) ratio. The solid curve

is the original calculation by Brodsky and Hiller [29]; the dashed curve includes a correction of

order ΛQCD/Md by Kobushkin and Syamtomov [30]. The data are from SLAC [7] (solid triangles),

Bonn [54] (solid squares) and Saclay [55] (open circles).

of JLab and the extension of t20(Q
2) for a major new idea in deuteron polarimetry, the

extension of B(Q2) is presently feasible at JLab.

We are proposing to perform the much needed extension of B(Q2) by reaching the limits

of magnetic elastic scattering from the deuteron accessible by the unique features of JLab.

Our objective is to improve significantly the quality of the existing data on the deuteron

B(Q2) around its diffraction minimum and extend the existing measurements to the highest

momentum transfers, possibly up to Q2 = 6 (GeV/c)2, limited only by cross section sensi-

tivity of one elastic event per day [as in the JLab E91-26 experiment on A(Q2)]. The new

data will be of significant importance for the development of a canonical theory based on

hadronic degrees of freedom describing the electromagnetic structure of the deuteron.
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1.5 The Experimental Setup

The existing deuteron form factor data show that, for Q2 > 1.5 (GeV/c)2, the electric form

factor is 2 to 3 orders of magnitude greater than the magnetic one, dictating that any future

B(Q2) measurements for Q2 > 1.5 (GeV/c)2 must be performed at or close to 180◦ so that

the contribution from A(Q2) would not dominate the elastic cross section.

The cross section to be measured is known to be small and of the order of 10−41 to 10−42

cm2/sr in the vicinity of the diffraction minimum and beyond, requiring i) clean identification

of elastic events with detection of both scattered electrons and recoiling deuterons in coin-

cidence, ii) sufficient angular and momentum resolution in the kinematical reconstruction

of the events, iii) a double-arm magnetic spectrometer with the largest possible solid angle,

and iv) the longest possible target consistent with cryogenic limitations and suppression of

the expected photoproduction background.

Deuterons will be detected at a fixed recoil angle of 3.5◦ in the two High Resolution

Spectrometers, placed at their minimum angle of 12.5◦. The recoil nuclei will be deflected

by 9.0◦ to the entrance of the two HRSs by a dual-septum dipole magnet placed on the

Hall A pivot platform, which normally houses the cryogenic target chamber, as shown in

Figure 16. The latter chamber will be pulled upstream by 1.4 m. The electron beam will

travel towards the beam dump through a central opening in the dual-septum dipole (see

below), shown in Figure 17. Scattered electrons will be measured with two simple backward

spectrometers based on two small dipole magnets, shown in Figure 18, placed on both sides

of the beam, as shown in Figure 16.

The identification of the electron-recoil nucleus coincidences will rely on double-arm TOF

measurements, as in the E91-26/E04-18 [59] elastic experiments on the deuteron/helium

isotopes. It is our expectation that the double-arm TOF spectra for this experiment will be

free of background, similarly with the electron-deuteron/helium spectra of E91-26/E04-18

experiments. Figure 19 shows a representative sample of E91-26 TOF spectra (after standard

timing corrections) in the Q2 range of 0.7 to 6 (GeV/c)2 [60].

The presence of double-arm electron-deuteron coincidences from the two-step photopro-

duction background processes observed in SLAC experiment NE4 will be significantly sup-
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Figure 16: The dual double-arm spectrometer system for the measurement of the deuteron, proton

and 3He magnetic form factors (not to scale). Scattered electrons are detected at backward angles

(153◦-172◦) in two spectrometers based on two small dipole magnets. Recoil nuclei are detected

at a fixed angle of 3.5◦ in the two High Resolution spectrometers of Hall A, placed at 12.5◦ with

respect to the beam line, after a 9◦ deflection by a dual-septum dipole magnet (see text).

pressed in this experiment. This background, being at least proportional to the square of

the target length, will be reduced by one order of magnitude as compared to SLAC NE4,

using a target length of 10 cm, much shorter than the 20 and 40 cm target lengths used at

SLAC. The outstanding angular and momentum resolutions of the recoil spectrometers will

provide clean separation of elastic and photoproduction deuterons, further suppressing any

remaining background close to the elastic peak. Application of cuts in the angular elastic
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Figure 17: Side and front (target) view of the iron yoke (top and bottom) and coils (middle) of

the dual-septum dipole magnet that deflects nuclei recoiling around 3.5◦ to the two HRS systems

through its left and right openings. The beam travels to the Hall A dump through the central

opening of the magnet.
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Figure 18: Front (target) view of one of the two small dipole magnets of the backward electron

spectrometers. Seen are the iron yoke and the coils.

correlation of the scattered and recoil particles (not applied in the SLAC experiment because

of the poor resolution of its recoil spectrometer), in particular in the vertical direction, will

ensure the total elimination of any remaining background events.

The kinematical coordinates of the coincidence elastic events will be determined from the

3.5◦ spectrometers’ recoil nucleus coordinates. The electron detection in coincidence will tag

and ensure the nature of the elastic events. The calibration of the entire double-arm system

will be checked with elastic electron-proton scattering in coincidence. Elastic scattering from

hydrogen will be measured at every kinematical point of the elastic deuteron scattering. The

double-arm solid angle will be calculated by means of Monte Carlo simulation as was done

for the SLAC NE4 experiment on B(Q2) and for the JLab E91-26 Hall A experiment on
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A(Q2) [33, 35]. Details on the essential elements of the simulation method are given in the

Appendix.

0

2000

4000

100 120 140
0

2000

4000

6000

100 120 140

0

250

500

750

1000

100 120 140
0

20

40

100 120 140

0

2.5

5

7.5

10

100 120 140

Q2=0.685C
o

u
n

ts

Q2=1.314

Q2=2.35 Q2=3.92

Q2=5.30 Q2=5.90

Corrected coincidence time-of-flight  (ns)

0

2.5

5

7.5

10

100 120 140

Figure 19: Electron-deuteron coincidence TOF spectra for six Q2 kinematics (including the lowest

and highest ones) from JLab Hall A elastic electron-deuteron scattering experiment E91-26, after

applying standard timing corrections [60].

The experiment will require three target cells, a 5 cm long one for hydrogen and 3He

measurements, a 10 cm long for deuterium measurements, and a 15 cm one for 3He mea-

surements. The large angular range of the scattered electrons dictate use of the convenient
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tuna-can target cell geometry, used successfully in other experiments in the past. The tested

cooling capability of Hall A can allow use of beam currents as high as 150µA for a 10 cm

long deuterium target. For the purpose of this proposal we assume a beam current of 120µA

for the deuteron and helium measurements (as for the case of Hall Experiment E91-26,

which used a 15 cm long deuterium target), and up to 60µA for the hydrogen measurements.

Beam-intensity induced changes in the density of liquid hydrogen and deuterium (gas he-

lium) targets have been measured to be, under similar conditions in Hall A, on the order of

a few (several) percent, resulting in a fractional cross section error of < ±0.5 (1.0)%.

1.5.1 The Dual 3.5◦ Recoil Spectrometers

The recoiling nuclei will be detected in the two High Resolution Spectrometers after being

deflected by 9◦ in the two left and right gaps/openings of the dual-septum dipole, shown

in Figure 17. This septum has been designed by Mr. Paul Brinza, JLab Engineer [61]. It

will be a symmetric, iron-dominated magnet, with identical, very uniform magnetic fields in

its two gaps. The length of the iron yoke is 1.1 m and the maximum integrated magnetic

field is 1.6 T·m, with an effective length of 1.2 m. The dimensions of each gap are 30 cm

horizontally by 12 cm vertically. The magnet will be powered by the existing BigBite power

supply. Detailed magnetic measurements will be performed prior to the installation of this

magnet and a complete field map will be produced as a function of current.

In order to be able to use the HRSs with their permanent pointing to the Hall A target

pivot center, the target assembly will be moved by 1.4 m upstream from its nominal position

on the Hall A pivot, with the two HRSs pointing towards the dual-septum, placed in the

vicinity of the target pivot. The distance between the exit of the septum and the entrance

of the first HRS quadrupole is 0.49 m. The collimator multi-function box in front of each

HRS will be removed and a single aperture/solid angle-defining collimator will be placed

inside the vacuum pipe of each first HRS quadrupole. To block the large flux of forward

bremsstrahlung photons, originating in the target, from propagating through the vacuum

pipe of the two recoil spectrometers, two fixed-aperture photon collimators will be placed in

front of the two openings of the septum magnet.
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Each half of the dual-septum becomes an additional magnetic dipole element of the optics

of the HRS system, with the distance of its first quadrupole from the target center increased

from 1.6 to 3.1 m. A new optics configuration has been developed to i) achieve a desired

recoil solid angle of 1.5 msr, with vertical (horizontal) angular acceptance of 24 (15) mr and

ii) preserve the excellent momentum and angular resolutions of the standard HRS optics

configuration. The optics is point to point in the dispersive (vertical) plane (the transported

particle’s position along a momentum focal plane is proportional to its momentum) and

parallel to point in the transverse (horizontal) plane (the transported particle’s position

along an angular focal plane is proportional to its production angle). The momentum and

horizontal angle focal planes are at the same position, in the drift chambers, with the position

of the momentum focal plane of the standard HRS tune (this latter tune has no angle focal

plane). The operating gradients of the three HRS quadrupoles, Q1, Q2 and Q3, will be

0.429g1, 0.896g2 and 1.12g3, where g1, g2 and g3 are the gradients of the standard HRS

tune. The first order transformation equations for the exit TRANSPORT [62] coordinates

(x, θ: horizontal; y, φ: vertical) of the particles at the drift chambers, in terms of the target

coordinates (x◦, θ◦: horizontal; y◦, φ◦: vertical; δ◦: relative momentum) are:
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For comparison, the corresponding matrix transformation of the nominal HRS tune is:





















x

θ

y

φ





















=





















−0.62 −0.08 0.00 0.00 0.00

3.83 −1.09 0.00 0.00 0.00

0.00 0.00 −1.95 −0.06 11.9

0.00 0.00 −0.63 −0.53 19.6















































x◦

θ◦

y◦

φ◦

δ◦



























(20)

It can be seen that the intrinsic momentum resolution of the modified HRS will be

better by about a factor of 2, as the D/M (dispersion over magnification) almost doubles

34



(12.8/1.24=10.2 versus 11.9/1.95=6.1), as compared to the standard HRS tune. For a beam

raster size of ±0.15 cm incident on a 10 cm target viewed by the HRS at 3.5◦, the momentum

resolution of the modified (standard) HRS is ±0.017% (±0.038%), for 4 (GeV/c) particles.

The angular resolutions depend on the central spectrometer momentum due to multiple

scattering effects in the HRS exit vacuum window and the drift chambers. They are also

better by more than a factor of 2 for the modified HRS, as compared to the nominal HRS

tune. For comparison, the intrinsic angular resolutions of the modified (standard) HRS

tune are, for the 1.9 (GeV/c) recoil momentum of the middle Q2 = 3 (GeV/c)2 proposed

deuteron kinematics (see Table 1), ±0.3 (0.9) mr in the horizontal and ±1.9 (3.8) mr in

the vertical direction. The total effective angular resolutions will grow due to multiple

scattering effects in the target (e.g. ±0.8 mr in both vertical and horizontal directions for

the deuteron momentum of 1.9 (GeV/c), but they will be more than sufficient for the needs

of this experiment.

The incident electron beam will travel straight to the beam dump of the Hall through

the central opening of the dual septum (which is, in the current design, ∼4×4 cm2). There

is no dipole field along the beam-line axis, but there is a quadrupole field estimated to be

∼40 (130) G/mm at the lowest (highest) Q2 deuteron kinematics, corresponding to a beam

energy of E = 0.59 (2.1) GeV, or, on the average, a gradient of ∼65 G/mm/GeV, normalized

to beam energy. To compensate for the beam phase-space growth caused by this quadrupole

field, a small separate quadrupole, running in opposite polarity, will be placed in the 0.5 m

space available between the septum magnet and the two first quadrupoles of the two HRS

systems, as shown in Figure 16.

The recoil nucleus detection will require a subset of the full detector package of each

HRS. The two planes of scintillators, S1 and S2, and the vertical drift chambers (VDC) will

suffice for TOF measurements and for the reconstruction of the recoil nucleus momentum

and recoil angle. The candidate recoil signal used for triggering and for double-arm TOF

measurements will be formed by the coincidence of the signals of the two scintillator planes.

To improve the single-arm TOF separation between deuterons and protons, the distance

between the two scintillator planes will be increased from 2 to 4 m by moving the S2 plane

downstream. Additional discrimination between protons and deuterons will be provided by
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Figure 20: Hadron identification by the two planes of scintillators in the E91-26 experiment that

measured the deuteron A(Q2) in JLab Hall A: a) Measured speed of hadrons detected in the

recoil HRS system, b) ADC spectrum of the 1st plane of the recoil HRS scintillators. The central

spectrometer momentum was 0.84 (GeV/c) [60].

the ADC pulse heights of their scintillator signals. The system of the two scintillator planes

has performed admirably so far in past Hall A experiments, as shown, for one of the E91-

26 A(Q2) measurements [60], in Figure 20. The timing resolution in the single arm TOF

measurements was about 0.5 ns (rms).

1.5.2 The Dual Backward Electron Spectrometers

Each electron spectrometer will be comprised of a small single, also iron-dominated, dipole

magnet, shown in Figure 18, also designed by Mr. Paul Brindza, and a set of detectors about

2 m away from the dipole. The dipole magnets will put the detectors out of the direct view

of the target, and sweep away all scattered electrons and background pions outside their

∼ 25% momentum acceptance. The length of each magnet will be 0.35 m, providing an

integrated field of 0.5 T·m. The opening of the magnet will have a horizontal width of 13 cm

and a vertical gap of 20 cm. It is assumed, that since the two magnets for the backward
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spectrometers are identical, they can run by a single power supply, in series or parallel,

available at JLab. Detailed magnetic measurements will be performed for this magnet too,

prior to its installation, and a complete field map will be produced as a function of current.

Also, an aperture/solid angle-defining collimator in the horizontal direction, of remotely

controlled variable width, will be placed in front of each dipole.

Since the recoil spectrometers will be at a fixed angle (3.5◦), the angle of the electron

spectrometers will have to change with each elastic kinematic setting (see Tables 1, 3 and 5).

This will be accomplished by putting the magnet and detector package of each spectrometer

on a remotely controlled platform, rotating about the target center. The required angular

range is 165◦-170◦ for electron-deuteron scattering, 153◦-170◦ for electron-proton scattering,

and 170◦-172◦ for electron-3He scattering.

As the electron backward-scattering angle decreases with increasing Q2, to maximize

the solid angle of each backward spectrometer setting, the two dipole magnets should move

towards the target. The maximum (minimum) solid angle of each spectrometer, which cor-

responds to the largest (smallest) Q2 for the deuteron target, is 25 (10) msr. This movement

range is up to 30 cm. The closest position of the entrance of each dipole from the target is,

for the largest deuteron Q2 setting, 70 cm. The changing position of the dipoles’ exit optical

axis (parallel translation) will necessitate moving at the same time the detector packages

with the axis (in a direction always perpendicular to the dipoles’ axis). This range of this

movement is up to 10 cm. It is assumed that both of these movements will be remotely

controlled.

Each electron detection package will consist of i) a segmented electromagnetic calorime-

ter in a fly’s eye configuration, assembled from 24 existing Hall A lead-glass blocks, for

electron identification and background pion rejection, and ii) a finely segmented scintilla-

tor hodoscope, with fingers running along both the horizontal and vertical directions, for

triggering and double-arm TOF measurements, and for the reconstruction of the electron

scattering angle. A request has been made to the Stanford Linear Accelerator to borrow and

use a small subset (∼100) of the hundreds of elements of the compact hodoscopes used in

the End Station A nucleon spin physics program. The required cross sectional area of the

detector package is 35 cm (horizontal) by 70 cm (vertical).

37



Figure 21: Projected deuteron magnetic form factor B(Q2) data from the proposed experiment.

Also shown are recent JLab data [31] and older data from Bonn, Saclay and SLAC [7].

The calorimeter blocks are of the SF5 type with radiation length of 2.5 cm, and have

dimensions 15×15×35 cm3. The physical length of the blocks amounts to 14 radiation

lengths, which will more than meet the standard design feature of having at least 98%

containment of the longitudinal development of the shower in the calorimeter. The ∼2 cm

width of the above SLAC scintillator elements is ideal for the reconstruction of the electron
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angular coordinates, and for allowing for very strict cuts to be put in the angular correlation

of electron-deuteron coincidence events. In the vertical plane, in particular, the electron

angular resolution will be dominated by multiple scattering in the target, rather than the

width of the scintillator fingers. The candidate electron signal used for triggering and for

double-arm TOF measurements will be a 3-fold coincidence of the signals of four scintillator

planes. Each detector package will be surrounded by a layer of lead bricks to protect them

from room background. The data acquisition system of the backward spectrometers will use

the existing electronics and racks of the BigBite Spectrometer.

1.6 The Deuteron Proposed Measurements

The kinematical parameters of elastic electron-deuteron scattering in coincidence are given,

for a Θr recoil angle of 3.5◦, and for the Q2 range from 1.4 to 6.0 (GeV/c)2, in Table 1. The

required beam energy range is 0.81 to 2.27 GeV. The scattered electron energy E ′ will be in

the range of 0.44 to 0.67 GeV, and the recoil deuteron momentum Pr will be in the range

of 1.24 to 2.93 GeV/c. The electron scattering angle Θ will be in the range 170◦ to 165◦.

The last column in the Table is the ratio of the electron to deuteron differential solid angle

elements (Jacobian transformation of the solid angle for recoil detection).

To estimate the counting rates and required beam times we have assumed a beam current

of 120 µA, a liquid deuterium target with length of 10 cm and density of 0.162 g/cm3, a total

variable geometric solid angle for the two electron spectrometers ranging from 50 (20) msr at

the highest (lowest) Q2 kinematics, and a radiative correction factor of 0.8. The cross section

values used for Q2 ≥ 2.5 (GeV/c)2 assume a magnetic form factor behavior that follows the

general trend of most recent relativistic calculations. They are given, along with counting

rates, running times and projected uncertainties in the extraction of B(Q2), in Table 2. The

magnetic form factor error, ∆B(Q2), includes both statistical and systematic uncertainties.

The overall elastic electron-deuteron cross section systematic uncertainty is estimated to be,

based on the E91-26 A(Q2) measurement experience, ∼ ±3% and is dominated by nuclear

interactions of the recoil deuterons in the target and the detectors, and by the uncertainty

in the double-arm solid angle. The uncertainty of the previously measured A(Q2) has been
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Figure 22: Deuteron elastic peak Monte Carlo simulation: the reconstructed relative momen-

tum (with respect to the central spectrometer momentum) of the recoil deuterons for the middle

Q2 = 3 (GeV/c)2 point of the proposed data set.

also included in the calculation. This uncertainty ranges from ±3.5% at Q2 = 1 (GeV/c)2

to ±15% at Q2 = 5.5 (GeV/c)2. The estimated time required to measure B(Q2) to the

maximum Q2 possible and to map satisfactorily its diffraction minimum is 32 days. The

quality of the projected data possible from this proposed experiment is shown, for the above

assumptions, in Figure 21. It is evident from the Figure that the proposed B(Q2) data will

be of unprecedented precision, comparable to the precision of the previous A(Q2) and t20(Q
2)

JLab data.

The effective double-arm solid angle for the determination of the elastic cross section will

be determined by means of a Monte Carlo simulation of elastic electron-nucleus scattering

with the two HRS spectrometers. A brief essential description of the simulation method is
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Figure 23: Deuteron elastic peak Monte Carlo simulation: the horizontal recoil angle component of

the deuterons versus their relative momentum (with respect to the central spectrometer momen-

tum), as seen by the recoil spectrometer, for the middle Q2 = 3 (GeV/c)2 point of the proposed

data set.

given in the Appendix. The elastic cross section for the central values E◦ and Θ◦ will be

determined as:
dσ

dΩ
(E◦, Θ◦) =

Ner

Nb Nt C F (Q2, T ) PMC

, (21)

where Ner is the number of electron-recoil nucleus coincidence events, Nb is the number of

incident beam electrons, Nt is the number of target nuclei per cm2, C is a factor correcting

for computer dead-time effects, detector inefficiencies, and absorption of recoil nuclei in the

target and the detectors. The function F (Q2, T ) is the portion of radiative corrections that

is independent of the momentum acceptances of the electron and recoil spectrometers, with

T being the total average radiator path length of the incident and scattered electrons in the
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target. The factor PMC is the effective double-arm solid angle simulated integral:

PMC =
〈∫ ∫

G(E, E ′, Θ, t)dΩdE ′

〉

E,l

, (22)

where the function G(E, E ′, Θ, t) includes the momentum acceptance-dependent internal and

external radiative effects for the incident and scattered electrons, ionization energy losses

by the electrons and the recoil nuclei, and multiple scattering effects for all particles (see

Appendix). The parameter t is the position of the scattering vertex of the elastic event along

the target length l. The bracket enclosure indicates that the integral is averaged over the

energy distribution of the incident beam and over the length of the target.

Figure 24: Deuteron elastic peak Monte Carlo simulation: the HRS-reconstructed vertical recoil

deuteron angle component versus the raw scattered electron vertical position at the hodoscope of

the backward spectrometer, for the middle Q2 = 3 (GeV/c)2 point of the proposed data set.
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Figure 25: Deuteron elastic peak Monte Carlo simulation: the HRS-reconstructed horizontal recoil

deuteron angle component versus the raw scattered electron horizontal position at the hodoscope

of the backward spectrometer, for the middle Q2 = 3 (GeV/c)2 point of the proposed data set.

Figure 22 shows the Monte Carlo simulation of the recoil deuteron momentum (relative

to the central spectrometer momentum) for elastic scattering for the middle Q2= 3 (GeV/c)2

point of the proposed data set. Figure 23 shows the simulation of the recoil deuteron rel-

ative momentum versus the recoil angle component in the horizontal plane for the same

kinematics. It can be seen that the width of the elastic momentum stripe has a σ = 0.04%.

The threshold for deuterons from the γd → π◦d reaction is more than 10σ away from the

centroid of the stripe. The Monte Carlo simulation of the angular correlation of scattered

electrons and recoil deuterons is shown in Figures 24 and 25. The very clear correlation
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of the angular coordinates of recoil deuterons and scattered electrons (translated as posi-

tion in the electron spectrometer hodoscope) will impose severe cuts for the rejection of

background coincidence events. The simulation took into account the effects of a) Landau

ionization energy loss for the incident/scattered electrons and recoil nuclei, b) internal and

external bremsstrahlung radiation for both incident and scattered electrons, and c) multiple

scattering for the incident/scattered electrons and recoil nuclei (see Appendix).

2 Precision Measurement of the Proton Magnetic Form Factor

2.1 Short Review of the Proton Form Factors

The proposed experimental setup will be also ideal to perform precise elastic electron-proton

scattering at very backward angles. At these angles, the cross section is dominated by

the proton magnetic form factor Gp
M . The electric form factor Gp

E contribution is very

small, allowing essentially a direct measurement of Gp
M , without the need of a Rosenbluth

separation, which introduces inherent systematic uncertainties. The cross section for elastic

electron-proton scattering is given, in the one-photon exchange approximation, by:

dσ

dΩ
(E, Θ) =

α2E ′

4E3 sin4
(

Θ

2

)

[

A(Q2) cos2

(

Θ

2

)

+ B(Q2) sin2

(

Θ

2

)]

, (23)

where, in this case, the elastic structure functions A(Q2) and B(Q2) are given in terms of

Gp
E(Q2) and Gp

M(Q2) as:

A(Q2) =
(Gp

E)2 + τ(Gp
M)2

1 + τ
, (24)

B(Q2) = 2τ(Gp
M)2. (25)

In the non relativistic limit, Gp
E and Gp

M are the Fourier transforms of the charge and

magnetization distributions of the proton in the Breit frame (center-of-mass frame for elas-

tic electron-nucleus scattering). They are related to the Dirac and Pauli form factors

F1(Q
2) and F2(Q

2) by: Gp
E = F1 − τκF2 and Gp

M = F1 + κF2, where κ is the proton

anomalous magnetic moment. The Dirac form factor is related to the distribution of charge

and the normal part of the magnetic moment µ of the proton. The Pauli form factor is

related to the distribution of the anomalous part of the magnetic moment.

44



The starting point in the theoretical description of the nucleon form factors is the Vec-

tor Meson Dominance (VMD) model. In this framework, applicable to low and moderate

momentum transfers, the virtual photon couples to the nucleon through vector mesons, and

the nucleon form factors are expressed in terms of photon-meson coupling strengths, CγV ,

and meson-nucleon vertex form factors, FV N :

F (Q2) =
∑

i

m2
i CγV i

m2
i + Q2

FV iN(Q2) , (26)

where the sum is over all possible vector mesons of mass mi. The early VMD models by

Iachello et al. [63] and Höhler et al. [64], though with flexibility in the choice of parameters,

offered fair descriptions of the then available nucleon form factor data. Later on, Gari and

Krümpelmann (GK) [65] developed a hybrid phenomenological model to extend VMD to

large momentum transfers by synthesizing in a direct way the meson picture of VMD and

the asymptotic features of pQCD (see below) using parametrizations of the form factors

which properly combine these two approaches, with a transition from meson dynamics to

quark dynamics at ∼ 5 (GeV/c)2. In recent years, the VMD approach has been revisited

by Bijker and Iachello (BI) [66], Hammer and Meissner (HM) [67], and Lomon [68]. The

BI calculation includes, in addition to ρ, ω and φ meson terms, an intrinsic three-quark

structure phenomenological contribution, and has built-in the asymptotic behavior expected

from pQCD. The HM calculation includes isovector ππ continuum contribution as in Ref.

[64] (and more recently [69] ρπ and KK̄ contributions), as well as asymptotic constraints

from pQCD. All of these recent models describe, in general, satisfactorily the available data.

With the advent of the quark-parton model and QCD, it is believed that, at large Q2, the

nucleons must behave as systems of point-like quarks bound by gluon-exchanges and governed

by the properties of the strong force. The first attempt at a quark-gluon description of the

nucleon form factors was, as for the deuteron case, within the quark dimensional scaling

framework [26, 27], which predicted that, at large Q2, F1 and F2 should scale as (Q2)−2 and

(Q2)−3, and as a result, the ratio F2/F1 should scale as 1/Q2. This asymptotic behavior

was confirmed within a pQCD consideration, where Brodsky and Lepage argued [70] that,

at large Q2, QCD effects produce only a logarithmic departure from the QDS power laws,

in agreement with the large Q2 SLAC elastic electron-proton cross section E-136 data [71].
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Further work [72] showed that use of naive symmetric quark distribution amplitudes in

the pQCD approach, where the three valence quarks share equally the nucleon’s momentum,

failed dramatically to account for the sign and normalization of the proton magnetic form

factor, favoring amplitudes in which the momentum balance of the valence quarks in the

proton is quite asymmetric. These asymmetric distribution amplitudes are achieved at the

expense of strong contributions from “soft” regions where one of the quark constituents carry

a small fraction of the nucleon’s momentum. An attempt to calculate the contribution to

the nucleon form factors from soft non-perturbative processes was provided by Nesterenko

and Radyushkin [73]. They fixed the soft nucleon wave functions by employing QCD sum

rules based on quark-hadron duality and decomposed the scattering process in a series of

diagrams with gluon exchanges between the quarks. Their calculation showed that the form

factors are dominated by “soft” processes over the Q2 range of the existing data and they

estimated that the scale of the transition to the hard two-gluon exchange between the three

quarks is beyond the reach of present experiments.

Recent work by Miller [74] has showed that introduction of an orbital angular momentum

component in the nucleon wave function, which violates hadron helicity conservation, alters

the original pQCD prediction for the ratio F2/F1. His model predicts that the ratio should

scale as 1/Q, in agreement with the recent JLab experiments that measured the ratio of

Gp
E/Gp

M [75, 76] at moderate momentum transfers. It should be noted that Iachello and

Wan [77] have argued that this 1/Q behavior is accidental and valid only at moderate

momentum transfers. A re-examination of the above ratio within pQCD by Belitsky et

al. [78] modifies the original pQCD prediction as F2/F1 ∼ [ln(Q2/Λ2)]2/Q2, where Λ is a soft

scale related to the size of the nucleon. Although this derivation is also in agreement with

the recent JLab data, the authors have pointed out that this could be precocious, as pQCD

is expected to work at much higher momentum transfers, as Isgur and Llewellyn-Smith [45]

have also argued in the past.

Over the years, there is a considerable number of calculations of the nucleon form factors

applying various forms of relativistic constituent quark models (CQM), where the nucleon

appears as the ground state of a quantum-mechanical three-quark system in a confining

potential (a comprehensive review is given by Thomas and Weise [79]). These relativistic
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Figure 26: The proton magnetic form factor divided by the proton magnetic moment µ and the

dipole formula GD = (1 + Q2/0.71)−2. The data are from single JLab [91, 92], and SLAC, Bonn,

DESY and Stanford Rosenbuth separation experiments as compiled, with radiative correction im-

provements, in Ref. [93], and SLAC Θ = 180◦ data [7, 35]. The curves are theoretical calculations,

described in the text.

nucleon descriptions use the Hamiltonian dynamics formalism of instant form, point form

or light-front form to approximate the current operator assuming that the electron interacts

with a single quark in the nucleon. Two early examples of light-front dynamics models are

by Chung and Coester [80] and Schlumpf [81] who used symmetric nucleon wave functions

with two parameters, an effective quark mass m and a confinement scale a. Among recent

models that describe fairly well the existing form factor data are the ones by Miller [82],

Giannini et al. [83] , Holzwarth [84], Ma et al. [85], and Gross and Agbakpe [86].
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Miller [82] used an extension of the cloudy bag model, where the three quarks are sur-

rounded by a pion cloud, with the spatial wave function of Schlumpf, and with parameters

chosen to reproduce the neutron radius and magnetic moments of the nucleons. Giannini

et al. [83] introduced a three-quark interaction in the form of a gluon-gluon interaction in

a hypercentral model, which describes well various static hadron properties. Holzwarth [84]

used a chiral soliton model, where the quarks are bound in the nucleon by their interaction

with chiral fields, including in addition to pion, the ρ and ω vector mesons. The Q2 region

of validity of the soliton form factors was extended by a proper boost from the nucleon rest

frame to the Breit frame. Ma et al. [85] calculated the nucleon form factors within a simple

quark spectator-diquark model, formulated in the light-cone formalism, with its parameters

fixed by the static nucleon properties. Gross and Agbakpe [86] showed that the nucleon form

factors can be explained using a covariant spectator model, where the nucleon is modeled

as a spherical state of three constituent quarks with their own electromagnetic form factors

and a possible pion cloud. An exhaustive listing of theoretical calculations of the nucleon

form factors is given in the reviews by Gao [87], Hyde-Wright and de Jager [88], Arrington

et al. [89] and Perdrisat et al. [90].

A comparison of the available proton magnetic form factor data for Q2 > 0.2 (GeV/c)2

with some of the above mentioned theoretical calculations is given in Figure 26. The Gp
M

data are from JLab [91, 92], and SLAC, DESY, Bonn and Stanford Rosenbluth separations

(from the same experiment), as compiled, with radiative correction improvements, in Ref.

[93], and SLAC Θ = 180◦ data [7, 35]. It is evident from the Figure that the differences,

in general, among the theoretical calculations are small, implying that to discriminate suc-

cessfully among the different models, precise experimental data over the widest momentum

transfer range are necessary.

In the past several years there has been a considerably renewed interest in precision mea-

surements of elastic scattering from the proton after the two JLab experiments [75, 76] that

measured the Gp
E/Gp

M ratio found it to be in strong disagreement with previous measure-

ments [94]. The previous measurements were based on the traditional Rosenbluth separation

of elastic cross sections measured at different angles, meanwhile the JLab measurements were

based on the polarization transfer technique, which used a polarized electron beam, and a
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Figure 27: Experimental measurements of the proton form factor Gp
E/Gp

M ratio multiplied by the

proton magnetic moment µ, as plotted in Ref. [97]. The solid diamonds are from recoil proton

polarization transfer measurements. The open circles are from Rosenbluth separations without (top

plot) and with (bottom plot) corrections for two-photon radiation effects applied to the measured

cross sections.
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vector polarimeter to measure the polarization of the recoil protons. An explanation of the

disagreement could be attributed to the inherent, well known experimental deficiencies of

the Rosenbluth separation method, arising from possible systematic errors in the wide range

of incident beam energies, and scattered electron energies and angles used. In particular,

the variation of the kinematical parameters of the scattered electrons necessitate measure-

ments with magnetic spectrometers operating at their minimum and maximum fields (where

their optical properties may be quite different) and in complete correlation with their target

viewing angle. The polarization transfer technique is sensitive only to small uncertainties

associated with the recoil polarimetry. Another possible explanation for the disagreement

could be two-photon exchange processes not accounted for in the standard corrections for

radiative effects and which could affect far more the elastic cross section than the recoil

proton polarization [95, 96]. This explanation has gained credibility after new precise JLab

data [91, 92] using the Rosenbluth technique were found to agree with the previous SLAC

data [94], and with recent theoretical work that seems to reconcile the Rosenbluth separation

and polarization technique data [97] (see Figure 27). The end result of the above disagree-

ment is that, presently, there is some uncertainty in the determination of both proton form

factors.

2.2 The Proton Proposed Measurements

The proposed experimental setup can provide unique proton Gp
M data over a wide range of

momentum transfers, from Q2 = 0.4 to 4.3 (GeV/c)2, in a very timely fashion. The cross

sections that can be measured at very backward angles (153◦-170◦) will be proportional

to (Gp
M)2 (the contribution from (Gp

E)2 will be at most 0.5%), and therefore free of the

experimental deficiencies that plague Rosenbluth separations. The statistical error on the

cross section of these measurements will be negligible (≤0.1%). The Gp
M measurements

will span over a wide kinematical range covered in the past by several measurements with

different systematic errors (8 experiments). The systematic error on the cross section in

this experiment will be comparable to other similar JLab and SLAC precision experiments,

about ±2.5%, resulting in a ±1.25% error for Gp
M .

50



Figure 28: The proton magnetic form factor divided by the proton magnetic moment µ and the

dipole formula GD = (1 + Q2/0.71)−2. The open circles are Rosenbluth separation data from

individual extractions using only measurements from single JLab [91, 92], and SLAC, Bonn, DESY

and Stanford experiments, as compiled in Ref. [93]. The squares are the direct Θ = 180◦ SLAC

NE4 data [7, 35]. The curves are fits by Brash et al. [93], Bosted [98], Bradford et al. [100]

and Arrington et al. [97] (see text). The solid circles are the projected data from the proposed

experiment, arbitrarily set, for clarity, to follow the fit of Arrington et al.

We propose to measure elastic electron-proton scattering for every beam energy of the

deuteron (and for two of the 3He, see below) elastic settings. The measurements will span

the Q2 range from 0.4 to 4.3 (GeV/c)2. The kinematics and all relevant parameters of the

run plan for these proton measurements are given in Tables 3 and 4. The beam energy range

is 0.46 to 2.7 GeV, the scattered electron energy E ′ is in the range of 0.23 to 0.42 GeV, and

51



the recoil deuteron momentum Pr will be in the range of 0.69 to 3.1 GeV/c. The electron

scattering angle Θ will be in the range 170◦ to 153◦.

The projected Gp
M data from these measurements are shown in Figure 28 along with the

existing JLab, SLAC, DESY, Bonn and Stanford Rosenbluth separation data and the direct

Θ = 180◦ elastic proton data from SLAC experiment NE4. Shown also in the Figure is i) a

fit by Bosted [98] of the Gp
M values from the “global” analysis of all elastic cross section data

by Walker et al. [99], ii) a fit by Brash et al. [93] on Gp
M values extracted from selected elastic

cross section data and the new JLab Hall A data on the Gp
E/Gp

M ratio, iii) a fit by Bradford

et al. [100] which emphasized measurements based on the polarization transfer technique

and excluded Rosenbluth measurements of Gp
E above 1 (GeV/c)2, and iv) a fit by Arrington

et al. [97], where all the data used have been corrected for two-photon radiation effects. The

difference between the curves is indicative of the present Gp
M uncertainty arising from the

disagreement of the Rosenbluth and polarization transfer techniques and the very possible

two-photon contributions. The required beam time for these proton measurements is 1 day,

assuming a 5 cm long hydrogen target of density 0.071 g/cm3, and beam currents of up to

60 µA.

It is evident from Figure 28 that the proposed measurements will provide precise data

over a very wide momentum transfer range. They are expected to provide valuable input

in understanding the extraction of the proton form factors from polarized and unpolarized

measurements and in establishing firm values for the magnetic form factor. The data will

be used to test a whole variety of theoretical calculations of the nucleon structure based on

recently refined Vector Meson Dominance models, various forms of relativistic constituent

quark models including cloudy bag and chiral soliton models, recently revisited perturbative

and non-perturbative QCD models, and expected accurate lattice QCD calculations.

3 Precision Measurement of the 3He Magnetic Form Factor

3.1 Short Review of the 3He Form Factors

The proposed experimental setup will be also ideal to measure precisely the magnetic form

factor, FM , of 3He around its 1st diffraction minimum. The location of the minimum is very
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poorly defined, as previous backward Saclay [101, 102] and MIT/Bates [103] cross section

measurements, even at fairly large angles, were dominated by contributions from the charge

form factor, FC . The Saclay measurements were at 155◦ and the MIT/Bates ones at 160◦.

The setup of this proposal will allow elastic measurements at ∼172◦, which will enhance

the FM contribution to the cross section by one order of magnitude as compared to the

MIT/Bates and Saclay measurements.

The cross section for elastic electron scattering from the spin one-half 3He nucleus is

given, in the one-photon exchange approximation, by:

dσ

dΩ
(E, Θ) =

(Zα)2E ′

4E3 sin4
(

Θ

2

)

[

A(Q2) cos2

(

Θ

2

)

+ B(Q2) sin2

(

Θ

2

)]

, (27)

where Z is the nuclear charge, and A(Q2) and B(Q2) are the 3He elastic structure functions,

given in terms of the charge and magnetic form factors as:

A(Q2) =
F 2

C(Q2) + (1 + κ)2τF 2
M(Q2)

1 + τ
, (28)

B(Q2) = 2τ(1 + κ)2F 2
M(Q2), (29)

where κ is the anomalous magnetic moment of the nucleus. The two form factors of 3He are

also determined by measuring the elastic cross section at several angles using variable beam

energies for the same fixed Q2 (Rosenbluth separation).

The electromagnetic form factors of the few-body nuclear systems (3He, 3H and 4He) [104]

provide fundamental information on their internal structure and dynamics. They are very

sensitive to the choice of the nucleon-nucleon interaction potential, the treatment of meson-

exchange currents and relativistic corrections, and to a possible admixture of multi-quark

states. They have been the subject of extensive experimental investigations over the past

40 years [4]. At large four-momentum transfers they may offer a unique opportunity to

uncover a possible transition in the description of elastic electron scattering off the few-

nucleon systems, from meson-nucleon to quark-gluon degrees of freedom as predicted by

quark dimensional scaling [44].

Theoretically, in the non-relativistic impulse approximation approach, the few-body form

factors are calculated using numerical solutions of the Faddeev equations, the correlated hy-

perspherical harmonics (CHH) variational method, or Monte Carlo methods to solve for the
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nuclear ground states [1]. All three methods provide a solution of the Schrödinger equation

for non-relativistic nucleons bound by the nucleon-nucleon interaction. The Faddeev decom-

position for the three- or four-body problem rewrites the Schrödinger equation as a sum of

three or four equations, in which only one pair of nucleons interacts at a time. The result-

ing equations are solved in either momentum or coordinate space. The CHH variational

method [48] is based on a decomposition quite similar to the Faddeev one. The primary dif-

ferences are the introduction of hyperspherical coordinates and inclusion of the strong state-

dependent correlations, induced by the nucleon-nucleon interaction, directly in the definition

of the nuclear wave function. The principal Monte Carlo schemes developed are variational

and Green’s function Monte Carlo. Variational Monte Carlo (VMC) [105, 106, 107, 108] uses

Monte Carlo techniques to perform standard numerical quadratures. Green’s function Monte

Carlo (GFMC) [107, 109] employs Monte Carlo methods to evaluate the imaginary-time path

integrals relevant for a light nucleus. All modern calculations augment their impulse approx-

imation by meson-exchange currents [110]. Satisfactory description of the available 3He,

3H, and 4He form factor data is not possible without inclusion of MEC. Better agreement

with the data is obtained by inclusion of contributions from multi-quark clusters within the

framework of hybrid quark models, but, as for the deuteron case, these models are still in

phenomenological stage [111, 112, 113, 114]. The question whether introduction of possible

isobar configurations and of “three-body force” effects by three-body interactions is neces-

sary for a complete theoretical description of the few-body form factors is still unanswered.

Studies [48, 115] have shown that isobar configurations do not produce large contributions.

Figures 29 and 30 show all the experimental data for the 3He charge and magnetic

form factors in the Q2 range from 0 to 40 fm−2 from Stanford [116, 117], Orsay [118],

Saclay [101, 102], Bates [103, 119, 120], Mainz [121] and SLAC [122] experiments. The

data demonstrate the presence of an expected diffraction minimum for both form factors.

They are compared to four “full” older calculations by Hadjimichael and collaborators [123],

Strueve and collaborators [124], Schiavilla and collaborators [105, 106] and Wiringa [107],

and a newer calculation by Marcucci and collaborators [48]. All calculations include, in

addition to the impulse approximation, meson-exchange currents and genuine three-body

force effects. [The theoretical impulse approximation alone, not shown in the Figures, totally
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fails to describe the data. It grossly overestimates (underestimates) the location of the

diffraction minimum and underestimates (overestimates) the secondary maximum of FC

(FM), necessitating the need for inclusion of meson-exchange currents.] The above full

calculations describe fairly well the charge form factor data, but fail to reproduce the position

of the magnetic form factor minimum. Some authors [125] have attributed this disagreement

to the need for fully relativistic calculations [126, 127] for the three-body form factors. Gross

and collaborators have initiated a serious effort to calculate the three-body form factors in

a consistent relativistic framework. Their initial work [127] has been followed by a recent

paper [128] where they derived a complete Feynman diagram expansion for the elastic form

factor of the three-body bound state using the covariant spectator theory [18]. Similar work

is in progress by Adam and Van Orden [129].

Hadjimichael and collaborators [123] calculated the 3He form factors solving the coupled-

channel Faddeev equations in coordinate space, with several N-N potential models, and in

particular with the Paris and Reid Soft Core potentials. The calculation included π, ρ, ω,

ρπγ and ωπγ MEC plus isobar admixtures in the initial ground state wave function. Also

included are the one-body Darwin-Foldy (DF) and spin-orbit (SO) relativistic corrections

to the charge operator. Three-body force effects have been accounted by including in the

calculation the two-pion exchange three-body interaction, via ∆-isobar excitation.

Strueve and collaborators [124] calculated the 3He form factors solving the Faddeev equa-

tions in momentum space, and using the Paris N-N potential modified to include ∆-isobar

excitations via π and ρ meson-exchanges. The presence of the ∆ thus accounted for the most

important part of three-body force effects. The calculation included π, ρ, and ρπγ meson-

exchange contributions, as well as the DF and SO relativistic corrections to the charge

operator.

Schiavilla and collaborators [105, 106] calculated the 3He form factors using VMC wave

functions computed with the Argonne v14 two-nucleon and the Urbana-VII three-nucleon

interactions. The leading isovector MEC, the “π-like” and “ρ-like”, have been derived con-

sistently with the nucleon-nucleon interaction used. The calculation included, in addition

to the DF and SO relativistic corrections, contributions from ω and ωπγ meson-exchange

charge operators.
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Figure 29: 3He charge form factor data from Stanford [116, 117], Orsay [118], SLAC [122],

Saclay [102], Mainz [121] and Bates [120] experiments, and theoretical IA+MEC calculations by

Schiavilla et al. [106], Hadjimichael et al. [123], Strueve et al. [124], Wiringa [107] and Marcucci et

al. [48] (see text).

Wiringa’s calculations [107] for the 3He form factors were based on the same MEC model

used by Schiavilla et al., and on the Argonne v14 potential. The 3He wave functions were

determined with the Faddeev equations and three-body force effects were accounted with

the Urbana-VIII three-nucleon force model.

The most recent calculation by Marcucci and collaborators [48] used the CHH varia-

tional method to construct high-precision wave functions obtained with the Argonne v18

two-nucleon [130] and Urbana-IX three-nucleon interactions model [131]. In this calculation,

the two-body MEC operators have been constructed by the same method of the earlier cal-

culation by Schiavilla et al. [105, 106] and significant new advances have been made in the
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Figure 30: 3He magnetic form factor data from Stanford [116, 117], Saclay [101],[102], Mainz [121],

Orsay [118] and Bates [119, 103] experiments, and theoretical IA+MEC calculations by Schiavilla

et al. [105], Hadjimichael et al. [123], Strueve et al. [124], Wiringa [107] and Marcucci et al. [48]

(see text). The datum at Q2 = 30 fm−2 is the online analysis result from the recently completed

E04-18 Hall A experiment [59], under analysis. The solid squares are the projected data from this

experiment.

construction of the irreducible three-nucleon exchange current operator and in the systematic

treatment of ∆-isobar configurations in the nuclear bound states.

3.2 The 3He Proposed Measurements

It should be noted that the Hall A Collaboration completed recently JLab experiment E04-

18 [59] which measured the 3He and 4He form factors at large momentum transfers. The

experiment was carried out in the fall of 2006 and spring and summer of 2007 in JLab’s
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Figure 31: The world 3He FC and FM data compared to four different calculations based on the

IA with inclusion of MEC (see caption of Figures 29 and 30). The solid circles in the FM bottom

plot are the projected data from this experiment. The solid circles on the Q2 axes indicate the Q2

values of the recently completed E04-18 JLab experiment [59], under analysis.
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Figure 32: The world 4He FC data [117, 121, 122, 132] compared to two IA calculations with

inclusion of MEC using Green’s Function Monte Carlo (GFMC) and Variational Monte Carlo

(VMC) techniques [106, 107]. Shown is also the asymptotic prediction of the quark dimensional

scaling model (DSQM) [44]. The solid circles indicate the Q2 values of the recently completed

E04-18 JLab experiment [59], under analysis.

Hall A Facility using the two HRS systems to detect scattered electrons and recoiling nuclei

in coincidence. Elastic electron scattering off 3He was measured at forward and backward

(140◦) electron scattering angles to extract its FC and FM form factors using the Rosenbluth

separation method. For 4He, only forward elastic electron scattering was measured to ex-

tract directly its FC form factor. Data have been obtained in the Q2 range from 22 to 68

fm−2 for 3He, and from 10 to 77 fm−2 for 4He, as indicated by the solid black circles in Fig-

ures 31 and 32. Online results for elastic electron-proton scattering are in good agreement

with previous world measurements. A selected online analysis of helium elastic data has

shown that they are consistent with previous measurements from other laboratories such as

59



SLAC and MIT/Bates. Of particular note is that the preliminary/online result for the 3He

FM measurement at Q2 = 30 fm−2 seems to agree with the trend of the MIT/Bates data,

reinforcing an apparent disagreement between the Saclay and MIT/Bates data. The data

analysis is in progress and preliminary results are expected within a year.

The proposed experiment will have the unique opportunity to precisely measure the 3He

magnetic form factor around its 1st diffraction minimum, and at Q2 = 75 fm−2. This latter

measurement will be very valuable in defining the large-Q2 behavior of the magnetic form

factor. The proposed kinematic settings and the run plan for these measurements are given

in Tables 5 and 6, for a recoil nucleus angle of 3.5◦. The electron scattering angle will

vary between 172◦ and 170◦, and its energy between 0.35 and 0.42 GeV. The recoil nucleus

momentum Pr will be in the range of 0.81 to 1.79 GeV/c. The required beam energies are

in the range of 0.46 to 1.16 GeV. The estimated beam time for these helium measurements

is 5 days at a beam current of 120 µA with a 5 cm long gas target of density 0.065 g/cm3

for the five low-Q2 kinematic points, and a 15 cm one for the high-Q2 point.

The projected data from this measurement are shown in Figures 30 and 31. It can be

seen that this measurement will provide data sufficient to accurately map the 1st diffrac-

tion minimum of the 3He magnetic form factor and provide an additional unique large-Q2

FM measurement. The results will be of utmost importance in testing our knowledge of

the nucleon-nucleon interaction, possible three-body force effects and the nature of meson-

exchange currents, and in constraining the parameters of the theoretical few-body standard

model.

4 Summary−Request

We propose to perform a precision measurement of the deuteron magnetic form factor, a

fundamental nuclear physics observable, over its diffraction minimum and up to the largest

possible Q2 limited by cross section sensitivity of one elastic event per day. The experi-

ment can be performed in the Hall A Facility of JLab using a dual 3.5◦ recoil magnetic

spectrometer using the two HRS systems and a dual-septum magnet, and a dual backward

electron spectrometer (∼170◦) based on two small dipole magnets. The results from this
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measurement are expected to lead to the establishment of a consistent canonical hadronic

model describing the electromagnetic structure of the deuteron.

Additional possible measurements of the proton magnetic form factor over a wide momen-

tum transfer range will provide a unique, precise set of data, free of Rosenbluth separation

experimental deficiencies, and highly complementary to previous JLab data sets on the elec-

tric form factor, to test the theoretical models on the quark substructure of the nucleon.

Finally, the proposed measurement of the 3He magnetic form factor, around its 1st first

diffraction and at large Q2, will provide precise data on another fundamental nuclear physics

observable to constrain the parameters of the standard theoretical model describing the

three-body nuclear systems.

We request the resources to design and build the dual-septum and the two small dipole

magnets and a cryogenic deuterium/hydrogen/helium target assembly of 5, 10 and 15 cm

tuna-can cells. The required beam time is 38 days (deuterium: 32, proton: 1, 3He: 5) of data

taking at 100% efficiency including empty target running and the necessary time for beam

energy and target filling changes. An additional 3 days of low-current beam time is required

for the check-out of the spectrometers and the detectors with a functional cryotarget.
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5 Tables

ELECTRON-DEUTERON ELASTIC KINEMATICS

Θr = 3.5◦

Q2 E E ′ Θ Pr βr dΩe/dΩr
[

(GeV/c)2
]

(GeV) (GeV) deg. (GeV/c)

1.40 0.809 0.436 170.0 1.241 0.55 8.12

1.55 0.865 0.452 169.8 1.312 0.57 8.45

1.70 0.919 0.466 169.6 1.380 0.59 8.79

1.80 0.955 0.475 169.5 1.425 0.61 9.01

2.20 1.094 0.508 168.9 1.595 0.65 9.90

2.55 1.211 0.532 168.5 1.736 0.68 10.7

3.00 1.358 0.558 168.0 1.908 0.71 11.7

3.50 1.517 0.584 167.4 2.091 0.74 12.8

4.00 1.672 0.606 166.8 2.266 0.77 14.0

4.50 1.825 0.625 166.2 2.437 0.79 15.2

5.00 1.976 0.643 165.6 2.603 0.81 16.4

5.50 2.124 0.658 165.1 2.766 0.83 17.7

6.00 2.272 0.672 164.6 2.926 0.84 19.0

Table 1: Elastic electron-deuteron kinematics in the Q2 range from 1.4 to 6.0 (GeV/c)2. The recoil

deuteron angle, Θr, is fixed at 3.5◦, E is the incident beam energy, E ′ is the scattered electron

energy, Pr and βr are the recoil deuteron momentum and speed. The last column is the Jacobian

transformation of the solid angle for recoil detection.
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DEUTERON B(Q2) RUN PLAN SCENARIO

Θr = 3.5◦

Q2 A(Q2) B(Q2) R Cross Section Time Counts ∆B(Q2)
[

(GeV/c)2
]

% (cm2/sr) (hr) (±%)

1.40 2.4×10−5 5.0×10−7 73 2.9×10−39 24 830 6.4

1.55 1.5×10−5 2.0×10−7 62 1.2×10−39 24 360 10

1.70 1.0×10−5 6.0×10−8 42 4.5×10−40 24 150 21

1.80 7.5×10−6 1.7×10−8 21 2.3×10−40 84 280 35

2.20 2.5×10−5 1.1×10−8 32 6.9×10−41 96 115 31

2.55 1.0×10−6 1.9×10−8 65 4.6×10−41 48 45 23

3.00 3.7×10−7 2.6×10−8 87 3.5×10−41 34 30 22

3.50 1.2×10−7 3.1×10−8 95 2.9×10−41 29 25 21

4.00 4.7×10−8 2.7×10−8 98 1.9×10−41 38 25 21

4.50 1.9×10−8 1.8×10−8 98 9.9×10−42 60 25 21

5.00 6.8×10−9 9.2×10−9 99 4.1×10−42 72 14 27

5.50 2.0×10−9 3.5×10−9 99 1.3×10−42 120 8 36

Sub-Total 653

Total 769

Table 2: Run plan scenario with cross section and counting rate estimates for the B(Q2) measure-

ments. The quantity R is the fraction of elastic events from magnetic scattering [due to B(Q2)].

The rate estimates assume a 10 cm long liquid deuterium target with density 0.162 g/cm3, a beam

current of 120 µA, a variable double-arm solid angle of 50 (20) msr at the highest (lowest) Q2

kinematics, and a radiative correction factor of 0.8. The total time includes 20 hours of empty

target running and 96 hours for energy changes.
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ELECTRON-PROTON ELASTIC KINEMATICS

Θr = 3.5◦

Q2 E E ′ Θ Pr βr dΩe/dΩr
[

(GeV/c)2
]

(GeV) (GeV) deg. (GeV/c)

0.43 0.463 0.234 169.6 0.695 0.59 8.83

0.58 0.569 0.258 168.8 0.823 0.66 10.2

0.96 0.809 0.299 167.0 1.102 0.76 13.6

1.05 0.865 0.307 166.6 1.166 0.78 14.5

1.14 0.919 0.314 166.2 1.226 0.79 15.3

1.20 0.955 0.318 165.9 1.266 0.80 15.9

1.43 1.094 0.332 164.9 1.418 0.83 18.2

1.63 1.211 0.343 164.1 1.543 0.86 20.3

1.88 1.358 0.354 163.0 1.701 0.88 23.1

2.16 1.517 0.365 161.8 1.868 0.89 26.2

2.43 1.672 0.375 160.7 2.029 0.91 29.4

2.71 1.825 0.383 159.6 2.188 0.92 32.7

2.98 1.976 0.390 158.5 2.343 0.93 36.1

3.24 2.124 0.397 157.4 2.495 0.94 39.6

4.25 2.683 0.418 153.4 3.062 0.96 53.7

Table 3: Elastic electron-proton kinematics in the Q2 range from 0.4 to 4.0 (GeV/c)2. The recoil

proton angle, Θr, is fixed at 3.5◦, E is the incident beam energy, E ′ is the scattered electron

energy, Pr and βr are the recoil proton momentum and speed. The last column is the Jacobian

transformation of the solid angle for recoil detection.
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PROTON G
p
M RUN PLAN SCENARIO

Θr = 3.5◦

Q2 Gp
E Gp

M R Cross Section I Time Counts (∆Gp
M )stat

[

(GeV/c)2
]

% (cm2/sr) (µA) (hr) ×106 (±%)

0.43 0.374 0.386 99.6 3.60×10−33 5 1 16 0.02

0.58 0.290 0.305 99.7 1.18×10−33 5 1 11 0.03

0.96 0.170 0.190 99.8 4.61×10−34 10 1 10 0.03

1.05 0.152 0.171 99.8 3.45×10−34 10 1 8.3 0.03

1.14 0.136 0.156 99.8 2.65×10−34 10 1 7.1 0.04

1.20 0.127 0.147 99.8 2.23×10−34 20 1 9.6 0.03

1.43 0.097 0.118 99.9 1.19×10−34 20 1 6.2 0.04

1.63 0.079 0.099 99.9 7.31×10−35 20 1 4.2 0.05

1.88 0.062 0.081 99.9 4.12×10−35 20 1 2.7 0.06

2.16 0.048 0.066 99.9 2.34×10−35 60 1 7.0 0.05

2.43 0.038 0.055 99.9 1.41×10−35 60 1 4.7 0.05

2.71 0.031 0.047 99.9 8.83×10−36 60 1 3.3 0.06

2.98 0.025 0.040 99.9 5.76×10−36 60 1 2.4 0.06

3.24 0.021 0.035 99.9 3.89×10−36 60 1 1.8 0.08

4.25 0.010 0.022 100 1.06×10−36 60 1 0.7 0.12

Sub-Total 15

Total 26

Table 4: Run plan scenario for the proton Gp
M measurements. The rate estimates assume a 5 cm

long hydrogen target with density 0.071 g/cm3, a variable double-arm solid angle of 50 (27) msr

at the highest (lowest) Q2 kinematics, and a radiative correction factor of 0.8. The ratio R is the

percentage of the counting rate due to magnetic scattering (due to Gp
M ). The expected systematic

error on the cross section is ±2.5%, resulting in a systematic error for Gp
M of ±1.25%. The total

time includes 3 hours of empty target running and 8 hours for an energy change.
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ELECTRON-3He ELASTIC KINEMATICS

Θr = 3.5◦

Q2 E E ′ Θ Pr βr dΩe/dΩr
[

(GeV/c)2
]

(GeV) (GeV) deg. (GeV/c)

16.5 0.463 0.349 171.85 0.810 0.28 5.40

17.5 0.479 0.356 171.81 0.835 0.29 5.46

19.0 0.502 0.370 171.76 0.870 0.30 5.53

20.5 0.525 0.383 171.70 0.906 0.31 5.63

23.5 0.569 0.405 171.59 0.971 0.33 5.75

75.0 1.156 0.636 170.13 1.786 0.54 7.90

Table 5: Elastic electron-3He kinematics in the Q2 range from 16.5 to 23.5 fm−2 (around the 1st

diffraction minimum of the FM elastic form factor), and at Q2 = 75 fm−2. The recoil helium angle,

Θr, is fixed at 3.5◦, E is the incident beam energy, E ′ is the scattered electron energy, Pr and βr

are the recoil helium momentum and speed. The last column is the Jacobian transformation of the

solid angle for recoil detection.
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3He FM RUN PLAN

Θr = 3.5◦

Q2 FC FM R Cross Section Time Counts ∆FM
[

(GeV/c)2
]

% (cm2/sr) (hr) (±%)

16.5 5.0×10−3 5.2×10−4 48 1.7×10−38 4 158 8.9

17.5 4.5×10−3 3.0×10−4 28 9.6×10−39 8 177 14

19.0 4.0×10−3 3.0×10−4 35 7.6×10−39 5 96 15

20.5 4.0×10−3 4.5×10−4 56 1.0×10−38 4 105 9.1

23.5 2.7×10−3 6.3×10−4 86 1.3×10−38 2 66 7.4

75.0 1.0×10−5 3.0×10−5 100 1.5×10−41 48 8 18

Sub-Total 71

Total 125

Table 6: Run plan scenario with cross section and counting rate estimates for the 3He magnetic form

factor measurements. The rate estimates assume a 5 (15) cm long gas helium target with density

0.065 g/cm3 for the five low-Q2 points (high-Q2 point), a beam current of 120 µA, a variable double-

arm solid angle of 24 (16) msr at the highest (lowest) Q2 kinematics, and a radiative correction

factor of 0.8. The ratio R is the percentage of the counting rate due to magnetic scattering (due to

FM ). The total time includes 4 hours of empty target running, 40 hours for energy changes, and

10 hrs for target filling changes.
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6 APPENDIX: The Monte Carlo Simulation

6.1 The Coincidence Elastic Cross Section

In a single-arm elastic electron-nucleus experiment, where only the scattered electron is

detected, the number Ne of elastically scattered electrons in the interval ∆E ′ = E ′

max −E ′

min

around the elastic peak is:

Ne = NbNtC
dσ

dΩ
(E◦, Θ◦)R(∆E ′)L(∆E ′)∆Ω, (30)

where dσ(E◦, Θ◦)/dΩ is the elastic cross section of interest for the central values of E◦ and

Θ◦, Nb is the number of incident beam electrons, Nt is the number of target nuclei per

cm2, C contains all applicable corrections including the detector inefficiencies and dead-time

effects, and ∆Ω is the electron spectrometer solid angle. The factor R(∆E ′) = exp[δ(∆E ′)]

accounts for losses due to radiation effects (radiative correction factor) and it is calculable

analytically when the spectrometer energy acceptance ∆E ′ is independent of the electron

scattering angle Θ. The factor L(∆E ′) (ionization factor) accounts for losses due to Landau

ionization effects, which for high energies becomes approximately multiplicative and equal

to (1 − ξ/∆E ′), where the parameter ξ is characteristic of the target material (see below).

In a double-arm experiment, the number of electrons Ner in coincidence with recoil nuclei

detected in a recoil spectrometer in the interval ∆Pr = (Pr)max − (Pr)min is:

Ner = NbNtC
dσ

dΩ
(E◦, Θ◦)R(∆E ′, ∆Pr)L(∆E ′, ∆Pr)∆Ωer, (31)

where in this case the radiative correction factor and the ionization factor depend on both

∆E ′ and ∆Pr, the solid angle becomes the effective double-arm solid angle ∆Ωer, and the

correction factor C includes also losses due to absorption of recoil nuclei in the target and the

detectors. The radiative correction factor is calculable only if one of the two spectrometers

is the limiting aperture defining the double-arm solid angle, and if the recoil spectrometer

momentum acceptance ∆Pr is independent of the recoil angle Θr. In practice, even if the

latter condition is met, in a realistic experiment where counting rate limitations dictate use

of the maximum solid angle available from a double-arm spectrometer system, the effective
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double-arm solid angle is in many kinematics defined, as it is the case for this experiment,

by both spectrometers. The resulting convolution of the solid angles of the two spectrome-

ters, coupled by elastic kinematics and radiative and ionization effects makes impossible the

calculation of the product R(∆E ′, ∆Pr)L(∆E ′, ∆Pr)∆Ωer analytically. The product, in this

case, has to be calculated by means of a Monte Carlo simulation.

To express the above convolution, one writes down the coincidence counting rate as:

Ner = NbNtC

〈

∫ ∫

dσexp

dΩdE ′
(E, E ′, Θ, t)∆Ω∆E ′

〉

E,l

, (32)

where dσexp(E, E ′, Θ, t)/dΩdE ′ is the differential experimental cross section, which depends

also on the position, t, of the scattering vertex of the elastic event along the target length l.

The experimental cross section is integrated over the effective angular and scattered electron

energy acceptances of the double-arm spectrometer system for detection of scattered electrons

in coincidence with recoil nuclei. The bracket enclosure indicates that the resulting integral

is averaged over the energy distribution of the incident beam and over the target length.

6.2 Overview of the Simulation Method

The above averaged integral has to be calculated by simulating the entire elastic electron-

nucleus scattering process, starting with the arrival of the beam electrons at the target, and

ending with the arrival of the scattered electrons and of the recoil nuclei at the detectors of the

electron and recoil spectrometer, respectively. The simulation requires complete knowledge of

all physical processes happening in the target, in addition to the elastic scattering process in

question, and transportation of scattered and recoil particles through reliable optical models

of the spectrometers used for their detection. Among all processes present, the dominant

one is radiation by the incoming and scattered electrons, which is inextricably intertwined

with the scattering process.

Internal and External Bremsstrahlung

There are two kinds of radiation effects. The first one is from real and virtual photons

emitted during the elastic scattering (referred to as internal bremsstrahlung and vertex
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corrections respectively). The second one is from real photons emitted by electrons when

passing through the target material before and after the scattering (referred to as external

bremsstrahlung).

Following the seminal papers by Mo and Tsai [133, 134], and neglecting for the time

being ionization energy loss effects, the cross section for electrons of incident energy E to

scatter at an angle Θ to a final energy E ′ from a target of T radiation lengths including all

radiation effects is given by:

dσexp

dΩdE ′
=
∫ T

◦

dt

T

∫ E

η′E′

dE1

∫ η1E1

E′

dE ′

1 Ie(E, E1, t)
dσ

dΩdE ′
(E1, E

′

1, Θ) Ie(E
′

1, E
′, T − t), (33)

where Ie(E, E1, t) is the probability of finding an electron starting at initial energy E

and straggling down to energy E1 after passing through t radiation lengths in the target,

Ie(E
′

1, E
′, T − t) is the probability of finding an electron after the scattering at energy E ′

1 and

straggling down to energy E ′ through the rest of the target, and dσ(E1, E
′

1, Θ)/dΩdE ′ is the

cross section for elastic scattering with incident energy E1 to final energy E ′

1 and at an angle

Θ including internal radiation and vertex corrections. The lower limit of integration for E1 is

η′E ′ and the upper limit of integration for E ′

1 is η1E1, where η′ = [1− 2(E ′/M) sin2(Θ/2)]−1

and η1 = [1 + 2(E1/M) sin2(Θ/2)]−1. The difference E − η′E ′ is the maximum energy of

a photon which can be emitted along the direction of the incident electron. Similarly the

maximum energy of a photon which can be emitted along the direction of the scattered

electron is ηE − E ′, where η = [1 + 2(E/M) sin2(Θ/2)]−1.

It is customary, in addition to using the angle peaking approximation, to assume that

the shape of the internal bremsstrahlung is the same as that of the external bremsstrahlung,

and that the internal bremsstrahlung has approximately the same effect as that given by two

“external equivalent radiators” with one placed before and one after the scattering, each of

thickness:1

teq =
1

b

α

π

[

ln
Q2

m2
e

− 1

]

, (34)

1For clarity of the formulation a factor b
−1 has been included in the definition of the equivalent radiator.
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where me is the electron mass, and the small terms proportional to Z and Z2 from radiation

by the target nucleus with atomic number Z are neglected. The quantity b is approximately

equal to 4/3 and depends only weakly on Z:

b =
4

3
{1 +

1

9
[
(Z + 1)

(Z + ζ)
][ln (183Z−

1

3 )]
−1}, (35)

where:

ζ =
ln (1440Z−

2

3 )

ln (183Z−
1

3 )
. (36)

The vertex corrections are included in the factor F (Q2, 0) = 1 + δ′, where:

F (Q2, T ) = 1 + 0.577bT +
2α

π

[

−14

9
+

13

12
ln

Q2

m2
e

]

− α

2π
ln2(

E

E ′
) − α

π

[

π2

6
− Φ(cos2 Θ

2
)

]

, (37)

with Φ
[

cos2(Θ

2
)
]

being the Spence function. The first two terms of the right-hand side come

from a Gamma function normalization factor 1/Γ(1+ bT ) ' 1+0.5772bT . The third term is

the sum of the vacuum polarization and the non-infrared part of the vertex correction. The

fourth term can be regarded as a correction to the peaking approximation in the internal

bremsstrahlung. The fifth term comes from the non-infrared divergent part of the soft photon

emission cross section.

The probability of a small energy loss Ei −Ef due to bremsstrahlung by an electron with

incident energy Ei > 100 MeV in a target of t radiation lengths is given by:

Ie(Ei, Ef , t) =
bt

Γ(1 + bt)

(

Ei − Ef

Ei

)bt 1

Ei − Ef

. (38)

Application of Equation 33 for an effective radiator of length Tb = tb + teq, before the

scattering, and an effective radiator of length Ta = ta + teq, after the scattering, where tb and

ta are the real radiator lengths before and after the scattering, and insertion of the vertex

correction factor (1 + δ′) results to:

dσexp

dΩdE ′
=
∫ E

η′E′

dE1I
′

e(E, E1, Tb)
dσ

dΩ
(E1, Θ)(1 + δ′)I ′

e(η1E1, E
′, Ta), (39)

where the function I ′

e(Ei, Ef , Tj) is given (for j = a, b) by:

I ′

e(Ei, Ef , Tj) =
bTj

Γ(1 + btj)

(

Ei − Ef

Ei

)bTj 1

Ei − Ef

. (40)
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The calculation is straightforward but messy and uses the presence of a delta function for

elastic scattering:

dσ

dΩdE ′
(E1, E

′

1, Θ) =
dσ

dΩ
(E1, Θ)

E1

E ′

1

δ

[

E1 − E ′

1 −
2E1E

′

1

M
sin2(

Θ

2
)

]

(41)

Setting dσ(E1, Θ)/dΩ = w(E1, Θ)dσ(E◦, Θ◦)/dΩ, and using basic properties of the Gamma

function, the experimental cross section becomes:

dσexp

dΩdE ′
=

dσ

dΩ
(E◦, Θ◦)F (Q2, T )G(E, E ′, Θ, t) (42)

where T = ta + tb and:

G(E, E ′, Θ, t) =
∫ E

η′E′

dE1g(E, E ′, E1, Θ, t) (43)

with:

g(E, E ′, E1, Θ, t) =
bTb

E − E1

(

E − E1

E

)bTb

w(E1, Θ)
bTa

E1 − E ′

(

η1E1 − E ′

E ′

)bTa

, (44)

where the factor F (Q2, T ) is a very slow varying function of Q2 and has been pulled out of

the integral.

Direct substitution of Equation 42 into Equation 32 results in Equation 21 of the main

text:
dσ

dΩ
(E◦, Θ◦) =

Ner

NbNtCF (Q2, T )PMC

, (45)

where:

PMC =
〈∫ ∫

G(E, E ′, Θ, t)dΩdE ′

〉

E,l

. (46)

The above analysis indicates that the determination of the product of the double-arm

solid angle and the radiative corrections is reduced to a simulation of the complex integral

of Equation 43. Equation 44 suggests that the internal and external bremsstrahlung of an

incident or scattered electron, with initial energy Ei, in a total (real and equivalent) radiator

thickness T ′, follows a probability distribution of the functional form:

bT ′

∆Eif

(

∆Eif

Ei

)bT ′

, (47)

where ∆Eif is the energy loss by the electron. The term w(E1, Θ) dictates that a simulation

of an electron-nucleus scattering event must be weighted by a probability distribution defined
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by the elastic cross section. Since the elastic cross section is to be measured, one has to use a

model for it, then determine PMC and subsequently the elastic cross section, and after that

iterate. The procedure converges very quickly.

The factor PMC is essentially a number that can be determined from a Monte Carlo model

that can simulate in the nuclear target material not only energy losses due to internal and

external bremsstrahlung of the incident/scattered electrons, but also ionization energy losses

and multiple scattering effects for the incident/scattered electrons and the recoil nuclei.

Ionization Energy Losses

The energy loss of charged particles due to ionization or excitation of the atoms of the

material they traverse is subject to appreciable fluctuations about the most probable energy

loss ∆Eprob. Ionization energy losses by the incident and scattered electrons, and by the

recoil nuclei cannot be neglected in this experiment. The most probable energy loss is given

by [135]:

∆Eprob =
2πne4z2t

mec2β2ρ

[

ln
4πne4z2t

I2(1 − β2)ρ
− β2 + 0.198 − δ − U

]

(48)

where n is the volume density of electrons in the material, ρ is the density of the material,

I is the mean excitation potential of the material, z is the charge of the incident particle in

units of the electron charge e, t is the path length of the particle in the material, and β = v/c,

where v is the velocity of the particle. The term δ is the correction for the density effect,

which is due to the polarization of the medium. The term U is due to the nonparticipation

of the inner shells (K, L,...) for very low velocities of the incident particle.

The shape of the ionization energy loss distribution depends on the value of the parameter

K = ξ/qmax [136, 137], where:

ξ =
2πz2e4nt

mev2
(49)

and qmax is the maximum energy transfer in the collision from the incident particle to the

atomic electrons, approximately given by 2mev
2/(1 − β2) for incident heavy particles and

by Te/2 for incident electrons, where Te is the kinetic energy of the electron.

There is no absolute K demarcation defining the shape of the energy loss distribution.

For the needs of this experiment it is sufficient to consider that for K > 0.2 the energy loss
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follows a Gaussian distribution and for K < 0.2 it follows the Landau distribution [138] (in

reality, for 0.01 < K < 1.0 the energy loss follows the Symon distribution [139, 140], but

application of his theory to a specific case is difficult without considerable manipulation and

extrapolation of his unpublished results).

The variance, σ2
i , of the Gaussian distribution is given in terms of the path length t of

the particle in the material as [136]:

σi
2 = 4πe4nz2t. (50)

The Landau distribution is asymmetric with a long high-energy loss tail and a broad peak.

If ∆E is the observed energy loss, Landau has described the distribution as:

Φ(λ) =
∫ +i∞

−i∞
exp[λu + u lnu]du (51)

where the parameter λ is given in terms of the parameter ξ and the most probable energy

loss as λ = (∆E − ∆Eprob)/ξ. Simulation of the Landau distribution is possible using the

formalism of T. Tabata and R. Ito [141].

Multiple Scattering Effects

Another effect that has to be taken into account in a simulation of electron-nucleus

scattering is the multiple scattering of the incident and scattered electrons and of the recoil

nuclei in the Coulomb field of the nuclei of the target materials. It contributes to the value

of the integral PMC and to a larger extend to the shape of the observed distributions of the

scattered electrons and of the recoil nuclei at the detectors. A reliable comparison between

observed and simulated detector distributions would not be possible without incorporation

of multiple scattering in the Monte Carlo model.

The resultant distribution of the net space angle θms between the incoming and outgoing

directions of the particle, after passing a material of thickness t, is a Gaussian-type distri-

bution with a long non-Gaussian tail below the 5% level. The mean square value of θms is

given by [142]:

〈θ2〉
1

2

ms =

[

0.157Z(Z + 1)z2t

A(pv)2
ln
[

1.13 × 104Z
4

3 z2tA−1β−2
]

]
1

2

(52)
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where p is the momentum of the incident particle and A is the mass number of the mate-

rial. The multiple scattering angular distribution is in practice approximated by a Gaussian

function. There is no unique parametrization for the standard deviation, σms, of such a

Gaussian distribution. The best approximate formula, working very well, especially for

small-Z materials, is given by Lynch and Dahl as [143]:

σms =
19.2z

pβ

√

X

X◦

[

1 + 0.088 log10(
z2X

βX◦

)

]

, (53)

where X and X◦ are the thickness and radiation length of the material, respectively.

Transportation of Particles through the Spectrometers

The Monte Carlo model, after simulating the production of elastic events in the target,

raytraces the scattered electrons and the recoil nuclei all the way to the detectors, through

the electron and recoil spectrometers, respectively. This requires knowledge of the optical

properties of the two magnetic spectrometers as determined from detailed magnetic measure-

ments of their elements, and of the apertures of the elements as determined from surveys.

The scattered electrons and the recoil nuclei are transported through the spectrometers in

our model by means of exact raytrace or forward TRANSPORT matrix elements [62]. Exact

raytrace (good to all orders in the TRANSPORT coordinates) is applied for the motion of

the particles in the quadrupoles of the High Resolution Spectrometers. The raytrace uses

the Lorentz force equation:
d~p

dt
= q(~v × ~B), (54)

where q is the charge of the particle and ~B is the magnetic field. The 3-dimensional magnetic

field ~B is provided by the measured field maps Bx(x, y, z), By(x, y, z), Bz(x, y, z) of the HRS

quadrupoles. The propagation of the particles through the quadrupoles is done in small

steps. At the end of each step a check is made to see whether the particles are lost on the

physical apertures of the quadrupoles. For the transportation of the particles through the

two HRS dipoles this exact method cannot be applied due to the lack of a complete field

map of the dipoles. Instead a TRANSPORT model for each dipole was created based on a

combination of limited magnetic measurements and TOSCA simulations. The HRS dipole
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has been divided in 10 pieces, and 10 sets of 3rd-order forward matrix elements have been

provided by the TRANSPORT code [144].

The forward matrix elements of a magnetic element are the coefficients of a Taylor ex-

pansion about the central trajectory of the coordinates x, θ, y, φ of the particle at the exit of

the element in terms of its coordinates x◦, θ◦, y◦, φ◦, δ◦ at the entrance of the element:

x =
∑

κ,λ,µ,ν,ξ (x | xκ
◦
yλ
◦
θµ
◦
φν
◦
δξ
◦
)xκ

◦
yλ
◦
θµ
◦
φν
◦
δξ
◦

(55)

θ =
∑

κ,λ,µ,ν,ξ (θ | xκ
◦
yλ
◦
θµ
◦
φν
◦
δξ
◦
)xκ

◦
yλ
◦
θµ
◦
φν
◦
δξ
◦

(56)

y =
∑

κ,λ,µ,ν,ξ (y | xκ
◦
yλ
◦
θµ
◦
φν
◦
δξ
◦
)xκ

◦
yλ
◦
θµ
◦
φν
◦
δξ
◦

(57)

φ =
∑

κ,λ,µ,ν,ξ (φ | xκ
◦
yλ
◦
θµ
◦
φν
◦
δξ
◦
)xκ

◦
yλ
◦
θµ
◦
φν
◦
δξ
◦

(58)

where the order n of the expansion is : n = κ + λ + µ + ν + ξ (=3 in this case). The

coordinates x and y represent, respectively, the horizontal and vertical positions of the

particle, and θ = dx/dz and φ = dy/dz are the associated angles. The quantity δ◦ =

(p − p◦)/p◦ is the fractional deviation of the momentum of the particle from the central

design momentum, p◦, of the system.

Each one of the 10 sets corresponds to a magnetic element starting at the entrance of the

dipole and ending at a location mL/10 inside the dipole, where m = 1, 2, ..., 10, and L is the

effective length of the dipole. Each set is used to transport the particle from the beginning

of the dipole to the mL/10 longitudinal position inside the dipole, where an aperture check

is made to see whether the particle is lost on the trapezoidal aperture of the dipole. When

the particle makes it through the aperture for the 10th step, it is traced through the third

HRS quadrupole. All losses of particles on the apertures are recorded and a complete picture

is obtained for the solid angle defining apertures of both spectrometers.

6.3 The Effective Double-Arm Solid Angle

The Monte Carlo simulation creates pairs of scattered electrons and recoil nuclei along the

beam direction in the target. The incident beam distribution is assumed to be of a Gaussian

form with given standard deviation. Each scattering event originates from a beam electron

that has undergone energy straggling through the target and has been multiple-scattered
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before it interacts elastically with a nucleus. The location of the scattering vertex in the

target is uniformly distributed over the target length. Elastic electron events are created

with polar and azimuthal angles θ and φ in the intervals (θ1, θ2) and (φ1, φ2) around the

electron spectrometer axis (with ∆θ = θ1 − θ2 and ∆φ = φ1 − φ2 larger than the angular

acceptances of the electron spectrometer). The recoil nucleus momentum and polar and

azimuthal angles are determined by the elastic scattering condition. All the kinematical

coordinates of the scattered electrons and recoil nuclei are corrected, before they enter the

respective spectrometer models, for energy straggling and multiple scattering on the way out

through the target.

All probability distributions involved in the simulation like the ones for internal and

external bremsstrahlung, ionization energy loss, multiple scattering and for elastic scattering

at the scattering vertex, are produced by standard Monte Carlo techniques. Random deviates

from a particular distribution are generated either using the direct transformation method,

where possible, or the acceptance-rejection method by von Neumann. Both methods use

real numbers uniformly distributed in the interval [0,1] as provided by a (pseudo)random

number generator.

In the Monte Carlo language, the above procedure makes the integral PMC equivalent to

an integral of the form

PMC =
∫ ∫

w(E1, Θ)r(∆E ′, ∆Pr) dθdφ, (59)

where the function r(∆E ′, ∆Pr) includes the portion of the electron radiative corrections

that depend on the momentum acceptances of the two spectrometers, and effects from ion-

ization energy losses and multiple scattering for both scattering partners. For N trial events

randomly and uniformly distributed over the target length l and over the angular ranges ∆θ

and ∆φ, the integral PMC is given, in the limit N → ∞, by:

∫ θ2

θ1

∫ φ2

φ1

f(θ, φ)dθdφ = ∆θ∆φ
1

N

N
∑

i=1

f(θi, φi), (60)

where:

f(θ, φ) = w(E1, Θ)r(∆E ′, ∆Pr). (61)
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Figure 33: The JLab HRS drift chamber position and angular distributions of electrons elastically

scattered off protons for one of the kinematics of experiment E91-26 (solid circles) [60]. The

distributions are for coincidence events and are plotted versus the vertical (top) and horizontal

(bottom) TRANSPORT position and angle coordinates. The curves represent the predictions of a

Monte Carlo simulation (see text).
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Figure 34: The JLab HRS drift chamber position and angular distributions of recoil protons for

one of the elastic electron-proton kinematics of experiment E91-26 (solid circles) [60]. The distri-

butions are for coincidence events and are plotted versus the vertical (top) and horizontal (bottom)

TRANSPORT position and angle coordinates. The curves represent the predictions of a Monte

Carlo simulation (see text).
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Figure 35: The elastic electron-proton cross section from JLab experiment E91-26 (measurement

of the deuteron elastic structure functions) as extracted from coincidence measurements and sim-

ulation of the effective double-arm solid angle [60] compared to all previous world data for similar

kinematics [94]. The experimental cross section has been divided by a model cross section assuming

proton form factor scaling and using the dipole formula (see text). The JLab data include only

point-to-point random errors.

Since the energy losses due to radiation and ionization and the multiple scattering effects

are applied for every event, the function f(θ, φ) takes the value:

f(θ, φ) =











w(E1, Θ) for a “good event”

0 otherwise
(62)

where “good event” (or double-arm event) is considered the case when both the scattered

electron and the recoil nucleus pass through the modeled spectrometers into the detectors

without being lost on any limiting aperture. Small corrections for effects not accounted

for by the above procedure, like radiation by the target nucleus, can be calculated in an

80



approximative way by using analytic formulae. It is obvious that the same procedure can be

used to calculate an integral:

P ′

MC =
∫ ∫

w(E1, Θ)r′(∆E ′) dθdφ (63)

for single-arm elastic scattering with detection of scattered electrons only, or a corresponding

integral for detection of only recoil nuclei.

This method of evaluation of the integral PMC was employed in the data analysis of the

measurement of the electric form factor A(Q2) of the deuteron in JLab Hall A experiment

E91-26. Figures 33 and 34 show a comparison [60] of the measured distributions of the

coordinates of the scattered electrons and recoil deuterons at the drift chamber locations of

the two HRS detectors, for one of the E91-26 kinematics, with the distributions simulated

with our Monte Carlo code. It is evident that the simulated distributions are in very good

agreement with the experimental distributions giving us confidence that our Monte Carlo

model describes accurately all physical processes involved in the experiment and that the

product PMC takes into account correctly the convolution of radiative and ionization energy

loss effects with the acceptances of the two spectrometers. The integral PMC was used for the

determination of the coincidence elastic electron-proton and electron-deuteron cross sections.

Figure 35 shows the elastic electron-proton cross section from double-arm coincidence mea-

surements at different values of Q2 from E91-26 [60] compared to the world data at similar

kinematics [94]. To obtain a linearized scale, the experimental cross section has been divided

by a cross section model assuming i) that the proton magnetic form factor follows the dipole

formula Gp
M(Q2) = (1 + Q2/0.71)−2 and ii) that the electric form factor is Gp

E = Gp
M/µp

(form factor scaling), where µp is the proton magnetic moment. The excellent agreement of

the E91-26 cross section data with the world cross section data is another indication that

our Monte Carlo model calculates reliably the integral PMC .
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