Photoproduction of θ^+ via the $\gamma D \rightarrow \theta^+ \Lambda$ Reaction

Eli Piasetzky (Tel Aviv) Steve Wood (Jefferson Lab) Ron Gilman (Rutgers, Jefferson Lab)

20 coauthors from 7 institutions requesting 160 hours for exploratory study

- Motivation
- Experimental Details
- Summary

The Original Pentaquark Spectrum

- Spring-8/LEPS first pentaquark signal, the 1.54
 GeV peak in the spectrum: Nakano et al.,
 Phys Rev Lett 91,
 O12002 (2003)
- Confirmations
 from several labs
 have followed, in
 various reactions
 and kinematics

Is The θ⁺ Peak Real? Recent Review by Trilling (PDG)

- \circ θ^{+} seen in experiments some or all of which
 - Have limited acceptance
 - Need cuts to eliminate most events and enhance signal
 - Might underestimate background
 - Do not show Dalitz plots
 - Have nuclear targets and possible nuclear effects
- In contrast, no evidence in KN scattering sets upper limits on width Γ near 1 MeV
- Recommendation for photo-experiments:
 - High statistics
 - Improved PID
 - Improved mass resolution
- This experiment attempts to provide all 3!

Perspective on θ^* **Experiments**

- To put this experiment in perspective:
- The first high-statistics, second-generation experiments are already underway:
 - SPRING-8/LEPS: data taken, analysis underway, and
 - Jefferson Lab Hall B: on schedule for early 2004
- With larger data sets, ~1000 events, these experiments should settle the issue of the reality of the pentaquark peak
- There appear to be about 10 pentaquark proposals and LOIs to this PAC - Hall A PO4-012 (Wojtsekhowski et al.) and Hall C PO4-004 (Gao et al.) are the closest to this one, in that they also feature high resolution

Is The Peak a Pentaquark?

- There are occasional suggestions that the peak is a ``kinematic reflection'', it actually reflects for example the production of some higher mass meson that has not been recognized.
 - Many knowledgeable people have looked at the possibility; as yet no good candidate for the reflected particle exists
- The peak appears in the K⁺n and K⁰p channels, so it definitely involves 5 quarks, uuddš
- Every peak is not a resonance; it could reflect the K⁺n interaction, e.g., a ``molecular state''

Goals for New Pentaquark Experiments

- We know:
 - Mass ~ 1540 MeV
 - Width < 10 MeV (direct observation, 1 MeV from KN?)</p>
 - Hall B and SPRING-8/LEPS are taking ~ 1000 event data sets
- We would like to determine
 - Spin
 - Parity
 - Isospin
 - Other members of family
 - Form factor (3rd generation experiment?)
 - Width would help confirm reality of pentaguark in an experiment with very different equipment

Hall A / C Experiments

- Halls A and C, with their high resolution spectrometers, are well suited to determining the width of the pentaquark state, since we already know its mass
- Width measurement of a few MeV is interesting
- However, we do not really know the cross section for producing the pentaquark - we have to make educated guesses based on:
 - The idea of t-channel production dominance, suspected in the existing data but not cleanly proved, or
 - Model calculations, which assume a particular structure for the θ^+ , which might not reflect reality
- In this proposal, we will use the calculation of V. Guzey

Our Idea, Simplified

- ⇒ The reaction $\gamma p \rightarrow K^{+}\Lambda^{0}$ has a large cross section; the Λ^{0} subsequently decays about 2/3 of the time to $p\pi^{-}$
- Detecting the pπ⁻ allows reconstruction of the Λ⁰ four momentum, and produces a ``tagged'' K⁺ beam
- Running the experiment on a deuteron target gives a neutron in close proximity to the K⁺, which enhances the possibility of θ⁺ production
- By operating at low energy, and requiring the A⁰, we largely eliminate the possibility of kinematic reflections

The Calculation I

- Left two diagrams: photoproduction of $\Lambda^0 \theta^+$ from the deuteron
- **Right diagram:** non- θ^+ background production of $K^+\Lambda^0$
- K⁺ A⁰ photoproduction based on existing data amplitudes parameterized in MAID
- Deuteron wave function known (Paris)
- Dominant contribution when intermediate neutron and K⁺ on shell

The Calculation II

- Resonant θ^+ production amplitude ~ imaginary
- SK⁺n are on shell
- Production amplitude is proportional to width of θ^+
- Differential cross section reflects elementary KA amplitudes, nuclear effects, and θ^* width

The Calculation III

- Solid line: Cross section for resonant θ⁺
 production, assuming a
 5 MeV width
- Dashed line: cross section for background K⁺Λ⁰ photoproduction without θ⁺ production, integrated over W = 1530 – 1550 MeV

Narrower θ⁺ ▷ smaller cross section, but also decreased range for background

The Experiment: Overview

- ⊃ Hall A,
- ~50 µA unpolarized beam
- 6 % radiator, ~ 73 cm upstream of target center
- 15 cm cryogenic LD₂ target
- Triple coincidence
 - Protons from Λ^0 decay into HRS
 - π^- from Λ^0 decay into scintillator array
 - K⁺ into BIGBITE

- Low precision cross section experiment, 20 % more than sufficient
- Interest is in good resolution, to determine the width

The Experiment: HRS

- HRS detects protons with momentum ~870 MeV/c at 13 degrees
- Central HRS setting corresponds to about 515 MeV yD → pn, photodisintegration rate will be ~ 1 kHz
- QF ep gives ~ 300 Hz of 1.5
 GeV/c protons at this angle
- Use NOT-Aerogel to reject π^{+}
- Several kHz rate of p triggers

The Experiment: BIGBITE

- BIGBITE detects K+
 with momentum ~ 350
 MeV/c at ~97 degrees
- PID from
 - DE vs E in trigger scintillator
 - π: 2 MeV/(g/cm²)
 - P: 10 MeV/(g/cm²)
 - TOF (with auxiliary scintillator plane) vs p:
 - $\Delta TOF(\pi K) = 2.2 \text{ ns}$
 - ▲TOF(K-p) = 3.8 ns
 - Aerogel Cerenkov

The Experiment: BIGBITE Rates

- What about singles rates in BIGBITE?
- Tests for SRC experiment \$3-4 Mhz rate in BIGBITE, for similar luminosity, at about the same BIGBITE setting, but E = 4 GeV
 - Lower E_e will help
 - Line-of-sight shielding of radiator assumed
- Each of 24 trigger scintillator paddles will have about 100-200 kHz rate
- Rate ~OK for chambers

The Experiment: Scintillator Array

- Scintillator array detects
 π⁻ with momenta 100-150
 MeV/c at 55-75 degrees
- ~50 ns TOF at 10 m, 0.5 ns \$ ~1 % momentum resolution
- Angular resolution ~ 5 mr
- Rates are lowered by HRS shielding the array from the beam dump; will add line-of-sight shielding to screen out radiator

The Experiment: Scintillator Rates

- One worries about high rates with unshielded scintillator and high luminosity
- Minimum ionizing particles lose about 20 MeV in a 10 cm thick scintillator bar
- ⇒ The 100 150 MeV/c π^- stop within 10 cm of plastic and usually deposit large energies, ~200 MeV, in the scintillator bar – note quasi-deuteron absorption, π^- d → nn, with the nn getting all the π^- energy, is actually uncommon, 3+ body absorption dominates
- Setting a high threshold on the bars eliminates much of the background

Reaction Identification

- We identify p with HRS, K⁺ with BIGBITE, and π with scintillator array
- There has to be at least one neutron in the final state; there might be additional mesons
- We reconstruct the Λ four momentum using $p_{\Lambda} = p_{p} + p_{\pi}$, and we require $p_{\Lambda}^{2} = m_{\Lambda}^{2}$, which removes background
- We now reconstruct the reaction from two-body kinematics, assuming $\gamma d \rightarrow Xn$, with $p_x = p_k + p_A$
- Requiring endpoint events, E_y near E_e , eliminates events in which there are extra pions, ..., in the final state
- In the (unphysical) no-FSI limit, we measure the K⁺n → K⁺n reaction

Simulation of Resolution

- Top left: reconstuction of E_{γ} , assumes $\gamma D \rightarrow \theta^{+} \Lambda^{0}$
- Top right: reconstruction of Λ^0 missing mass, from p, π^- four momenta
- Bottom left: reconstruction of
 θ⁺ missing mass,
 from K⁺, n four
 momenta

zmm of the thetaz,

Confirmation of Resolution

- To extract a (limit on the) width of the θ⁺ from the data, one needs assurance that the experimental resolutions are well understood.
- The reconstruction of the Λ^0 missing mass, from p, π^- four momenta, checks the resolutions and offsets of these detectors
- The BIGBITE resolution needs to be calibrated / understood; if it is not well enough known it can be checked with, for example, recoil protons at large angle in ep elastic scattering: for E_e = 1.2 GeV, p_p = 350 MeV/c at 70 degrees

Time Estimate

- Settimated rate in these kinematics, assuming isotropic Λ^0 decay, including survival fractions for π^- and K⁺, is about 3.7 Γ (MeV) / hour
- 100 hours of data give (theory BG only)
 - 370 counts for 1 MeV width, S/BG ~ 10
 - 740 counts for 2 MeV width, S/BG ~ 20
 - 1850 counts for 5 MeV width, S/BG ~ 35
 - 3700 counts for 10 MeV width, S/BG ~ 50
- Even if cross section is an order of magnitude smaller, can see signal if $\Gamma \sim 2$ MeV or so
- 60 hours requested for setup, calibrations

Summary / Conclusion

- Pentaquark is of high interest recent workshop at Jlab, lots of new proposals
- Its reality should be clearly demonstrated by secondgeneration high-statistics SPRING-8/LEPS and Hall B experiments
- Hall A has the opportunity to determine its width, with a relatively low impact, high resolution experiment, which has very different systematics from already approved experiments: we feel this experiment is well justified at this time
- 160 hours requested in Hall A, using HRS + BIGBITE + scintillator array