Progress Report on E99-114 (RCS)

- RCS experiment ran in early 2002
 - * Analysis in progress since then
- Outline
 - * Brief theoretical overview
 - * Nearly final results for recoil polarization
 - * Preliminary results for unpolarized cross sections
 - * Summary

NCS at Large S,-t,-u

How is the Transferred Momentum Shared?

•Asymptotic (pQCD) Mechanism

2 hard gluon exchanges \Rightarrow scaling at fixed θ_{CM} :

$$d\sigma/dt = f(\theta_{CM})/s^6$$

 Soft Overlap Mechanism single quark mechanism ⇒ scaling at fixed t:

 $d\sigma/dt \cong (d\sigma/dt)_{KN} R^2_V(t)$

- What Mechanism Dominates at Accessible Energies?
- What Can We Learn About Proton Structure?

Polarization of Recoil Proton: Longitudinal

Robust prediction: depends only on ratio of form factors

Polarization of Recoil Proton: Transverse

-t $F_2/F_1 \sim constant$

- JLab G_{Ep} expt: - $t^{\frac{1}{2}}F_2/F_1 \sim constant$
- Does R_T/R_V behave similarly?

Goals of JLab E99-114

• Measure cross sections to 5% + 5% over broad kinematic range of s, t

 $-\sigma/\sigma_{KN}$ vs. s @ fixed t

--1/sⁿ (a) fixed θ_{cm}

--detailed comparison with handbag

Experimental Setup

• mixed e- γ beam

 \Rightarrow background & calibrations

- good angular resolution
- FPP

Experiment ran in Hall A Jan-Feb, 2002

Status Report on Polarization Measurements

- Data analysis in final stages (David Hamilton)
- Results obtained for K_{LL} and K_{LT}
 - * $K_{LL} = 0.68 \pm 0.08$
 - * $K_{LT} = 0.11 \pm 0.08$
- Systematic error still being evaluated
 - * probably < 0.04
- Lots of $p(\gamma, \pi^0)$ polarization to be mined
 - * thesis of Mike Roedelbronn

Preliminary Result from E99-114...final results very soon

 K_{LL} consistent with single-quark mechanism with active quark carrying proton spin ($R_A \cong R_v$)

Polarization Transfer K_{LL} for γ, π°

- $K^{\pi}_{LL} \cong K^{RCS}_{LL} \cong K^{KN}_{LL}$
- predicted by handbag
- five more points measured but not yet analyzed (75°-130°)

Transverse Polarization Transfer: Preliminary Result from E99-114

 $K_{LL} = 0.68 \pm 0.08$ $K_{LT} = 0.11 \pm 0.08$

$$\frac{K_{LT}}{K_{LL}} \frac{\sqrt{-t}}{2M} \frac{R_T}{R_V} = 0.16 \pm 0.12$$

$$\Rightarrow R_T/R_V \approx (0.4 \pm 0.3) F_2/F_1$$

Hard to draw any conclusions with this precision

Status Report on Unpolarized Cross Section

- Preliminary analysis of all kinematics completed June 03
- Final analysis underway
 - * Mamyan Vahe: simulation based on GEANT
 - * Areg Danagoulian: simulation based on SIMC
- We are still about 1 year away

NOTE:

- this and the next few slides show preliminary cross sections
- good to about 20%
- results disagree somewhat with Cornell

- s⁻⁶ scaling at fixed θ_{CM} works only approximately
- Leading twist still hadly underestimates cross section

Scaling parameter

Preliminary Cross Sections

Prediction of s-independence at fixed t not well followed But...

- Prediction of s-independence at fixed t not well followed
- But...not so bad for data with s,-t,- $u > 2.5 \text{ GeV}^2$
- Higher energy data would be desirable

• For large enough p_T , $d\sigma/d\sigma_{KN} \sim$ scales with $1/t^4$ • In agreement with "spirit" of handbag

Summary and Outlook

- E99-114 successfully completed
 - * K_{LL} and K_{LT} at s=7, -t=4
 - K_{LL} is "large" and positive
 - Suggestive of single-quark mechanism
 - Similar result for π^0 photoproduction
 - Consistent with handbag prediction
 - K_{LT}/K_{LL} consistent with F_2/F_1 , with poor statistics
 - * $d\sigma/dt$ over broad kinematic range
 - $t^4\sigma/\sigma_{KN}$ roughly constant for s,-t,-u > 2.5 GeV²
 - s⁻⁶ scaling at fixed θ_{CM} works only approximately
 - * Lots of $p(\gamma, \pi^0)$ to be mined
- Higher energy desirable to obtain higher p_T