Search for Bound Θ^+ -nuclei (Hyponuclei)

E. Chudakov, R.J. Feuerbach (spokesperson), J.O. Hansen, J.J. LeRose, D. Meekins, B. Wojtsekhowski (Jlab), P.E. Reimer (Argonne), D.J. Margaziotis (California State Univ. of Los Angeles),
P. Markowitz (co-spokesperson) (Florida International Univ.), O. Gayou (MIT), K. Paschke (U. of Massachusetts) , A.J. Sarty (St. Mary's Univ.), J.R. Calarco (Univ. of New Hampshire)

Presentation Format

- Motivation
 - Pentaquark sightings
 - Why look for the Θ^+ -bound states now?
 - Theoretical support for hyponuclear formation
- Experimental plan
- Anticipated results
- Beam time request

Θ⁺-Pentaquark Sightings

Nakano, PRL91, 012002

- Predicted by Diakonov within chiral-soliton model
- First seen on ¹²C
- Lack of observation of a Θ⁺⁺ suggests I=0
- However, limits from partner search also question the original antidecuplet description.

Robert Feuerbach

• What is the Θ^+ ?

Älleneer CP

Different Approach: Θ^+ in Nuclei

- Study the Θ⁺ in the environment it was first discovered.
 - Nucleon-meson interactions
 - Coherent excitation of nucleons?
 - Multi-meson coupling
- With a deep enough potential, might produce <u>stable</u> against strong decay pentaquark.
- All models find the pentaquark narrower in medium than in the vacuum.

Theoretical Status of Hyponuclei

As coherent excitation of nucleons (Miller)

Two-meson cloud selfenergy calculation (Vacas *et al*.)

Meson-couplings within QMF $(g^{\omega}_{u/d})$ and RMF $(g^{\sigma}_{u/d})$ models.

Chiral soliton (P=-1) calculation.

. Gefferen e Pel

Relativistic Mean Field Zhong *et al.*, nucl-th/0408046

PAC27 December 17, 2004

Robert Feuerbach

Reaction

Look for the hyponuclei recoiling against the e K⁻.

Experiment Setup

beam 5.75 GeV/c 5.75 GeV/c

- Getter - Robert Feuerbach

40 μ A on 700mg/cm²

Luminosity = 10^{38} cm⁻² s⁻¹

Foils spaced to by 3cm to

be able to identify them

in HRS's, to reduce

random coincidences.

multi-foil ¹²C target

Particle Identification

Expected Rates

Electron rate was calculated with in a Quark-Fragmentation (QFS) framework and checked against the total photon-deuteron cross-section. Hadronic rates were calculated using Wiser's parameterization. Decay along the 27m flight-path to S2m was taken in account.

Singles Rates:

	P_0	e^-	π^{-}	K^-	Total	Scaled Exp.
	[GeV/c]	[kHz]	[kHz]	[kHz]	[kHz]	[kHz]
R-HRS	2.41	230	176	1.4	410	425
L-HRS	2.67	280	145	1.3	43 0	365

Accidental coincidence rate (50ns window):

Rates (cont'd)

Accidental coincidence rate (50ns window):

R-HRS/L-HRS	Rate	w/ on-line e^-/K^- PID
e^-/e^-	3.2 kHz	322 Hz
e^-/pi^-	$1.7 \mathrm{kHz}$	170 Hz
e^-/K^-	15 Hz	15 Hz
Total	4.9 kHz	507 Hz

Offline: With a 2ns time-window and vertex cut (from the same foil), the accidental rate from Kaon is reduced to 0.086 Hz.

<u>True</u> coincidence rate (background):

L-HRS	x_F	p_{\perp}	$E \frac{d^3 \sigma}{d^3 p}$	Coinc. Rate
PID		[GeV/c]	$[\mu b/{\hat GeV^2}]$	[Hz]
π^{-}	> 0.78	0.23	29.9	6 6
$-K^-$	> 0.93	0.23	0.225	0.19

Estimated from inclusive hadronic photoproduction on deuterium. Burfeindt *et al.* Nucl.Phys. **B**74:189 (1974); Boyarski *et al.* Phys.Rev. **D**14:1733 (1976)

Signal Rate

$$\nu_{\mathcal{S}} = \mathcal{L}_{\gamma^{*}n} \cdot \sigma_{\gamma n}^{\Theta^{-}} \cdot f_{\gamma^{*},K^{-}}^{L-\Pi RS} \cdot f_{K}^{decay} \lambda_{\mathcal{S}}$$

Acceptance with R-functions and various angular distributions: 0.033 selected

$$L_{\gamma^*n} = 5.8 \ 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$$

$$f_K^{decay} = 0.27$$

$$\lambda_s = \text{sticking probability for the transition } S$$

$\sigma_{\gamma n}^{\Theta^+}$ shape	$f^{L-HRS}_{\gamma^*,K^-}$
Uniform in γn C.o.M.	0.0024
$\exp(3t)$ (selected)	0.033
$\exp(5t)$	0.052

Rate for observing transition S $v_s = 5.2 \lambda_s \sigma^{\Theta_{+}}/\mu b$ Hz

 λ_s depends upon the kinematics, most importantly the momentum transfer.

Sticking factor estimate

			$V = -60 \text{ MeV } \rho/\rho_0$		V = -120	$1~{ m MeV}~ ho/ ho_0$
			E_i (MeV), ${}^{12}C$	E_i (MeV), ${}^{40}Ca$	$E_i \; ({ m MeV}), {}^{12}C$	E_i (MeV), ${}^{40}Ca$
$\lambda_{(N-1,A)}$	\propto	$\left[C'(l_{\Lambda} \mid l_{N}, j_{\Lambda} \mid j_{B} \mid j_{N}) \mid l_{l} ight]^{2}$	-34.0 (1s)	-42.6 (1s)	-87.3 (1s)	-98.2 (1s)
(100	-14.6 (1p)	-30.9 (1p)	-59.5 (1p)	-83.3 (1p)
I_l	=	$\int = u_{\Lambda}^{*}(r) \dot{j}_{l}(qr) u_{N}(r) dr$	-0.3 (2s)	-18.7 (1d)	-32.0 (2s)	-67.5 (1d)
	mm	<i>J</i> ₀		-17.9 (2s)	-31.9 (1d)	-65.9 (2s)
				-6.3 (1f)	-8.6 (2p)	-50.8 (1f)
				-5.6 (2p)	-5.6 (1f)	-48.5 (2p)
						-33.5~(1g)
						-31.1 (2d)
						-30.4 (3s)
						-15.9 (1h)
						-14.2 (2f)
						-13.8 (3p)
						-0.5 (4s)

With SHO w-f, we have crudely calculated the sticking factors for the initial proton states 1s1/2 and 1p3/2 (using binding energies from Vacas).

Sticking factor cross-check

• As a check, came up with empirical estimate, relating the kinetic energy of the Theta+ to the Lambda (with known sticking factors).

 λ_s is up to a few tenths of a percent. However, many states!

Expected Results

- 200 hours of beamtime.
- Different widths of the states, cross-section, and potential depth.

Expected Results (contd)

Conclusion

- Will be able to identify hyponuclei for a crosssection down to 10nb at the $>6\sigma$ level with 200hrs of beam time.
- Can measure the energy levels to 1MeV
- Uses existing and proven equipment in Hall A.
- Searches for the Theta+ in the environment it was first observed.

