Measurement of the Target Single-Spin Asymmetry in Quasi-Elastic ${}^{3}\text{He}^{\uparrow}(e,e')$

PR-05-015 PAC 27 Meeting January 13th, 2005

Todd Averett

The College of William and Mary

co-spokespersons: J.P. Chen, X. Jiang A Hall A collaboration experiment

- Inclusive quasi-elastic scattering, unpolarized beam.
- Spin-1/2 target polarized perpendicular to electron scattering plane.
- Measure single-spin asymmetry (SSA) A_y from target spin flip.
- Non-zero A_y arises when 2γ -exchange is included.
- 2γ exchange sensitive to nucleon dynamics; related to GPD moments.

$$A_y = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

Key Points (con't)

- Below pion threshold, elastic intermediate state only; well-understood
- Above pion threshold, inelastic response needed.
- Can insert specific resonant or DIS response.
 - A. Afanasev, I. Akushevich and N.P. Merenkov, arXiv:hep-ph/0403058
- Or, nucleon response can be related to moments of GPDs.
- Neutron has unique sensitivity to GPDs due to small G_E^n .
- Neutron technically much easier than proton measurement; No new equipment needed.

Elastic eN Scattering

Y.-C. Chen, A. Afanasev, S. J. Brodsky, C. E. Carlson and M. Vanderhaeghen, PRL 93 (2004) 122301

• For the elastic reaction $e(k) + N(p) \rightarrow e(k') + N(p')$,

$$T_{\lambda_h,\lambda'_N\lambda_N} = \frac{e^2}{Q^2} \,\bar{u}(k',\lambda_h)\gamma_\mu u(k,\lambda_h)$$

$$\times \bar{u}(p',\lambda'_N) \left(\tilde{G}_M \gamma^\mu - \tilde{F}_2 \frac{P^\mu}{M} + \tilde{F}_3 \frac{\gamma \cdot K P^\mu}{M^2} \right) u(p,\lambda_N)$$

The λ_i are the lepton and hadron helicities, P, K are kinematic factors.

Complex functions containing nucleon structure information:

$$\begin{split} \tilde{G}_M(\nu, Q^2) &= G_M^{(\text{Born})}(Q^2) + \delta \tilde{G}_M(\nu, Q^2) \\ \tilde{F}_2(\nu, Q^2) &= F_2^{(\text{Born})}(Q^2) + \delta \tilde{F}_2(\nu, Q^2) \\ \tilde{F}_3(\nu, Q^2) &= 0 \text{ for Born scattering} \end{split}$$

• $\delta \tilde{G}_M$, $\delta \tilde{F}_2$, \tilde{F}_3 come from 2γ -exchange (up to $\mathcal{O}(e^4)$)

$2\gamma\text{-}\mathrm{Contribution}$ to eN Scattering

Unpolarized cross section related to *Real* part of amplitude,

$$\sigma_{R} = G_{M}^{2} + \frac{\varepsilon}{\tau} G_{E}^{2} \quad (\text{Born}) + 2G_{M} \mathcal{R}e\left(\delta \tilde{G}_{M} + \varepsilon \frac{\nu}{M^{2}} \tilde{F}_{3}\right) + 2\frac{\varepsilon}{\tau} G_{E} \mathcal{R}e\left(\delta \tilde{G}_{E} + \frac{\nu}{M^{2}} \tilde{F}_{3}\right)$$

- For 1γ -exchange,
 - $-\delta \tilde{G}_M = \delta \tilde{F}_2 \left(\delta \tilde{G}_E \right) = \tilde{F}_3 = 0$
 - Time-Reversal Invariance requires $G_M, F_2(G_E)$ are real
- For 2γ -contribution,
 - Two terms, proportional to G_E and G_M
 - $2\gamma\text{-contributes}\approx 2\%$ to cross section; Important for G^p_E/G^p_M

2γ -Contribution to A_y

• Assuming Time-Reversal Invariance, A_y is related to the *Imaginary* (absorptive) part of transition amplitude, (T_A) ,

A. DeRujula et al., Nuc. Phys. B35 (1971) 365.

$$A_y \propto \frac{\mathcal{I}\mathrm{m}(T^*T_A)}{\left|T\right|^2}$$

• For 1γ -exchange,

– T_A is zero, $\implies A_y \equiv 0$ for all Born processes.

- For $1\gamma\otimes 2\gamma$ -interference, amplitude is complex.
 - 2γ box diagram gives non-zero absorptive part; $T_A \neq 0$

 $- \implies A_y \neq 0$

$$2\gamma\text{-contribution to }A_y$$
 (con't)

$$A_y = \sqrt{\frac{2\varepsilon \left(1+\varepsilon\right)}{\tau}} \frac{1}{\sigma_R}$$

$$\times \left\{ -G_M \mathcal{I}\mathrm{m} \left(\delta \tilde{G}_E + \frac{\nu}{M^2} \tilde{F}_3 \right) + G_E \mathcal{I}\mathrm{m} \left(\delta \tilde{G}_M + \left(\frac{2\varepsilon}{1+\varepsilon} \right) \frac{\nu}{M^2} \tilde{F}_3 \right) \right\}$$

• For the neutron, G_E^n is small $\Longrightarrow A_y^n$ dominated by G_M^n term.

- For large enough Q^2 , assume scattering described by hangbag diagram with box and crossed diagrams for 2γ exchange at hard vertex H.
- Only 2γ box diagram contributes to A_y .
- Elastic intermediate believed well-understood, $A_{y,elas}^n\approx -1\%$
 - A. Afanasev et al., arXiv:hep-ph/0403058
- Inelastic intermediate state calculated using GPD model.

Connection with (GPDs) (con't)

Y.-C. Chen, A. Afanasev, S. J. Brodsky, C. E. Carlson and M. Vanderhaeghen, PRL 93 (2004) 122301

$$A_{y} = \sqrt{\frac{2\varepsilon(1+\varepsilon)}{\tau}} \frac{1}{\sigma_{R}} \left\{ -G_{M} \mathcal{I}m\left(\mathbf{B}\right) + G_{E} \mathcal{I}m\left(\mathbf{A}\right) \right\}$$

$$A = \int_{-1}^{1} \frac{dx}{x} K \sum_{q} e_{q}^{2} \left[H^{q}(x,0,t) + E^{q}(x,0,t) \right]$$
$$B = \int_{-1}^{1} \frac{dx}{x} K \sum_{q} e_{q}^{2} \left[H^{q}(x,0,t) - \tau E^{q}(x,0,t) \right]$$

- $t = -Q^2$, K and K' contain the contributions from the hard scattering amplitudes.
- H^q and E^q are GPD's for quarks of flavor q.

- Neutron dominated by G_M^n term.
- Proton has approx. equal and opposite contributions from G_E^p and G_M^p .
- Neutron asymmetry $A_y^n pprox -1.7\%$ at $heta_{cm} pprox 60^\circ$

The Experiment

- Measure A_y using vertically polarized ³He at $Q^2 = 1.0$ and 2.3 GeV².
- Expected statistical error $\delta A_y^n \approx 0.0023$ (15% relative to GPD model prediction).
- Use HRS spectrometers in singles mode for electron detection, (note $A_y(\theta) = -A_y(-\theta)$).
- Vertically polarized target available from E03-004 (Transversity expt).
- Beam request: 28 days
- Easy installation; No new equipment required

Kinematics

E_0	Q^2	E'	$ heta_e$	$ heta_e^{cm}$	e^- rate	Time	δA_y^n
(GeV)	$({\rm GeV}^2)$	(GeV)	(deg)	(deg)	(10^6 /day)	(days)	$(\times 10^{-3})$
3.30	0.50	3.03	12.85	35.4	405.0	1	1.2
3.30	1.01	2.76	19.15	51.1	28.6	6	2.1
5.50	2.26	4.30	17.80	58.4	2.3	17	2.5

• Production beam time = 24 days

- Target and detector overhead = 4 days
- Total beam time request = 28 days

• New hybrid target technology expected to improve in-beam 3 He polarization.

• Assume
$$P_tpprox 0.42$$
, $I_{beam}pprox 15\mu$ A

• Fast spin reversals needed to minimize systematic uncertainties.

Backgrounds

• Inclusive reaction; Hadronic final states are integrated over

```
\implies no FSI contribution to A_y.
```

N. Christ, T.D. Lee, Phys. Rev. 143 (1966) 1310

- There are no channels which contribute at Born-level.
- 2γ backgrounds:
 - Elastic tail negligible at these kinematics.
 - Inelastic tail contributions from resonances and DIS.
 - Estimate $A^n_{inelas} < 2\%$ for Δ and DIS, A. Afanasev calculation
 - Systematic error from tails $\delta A^n_{inelas} \simeq 0.0003 0.001$

Inelastic Tails

3He(e,e'), E0=5.5 GeV, theta=17.8 degree

Nuclear Correction

F. Bissey et al., Pys. Rev. C65 (2002) 064317

• Correct for proton polarization in ³He

$$A_y^{^{3}\text{He}} = \frac{\sigma^n}{\sigma^0} P_n A_y^n + \frac{\sigma^p}{\sigma^0} P_p A_y^p$$

- σ^n , σ^p and σ^0 are the unpol. QE cross sections for n, p, and total.
- $P_n \simeq 0.86$ and $P_p \simeq -0.028$
- Largest experimental uncertainty comes from unmeasured A_y^p and gives 4 8% systematic uncertainty on A_y^n .

Systematic Uncertainties

Source	Uncertainty in A_y (%, relative to GPD model prediction)		
Target polarization	4		
Nuclear correction	4-8		
Radiative corrections	3		
Luminosity correction	1		
Inelastic background	2-6		
All others	3		
Total	7-12%		

• Expected statistical uncertainty $\delta A^n_{stat} \simeq 15\%$ (relative to GPD model predicton).

GPD interpretation

- Validity of GPD interpretation requires hard scattering vertex; No higher twist effects, $m_q = 0$.
- Study effect of nucleon dynamics by increasing m_q , C. Carlson, M. Vanderhaeghen, A.

Afanasev, private comm.

Higher Twist Effects at $Q^2 \simeq 1 \text{ GeV}^2$???

• Recent analysis of DIS moments for g_1 at $Q^2 = 1$ GeV² find no evidence for higher-twist effects.

M. Osipenko et. al., arXiv: hep-ph/0404195 (2004), A. Deur, et. al., Phys. Rev. Lett. 93, 212001 (2004),

Z.E. Meziani, et. al., arXiv:hep/ph/0404066 (2004)

• Recent JLab g_2 data at $Q^2 = 1$ GeV² show non-zero higher-twist contribution, but not large.

E97-103 preliminary results

- Global analyses of unpolarized Parton Distribution Functions (PDFs) from MRST and CTEQ show no indication of higher twist effects except at large *x*.
 A. D. Martin, R.G. Roberts, W. J. Stirling and R. S. Thorne, Eur. Phys. J. C35, 325 (2004); J. Pumplin et. al., JHEP 0207, 012 (2002), arXiv: hep-ph/0201195.
- Our two Q^2 values will also provide information

Summary

- Non-zero A_y is a clear signature of 2γ -exchange
- Non-zero A_y has never been clearly established
- 2γ -exchange provides a new tool to probe nucleon dynamics
- Direct access/constraint to GPD model input
- Technically straight-forward measurement; no special equipment needed
- Inelastic backgrounds under control; No FSI
- 28 days of beam requested
- Test GPD prediction for A_y at 15% (stat.) level