
PR06-005

Parity Violating Electron Scattering in Resonance region (Res-Parity)

P. Bosted, J. Arrington, V. Dharmawardane, H. Mkrtchyan, X. Zheng

- Physics Overview
- Motivation
- Experiment
- Count rates and Errors
- Expected Results
- Request
- Summary: "Easy" experiment, never
- done before, relevant to wider community

PARITY VIOLATING ASYMMETRY

Electron can scatter off of proton by exchanging either a virtual photon or a Z⁰

□The cross section in terms of electromagnetic, weak and interference contribution

 $d\sigma = d\sigma_{\gamma} + d\sigma_{weak} + d\sigma_{I}$

 \Box Asymmetry due to interference between Z⁰ and γ

$$A_{RL} = \frac{d\sigma_{R} - d\sigma_{L}}{d\sigma_{R} + d\sigma_{L}}$$

Deep Inelastic asymmetry

In the Standard Model and assuming quark degrees of freedom, at LO

$$A_{RL}^{DIS} = -\frac{2Q^2}{M_Z^2} \frac{\sum f_i(x) (Q_i^{\gamma} / e) [g_A^e g_V^i + Y g_V^e g_A^i]}{\sum f_i(x) (Q_i^{\gamma})^2}$$

In the valence region, for a proton target:

$$A_{p} = -10^{-4} Q^{2} \frac{\left[0.51 + 0.45 \frac{d(x)}{u(x)} + 0.10 Y \left(1 + \frac{d(x)}{u(x)} \right) \right]}{1 + 0.25 \frac{d(x)}{u(x)}} \approx 1 - x$$

Resonance region asymmetry □For a resonance A_{RL} can be written in terms of response functions

$$\begin{split} \mathbf{A}_{\mathsf{RL}}^{\mathsf{Res}} &= \mathbf{A}_{0} \; \frac{\mathbf{v}_{\mathsf{L}} \mathbf{R}_{\mathsf{AV}}^{\mathsf{L}}(\mathbf{q}, \boldsymbol{\omega}) + \mathbf{v}_{\mathsf{T}} \mathbf{R}_{\mathsf{AV}}^{\mathsf{T}}(\mathbf{q}, \boldsymbol{\omega}) + \mathbf{v}_{\mathsf{T}'} \mathbf{R}_{\mathsf{VA}}^{\mathsf{T}}(\mathbf{q}, \boldsymbol{\omega})}{\mathbf{v}_{\mathsf{L}} \mathbf{R}^{\mathsf{L}}(\mathbf{q}, \boldsymbol{\omega}) + \mathbf{v}_{\mathsf{T}} \mathbf{R}^{\mathsf{T}}(\mathbf{q}, \boldsymbol{\omega})} \\ & \mathbf{R}_{\mathsf{AV}}^{\mathsf{L},\mathsf{T}} = \boldsymbol{\beta}^{\mathsf{I=0}} \; \mathbf{R}^{\mathsf{L},\mathsf{T}}(\mathbf{I}=0) + \boldsymbol{\beta}^{\mathsf{I=1}} \; \mathbf{R}^{\mathsf{L},\mathsf{T}}(\mathbf{I}=1) \end{split}$$

Isospin symmetry relates weak and EM vector current
Enchanced d,s quark contributions
Sensitive to axial hadronic current also

Details have so far been worked out only for N_ Δ (1232) $A_{RL}^{N \rightarrow \Delta} = -(1.04 + 0.27F(Q^2, E, E', \theta_e)) \times 10^{-4}Q^2$

> sensitive to axial vector transition form factor

Resonance region asymmetry For a resonance A_{RL} can be written in terms of response functions

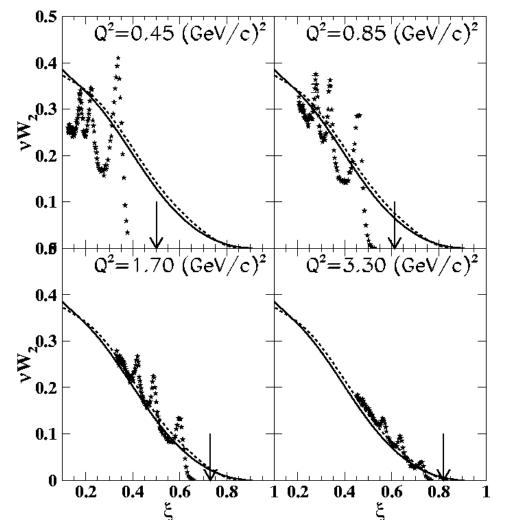
Isospin symmetry relates weak and EM vector current
 Enchanced d,s quark contributions

Sensitive to axial hadronic current also

Details have so far been worked out only for N_ Δ (1232) $A_{RL}^{N \to \Delta} = -(1.04 + 0.27F(Q^2, E, E', \theta_e)) \times 10^{-4}Q^2$

> sensitive to axial vector transition form factor

A Simple Model

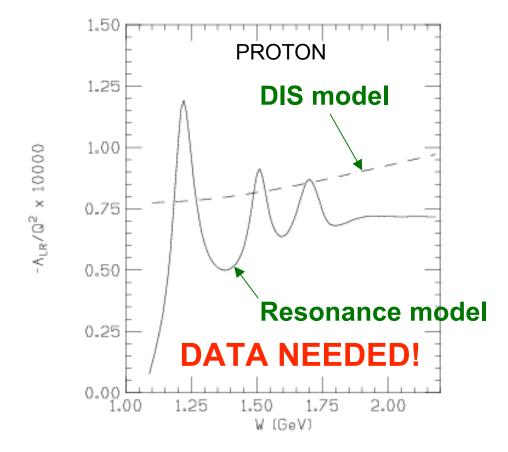


sin²θ_W = 0.25 ->axial current suppressed
 Isospin symmetry
 Negligible strange and charm form factors

PROTONDEUTERON $A_{RL}^{Res,p} = -0.9 \times 10^{-4} Q^2 \sigma_n / \sigma_p$ r(W) depends on (I=0)/(I=1) $A_{RL}^{DIS,p} = -0.9 \times 10^{-4} Q^2 \frac{2(1 + \sigma_n / \sigma_p)}{5}$ $A_{RL}^{Res,d} = -0.9 \times 10^{-4} Q^2 r(W)$

Different dependencies in the resonant and DIS cases
Resonant case the current is expressed through the square of the sum over parton charges
DIS case the sum of the square gives the current

QUARK-HADRON DUALITY


In QCD, can be understood from an OPE of moments of structure functions Duality is described in OPE as higher twist (HT) effects being small or cancelling

For spin-averaged structure function, duality works remarkably well to low values of Q²

DUALITY for the gamma-Z interference tensor ?

•Leading order criteria $(\sigma_n / \sigma_p)_{ave}^{res} = \frac{2}{5} (1 + (\sigma_n / \sigma_p)_{ave}^{DIS})$

•Duality is satisfied if on average $\sigma_n/\sigma_p = 2/3$

■No good model for free n/p ratio in resonance region: used simpe toy model

Simple

Model

Will data look anything like this?

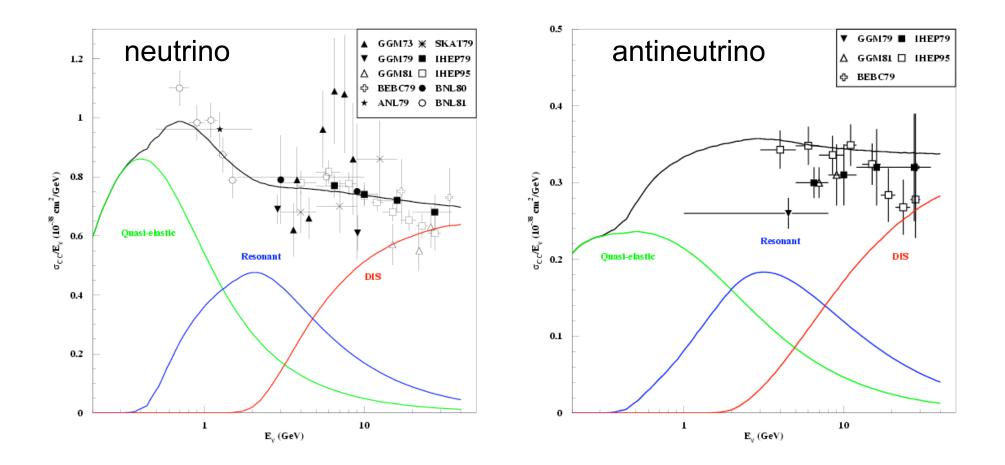
PHYSICS MOTIVATION

Provide the first measurements of the parity violating asymmetries over the full resonance region for proton, deuteron, and carbon. [G0 will measure Delta region on proton, back angle].

Explore both global and local quark-hadron duality with the previously un-studied combination of structure functions

Sensitive to isospin decomposition of resonance region.

□First look at EMC effect with Z-boson probe


PHYSICS MOTIVATION

□The results are of practical importance :

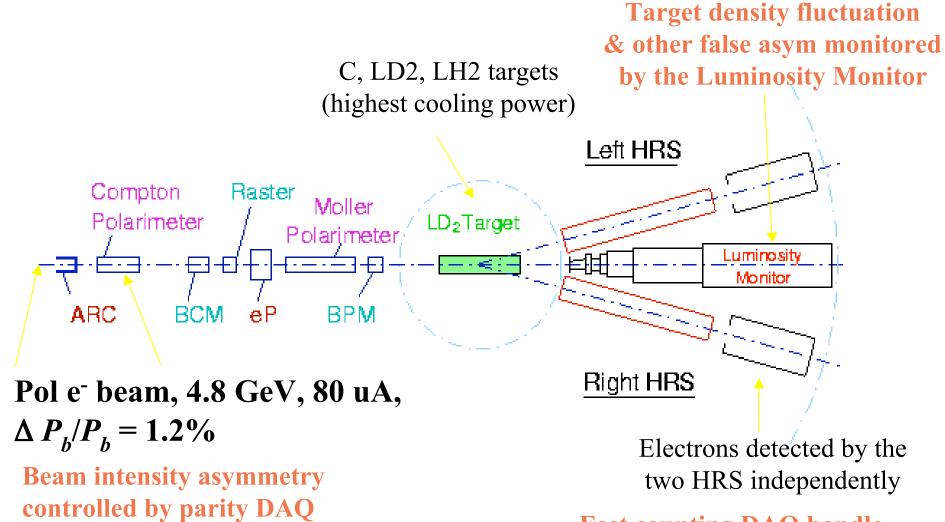
 Modeling neutrino cross sections needed for neutrino oscillation experiments.

Understanding backgrounds for future PV experiments (e.g. Moller scattering at 11 GeV with 1.5 m target)
Constraining radiative corrections to planned (E05-007) and future (11 GeV)
DIS-PV experiments

NEUTRINO OSCILLATION

 Resonance region probed by RES-PV dominates total cross section for 1<E_{neutrino}<5 GeV

NEUTRINO OSCILLATION


- Major world-wide program to study neutrino mass, mixing
- Interpretation needs neutrino cross sections in few GeV region on various nuclei. Direct measurements difficult.
- Rely on models. Res-Parity will constrain models (especially isospin nuclear dependence: is EMC effect same for u and d quarks?). Relative coupling to d quarks large compared to unpolarized electron scattering.

RAD. CORR. to DIS-PV

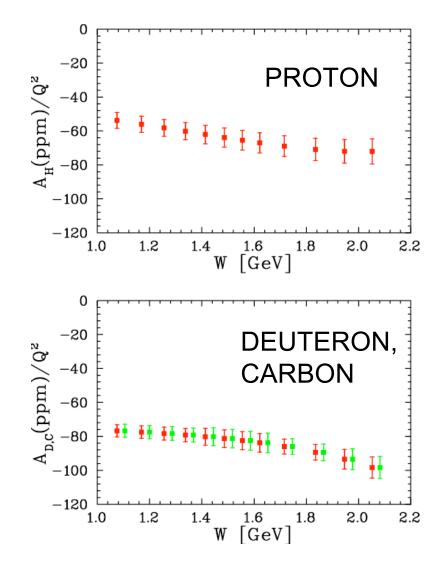
- Significant fraction of measured events (f_res) come from Resonance region at DIS kinematics of DIS-PV and future 11 GeV experiment.
- Relative effect (dA/A) of varying Resonance asymmetry model by 20% is significant: need to measure

Q ² (GeV ²)	E (GeV)	F_res	dA/A
1.1	6	15%	5%
1.9	6	12%	2.5%
3.5	11	5%	1%

Experimental Setup

Fast counting DAQ handle up to 1MHz rate with 10³ pion rej.

KINEMATICS AND RATES for LD2 target


X	Υ	Q^2	E'	W	π/ e	MHz	δΑ/Α
0.17	0.50	0.6	2.8	2.0	0.6	8.0	4.9%
0.24	0.39	0.7	3.2	1.8	0.2	0.9	4.0%
0.35	0.29	8.0	3.6	1.5	0.1	1.0	3.8%
0.61	0.19	0.9	4.0	1.2	0.0	1.2	3.0%

Rates similar to PV-DIS (E05-007).
 Pion/electron ratio smaller
 Run low E' settings in one HRS, high E' in other

New Instruments and/or Upgrades

- Compton polarimeter: will use green laser (in progress); expect to achieve $\Delta P_b/P_b =$ 1.1% for electron analysis method.
- 25-cm long racetrack-shaped LH2/LD2 cells as for E05-007 (PV-DIS), 2.5 gm/cm² C target (as used in Hall C).
- FADC-based and scaler-based fast counting DAQs, both being developed by the PV-DIS collaboration.

PROJECTED ERRORS

Relative error of 4% to 9% per bin if use 16 bins in W **Local duality (3 resonance** regions) tested at 4% level: comparable to F_2 and g_1 Global duality (whole region) tested at 3% level: also comparable to F_2 and g_1 **Ratio of proton/deuteron** (d/u) and C/deuteron (EMC effect) tested to 3% level (compared to >10% nuclear effects in F₂)

SYSTEMATIC ERRORS

Source	δΑ/Α
Beam Polarization	0.012
Kinematic determination of Q ²	0.009
DAQ deadtime and pile-up effects	0.003
Electromagnetic radiative corrections	0.008
Beam asymmetry	0.005
Pion contamination	0.005
Pair symmetric background	0.002
Target purity and density fluctuations	0.002
Pole-tip background	0.001
Total	0.018

Error on target ratios small, about 1%

REQUEST

E	Target	P HRS-L,R	time
4.8 GeV	LH2	4.0, 3.2 GeV	5 days
4.8 GeV	LH2	3.6, 2.8 GeV	4 days
4.8 GeV	LD2	4.0, 3.2 GeV	4 days
4.8 GeV	LD2	3.6, 2.8 GeV	4 days
4.8 GeV	С	4.0, 3.2 GeV	6 days
4.8 GeV	С	3.6, 2.8 GeV	6 days
Pass Change from E05-007			8 hours
Polarization measurements			8 hours
e ⁺ asymmetry			8 hours
Total			30 days

REQUEST (continued)

Electronics same as E05-007

Compton polarimeter as for E05-007

High beam polarization, moderately good beam stability and charge asymmetry (less stringent than Happex or G0)

COLLABORATION

Experience in PV (E158, Happex, G0) 3 young, enthusiastic co-spokespersons

P. E. Bosted (spokesperson), E. Chudakov, V. Dharmawardane (co-spokesperson), A. Duer, R. Ent, D. Gaskell, J. Gomez, X. Jiang, M. Jones, R. Michaels, B. Reitz, J. Roche, B. Wojtsekhowski Jefferson Lab, Newport News, VA J. Arrington (co-spokesperson), K. Hafidi, R. Holt, H. Jackson, D. Potterveld, P. E. Reimer, X. Zheng (co-spokesperson) Argonne National Lab, Argonne, IL W. Boeglin, P Markowitz Florida International University, Miami, FL C Keppel Hampton University, Hampton VA E. Hungerford University of Houston, Houston, TX G. Niculescu, I Niculescu James Madison University, Harrisonburg, VA T. Forest, N. Simicevic, S. Wells Louisiana Tech University, Ruston, LA

E. J. Beise, F. Benmokhtar University of Maryland, College Park, MD K. Kumar, K. Paschke University of Massachusetts, Amherst, MA F. R. Wesselmann Norfolk State University, Norfolk, VA Y. Liang, A. Opper Ohio University, Athens, OH P. Decowski Smith College, Northampton, MA R. Holmes, P. Souder University of Syracuse, Syracuse, NY S. Connell, M. Dalton University of Witwatersrand, Johannesburg, South Africa R. Asaturyan, H. Mkrtchyan (co-spokesperson), T. Navasardyan, V. Tadevosyan Yerevan Physics Institute, Yerven, Armenia And the Hall A Collaboration

SUMMARY

□First weak current measurements in full resonance region. Surprises possible.

□Measure A_p , A_d , and A_C for M < W < 2.2 GeV and $<Q^2> = 0.8 \text{ GeV}^2$

Emphasizes d-quark contributions, improves isospin separation

■New regime for study of duality, higher twist effects, and EMC effect

SUMMARY (continued)

Needed to constrain models, which in turn are used for neutrino oscillation studies, backgrounds to experiments like Moller scattering, radiative corrections for DIS-parity experiments.

□Relatively easy (for PV) experiment using same equipment as E05-007.

Can only be done at JLab

BACKUP SLIDES

HALL A vrs C

Pro: better W resolution possible due to HRS optics (more momentum dispersion) Pro: PV-DIS electronics allows clean electron PID, pion rejection Pro: lower overhead due to common effort with approved PV-DIS Con: need about 30% more running time due to lower acceptance and HRS maximum momenta limitations

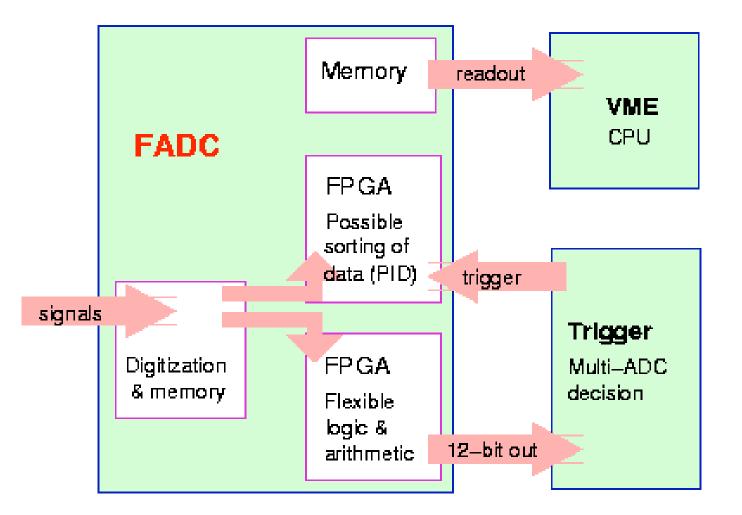
Background in Moller Scattering

- SLAC E158 measured PV in Moller scattering, found 20% +/- 4% background correction from low Q² ep inelastic scattering (mostly resonance region)
- Res-PV will constrain models used to better estimate the background in a future extension of E158 aiming at 2% to 3% using 11 GeV at JLab (with 1.5 m long target as in E158)

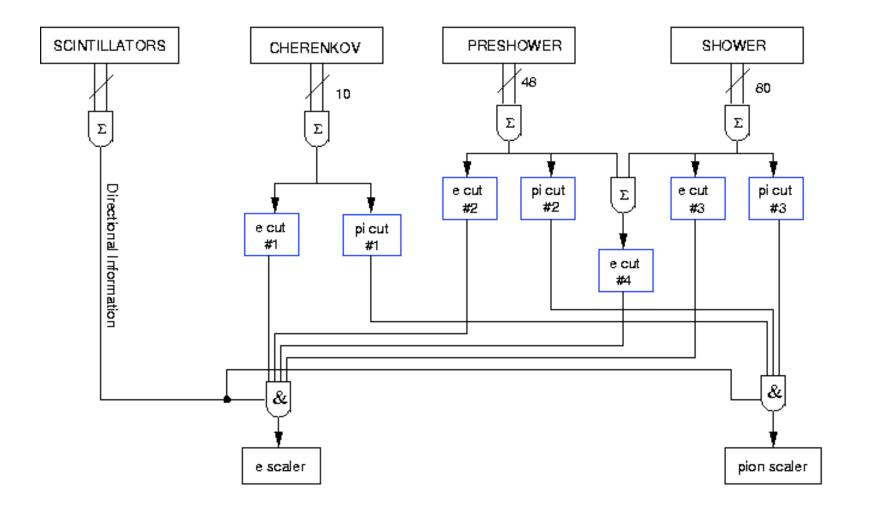
RELATION TO E05-007

- Complementary: lower W and Q²
- Study HT lower Q² near W=2 GeV, effects bigger
- Three nuclei studied instead of one
- Information needed for precision DIS-Parity to accurately calculate radiative corrections and constrain HT.

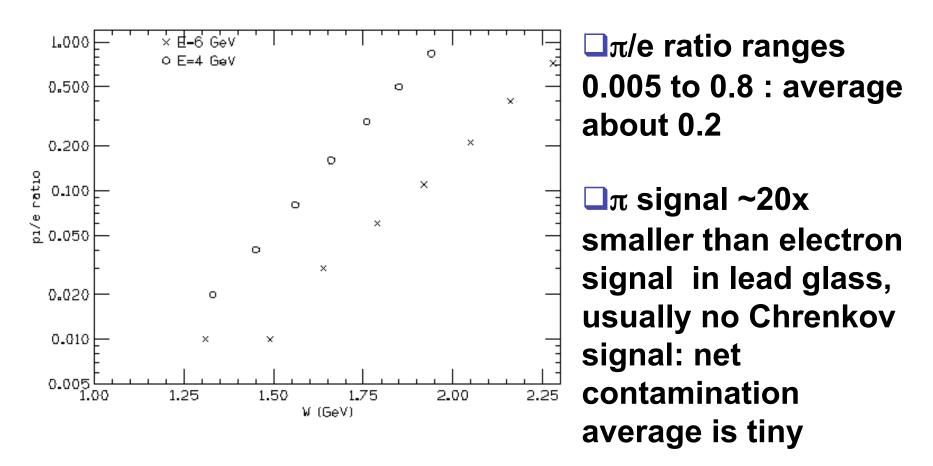
RELATION TO G0


- Limited to Delta region (W<1.25 GeV)
- Lower Q² (0.2 to 0.6 GeV2)
- Only on proton target
- Backward angle to emphasize sensitivity to axial form factor

DAQ: Comparison of two methods


- FADC-based:
 - Is what we eventually need (12 GeV program)
 - Full event sampling at low rate for detailed off-line analysis;
 - Being developed by Jlab electronics group.
- Scaler-based:
 - Similar to previous SLAC, and current Hall C scalers;
 - Straightforward to set up;
 - Only scaler info is recorded (on-line PID critical).

FADC-based Fast Counting DAQ


250 MHz, 2 usec latency, 1 MHz on-board analysis, 0.1% DT measurement

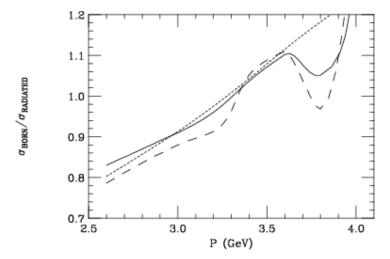
Scaler Electronics-based Fast Counting DAQ

Pion Background

Pion asymmetry will be measured with very high precision with both the scalar and FADC electronics

Kinematic Determination of Q²

□dA/A proportional to dQ²/Q²


□From standard HRS uncertainties of θ and in E', central Q² determined to 0.5%

□Uncertainties in target, beam, collimater and quadrupole positions increase uncertainty in measured Q² to 0.9%

□Will be checked using normal counting mode (with tracking) at low beam current. Elastic peak positions

RADIATIVE CORRECTIONS

Un-radiated to radiated spin averaged cross section

Determined by the x, Q^2 dependence of F_2

The ratio of radiated to un-radiated *ed* parity violating asymmetry (R_p) is close to unity. Shape and magnitude of R_p determined by the probability for an electron to radiate a hard photon. PV corrections under study (Zhu and Ramsey Musolf)
 Radiative corrections for A_p will be determined by an iterative fit to the data of this proposal

•systematic error in $A_p < 1\%$