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Motivation

To map the neutron distribution in nuclei ... and much more!

e The distribution of protons in nuclei has been exquisitely mapped via elastic
electron scattering; photons are insensitive to the ground-state neutron distri-
bution.

e Mapping the neutron distribution with hadronic probes (protons, neutrons,
pions) is possible; yet the model-independent extraction (i.e., separating the
nuclear structure from the reaction dynamics) is difficult.

e Constraining the neutron distribution from theoretical modeling is hindered
by an incomplete nuclear “database”. Effective-theory models that reproduce
a myriad of bulk properties of finite nuclei (such as binding energies and charge
radii) predict neutron skins in 2®Pb ranging from R, — R, =~ 0.1 fm up to
R,—R,~ 0.3 fm.

e The neutral weak vector boson Zj; does for neutrons what photons do for
protons. Expect a 1% determination of the neutron radius in 2°®Pb from parity-
violating electron scattering at JLAB.

Such a determination will have far reaching consequences in
many areas of physics, ranging from nuclear structure to as-
trophysics ...
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How NOT to: Proton-Nucleus Scattering
Florida State
University Protons are strongly interacting probes!

e Theoretical uncertainties in the reaction mechanism
* No such thing as a one-photon-exchange approximation

e Nucleus provides an Optical Potential for the proton
* NN interaction folded with prescribed nuclear densities

MOTIVATION
HOW? . . . 5 . c
e Assume impulse approximation for the NN interaction
WHY? o o g g . . . .
* This ignores possible medium-modification to the interaction
WHEN?
CONCLUSIONS

e NN interaction mostly isoscalar at medium-energies
* This is the region where impulse approximation is “valid”

Z N N AR
_ 2 2~
Ro = ARp+ARn Rp<1+ARp>

AR
[5.46 1+0.23 (021)] o (5.57 _ 5.79)fm .

L

Page 4 of 21

KUK 3
Full Screen The large (factor of 3) spread in the neutron skin among the

Print various models gets diluted into a mere 3% difference in the
Close (isoscalar) matter radius ...

1}

Quit



Theoretical Uncertainties in the Extraction

Florida State Unphysical dependence of the neutron skin on beam enerqgy!
University
0 Ray and Hoffmann [PRC 31, 538 (1985)]
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FIG. 10. Same as Fig. 8 except that the °°Pb results are
shown. The theoretical value of 0.13 fm (Ref. 39) is indicated
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Insensitivity to the Neutron Skin

Florida State [J.P. and S.W. Weppner; nucl-th/0509019]

Unwversity . . . . .
Proton scattering at medium energies probes isoscalar density!
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How to: Parity Radius Experiment
[Horowitz, Pollock, Souder, and Michaels; PRC63, 025501 (2001)]

JLAB Experiment 00-003 (Michaels, Souder, Urciuoli)
A clean (1%) measurement of the neutron skin of ***Pb
through parity-violating electron scattering

P-ReX

electron

Y: Zo

Nucleon

Particle EM coupling Weak-Vector coupling
up-quark +2/3 +1 — 4sin® 0, (4+2/3) ~ +1/3
down-quark —1/3 —1 —4sin? 0, (—1/3) ~ —2/3
proton +1 +1 — 4sin% 6y, ~ 0
neutron 0 =1l

g\]: = 2Tzf — 4sin? 6,Q7,

sin? 0y ~ 0.231 ~ 1/4



Clean Extraction of the Neutron Radius

Florida State [Horowitz, Pollock, Souder, and Michaels; PRC63, 025501 (2001)]
University
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e PV asymmetry provides a clean measurement of the neutron form factor
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Nuclear Structure

After more than 70 years, the neutron density of a heavy nucleus

Florida State ' ' ,
s a fundamental nuclear-structure observable that remains elusive!

University
e As fundamental as the charge density of a heavy nucleus
* ¢f. proton and neutron electromagnetic structure
e Reflects a poor understanding of the symmetry energy of NM
* Symmetry energy penalty imposed for breaking N =2 balance
OTIVATION e Pure neutron matter well constrained at p~(2/3)po
How? e Slope is completely unconstrained by available nuclear data!
WHY? 5 ——
TR | B.A. Brown [PRL 85, 5296 (2000)]
CONCLUSIONS or 7
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filled circles are the Friedman-Pandharipande (FP) variational
Full Screen calculations and the crosses are SkX. The neutron density is in
units of neutron/fm?.
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Neutron Skin and the Symmetry Energy

Symmetry energy: penalty levied on the system for upsetting the N = Z

Florida State . S
oruaa Htate balance. Expand the binding energy around b=(N — Z)/A=0:
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Neutron Skin and Heavy-Ion Collisions

Florida State [Danielewicz, Lacey, and Lynch; Science 298, 1592 (2002)]
University
Nuclear Collisions: Constraints and Predictions

e Sole terrestrial tool available to compress nuclear matter
e Compressions up to several (five) times nuclear saturation density
e Imprint of the EoS left in the flow and fragment distribution
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Neutron Skin and Atomic Parity Violation
Measure E1 transition among (e.g., 6s and 7s) electronic states

Apv(N, 2) = §(2)Qw(N, 2) = £(2) | @'V, 2) + QY P (N, 2)]

e {(Z) = uncertainty in atomic structure:

* measure amplitude ratios along stable isotopes chains (Ba, Dy, Yb)
e AQy, ’(N, Z) = uncertainty in nuclear structure:

* Nuclear structure remains the sole theoretical uncertainty!
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Neutron Skin and Neutron Stars

(Nuclear Astrophysics at Jefferson Lab)

The neutron skin of *°® Pb and the crust of a neutron star are made up of
similar material: neutron-rich matter at (slightly) subnuclear densities

e Neutron stars contain a solid crust above a uniform liquid mantle
e The stiffer the EOS the lower the transition to non-uniform matter

* Energetically unfavorable to separate into low- and high-density regions
e The stiffer the EOS the larger the neutron skin of a heavy nucleus

A NEUTRON STAR: SURFACE and INTERIOR
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A powerful data-to-data relation: The thicker the neutron skin
of a heavy nucleus, the lower the transition density from uniform
to non-uniform neutron-rich matter ...



Neutron Skin and Neutron-Star Radii

Is there a correlation between the neutron skin of 2° Pb and the radius of
a “canonical” 1.4Ms neutron star?

Florida State
e Study isolated radio-quiet neutron stars

University A )
e Study low-mass x-ray binaries in quiescence
e Study their black-body spectra and atmospheric data
e Several good candidates for radius measurements
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Have we Discovered Quark Stars?

e [s the isolated neutron star RX J1856 too small?
e [s the pulsar in supernova remanent 3C58 too cold?

Florida State

Unwversity T
Ligsy
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& NASA News Release
" 2 National Asronautics and Marshall Space Flight Center - Huntsville, Ala. 35812
Space Administration Inttp:ifwww msfc nasa govinews
For Release: April 10, 2002
Release: 0Z-03Z
Cosmic X-rays reveal evidence for new form of
MOTIVATION matter
HoOw? MASA's Chandra X-ray Observatory has found two stars - one too small,
ane too cald - that reveal cracks in our understanding of the structure of
WHY? matter. These discoveries open a new window on nuclear physics, offering
: a link between the vast cosmos and its tiniest constituents
WHEN? Chandra?s abservations of R¥J1856.5-3754 and 3058 suggest that the
matter in these stars is even denser than nuclear matter found on Earth.
CONCLUSIONS This raises the possibility these stars are composed of pure guarks or

contain crystals of sub-nuclear particles that normally have only a fleeting
existence following high-energy collisions.

By comhbining Chandra and Hubble Space Telescope data, astronomers
found that Rx.J 1656 radiates like 3 solid body with a temperature of 1.2
million degrees Fahrenheit (700,000 degrees Celsiug) and has a diameter
of about 7 miles (11.3 kilometers). This size is too small to recancile with
standard models for neutran stars - until now the most extreme form of
matter known
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Reports on the Temperature of 3C58

Florida State . . .
University e 3C5H8 witnessed by Chinese and Japanese in 1181

e Accurate age of about 825 years

e Neutron stars are born hot

e Cool promptly by v-emission (URCA)

e Surface temperature today suggests 7'<10% K
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Neutron Skin and Neutron-Star Cooling

Enhanced (DURCA) cooling of non-exotic stars?

e Core-collapse Supernovae generates proto-neutron star (Teore =~ 1012K)
e Direct URCA process cools down the star until (Teore ~ 109K)

e Depending on the EoS [or R, (2%Pb)] direct URCA may continue
* Is Y}, large enough to conserve momentum?

e Best case for DUrca (soft-stiff):
* Soft EoS for symmetric matter — large p.
* Stiff symmetry energy — large Y,

Direct URCA process: DR T

&
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Conclusions
The widespread impact of one single number: R, (***Pb)

e On the structure of neutron-rich nuclei

e On the structure of neutron-rich matter
e On the dynamics of heavy-ion collisions
e On the atomic-parity-violating program
e On the EOS of neutron-rich matter

e On the size of neutron stars

e On the cooling of neutron stars

e On the existence of quark stars

Model | K (MeV) | J (MeV) | L (MeV) | R,— R, (fm)
NL3 271 37.4 118.5 0.28
FSUGold 230 32.6 60.5 0.21
‘ Neutron-Star Observable ‘ NL3 ‘ FSUGold ‘

pe (fm=3) 0.052 | 0.076

R (km) 15.05 | 12.66

Mmax(Mg) 2.78 1.72

Pires (fm™3) 0.21 0.47

Murea(Mg) 0.84 1.30

AMuyrca 0.38 0.06

JLAB measurement will have strong impact on MSU, RIA, GSI,
RIKEN, HST, Chandra, XMM-Newton, etc. Need strong com-
munity support (which exists in part) to get this crucial JLAB
experiment off the ground!



