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The Quest for the Neutron Radius of Lead:
How, Why, and When

Jorge Piekarewicz
with B.G. Todd-Rutel and C.J. Horowitz

Florida State University
Tallahassee, Florida, USA

Jefferson Laboratory (December 6, 2005)
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Motivation

To map the neutron distribution in nuclei ... and much more!

• The distribution of protons in nuclei has been exquisitely mapped via elastic
electron scattering; photons are insensitive to the ground-state neutron distri-
bution.

• Mapping the neutron distribution with hadronic probes (protons, neutrons,
pions) is possible; yet the model-independent extraction (i.e., separating the
nuclear structure from the reaction dynamics) is difficult.

• Constraining the neutron distribution from theoretical modeling is hindered
by an incomplete nuclear “database”. Effective-theory models that reproduce
a myriad of bulk properties of finite nuclei (such as binding energies and charge
radii) predict neutron skins in 208Pb ranging from Rn−Rp ≈ 0.1 fm up to
Rn−Rp≈ 0.3 fm.

• The neutral weak vector boson Z0 does for neutrons what photons do for
protons. Expect a 1% determination of the neutron radius in 208Pb from parity-
violating electron scattering at JLAB.

Such a determination will have far reaching consequences in
many areas of physics, ranging from nuclear structure to as-
trophysics ...
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How NOT to: Proton-Nucleus Scattering

Protons are strongly interacting probes!

• Theoretical uncertainties in the reaction mechanism
? No such thing as a one-photon-exchange approximation

• Nucleus provides an Optical Potential for the proton
? NN interaction folded with prescribed nuclear densities

• Assume impulse approximation for the NN interaction
? This ignores possible medium-modification to the interaction

• NN interaction mostly isoscalar at medium-energies
? This is the region where impulse approximation is “valid”

R0 =

√
Z

A
R 2

p +
N

A
R 2

n ≈ Rp

(
1 +

N

A

∆R

Rp

)
≈

[
5.46 + 0.23

(
∆R

0.21

)]
fm '

(
5.57− 5.79

)
fm .

The large (factor of 3) spread in the neutron skin among the
various models gets diluted into a mere 3% difference in the
(isoscalar) matter radius ...
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Theoretical Uncertainties in the Extraction

Unphysical dependence of the neutron skin on beam energy!
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Insensitivity to the Neutron Skin
[J.P. and S.W. Weppner; nucl-th/0509019]

Proton scattering at medium energies probes isoscalar density!
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How to: Parity Radius Experiment
[Horowitz, Pollock, Souder, and Michaels; PRC63, 025501 (2001)]

JLAB Experiment 00-003 (Michaels, Souder, Urciuoli)
A clean (1%) measurement of the neutron skin of 208Pb
through parity-violating electron scattering

0Z

electron

γ,

Nucleon

Particle EM coupling Weak-Vector coupling
up-quark +2/3 +1− 4 sin2 θw(+2/3) ' +1/3

down-quark −1/3 −1− 4 sin2 θw(−1/3) ' −2/3
proton +1 +1− 4 sin2 θw ' 0
neutron 0 −1

gf
v = 2T f

z − 4 sin2 θwQf , sin2 θw ≈ 0.231 ' 1/4
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Clean Extraction of the Neutron Radius
[Horowitz, Pollock, Souder, and Michaels; PRC63, 025501 (2001)]

0Z

electron

γ,

Nucleon

• PV asymmetry involves the interference of EM and NC amplitudes:

MEM =
4πα

Q2
FEM(Q2) =

4πα

Q2
Fp(Q2)

MNC =
GF√

2
FNC(Q2) =

GF√
2

[
(1−4 sin2 θW )Fp(Q2)− Fn(Q2)

]
• PV asymmetry provides a clean measurement of the neutron form factor

APV ≈
GFQ2

4πα
√

2
Fn(Q2)
Fp(Q2)

;
1
N

Fn(Q2) =
(

1− Q2R2
n

6
+ . . .

)

PV electron scattering may do for neutron structure what
electron scattering has done for proton structure!
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Nuclear Structure

After more than 70 years, the neutron density of a heavy nucleus
is a fundamental nuclear-structure observable that remains elusive!

• As fundamental as the charge density of a heavy nucleus
? cf. proton and neutron electromagnetic structure
• Reflects a poor understanding of the symmetry energy of NM
? Symmetry energy penalty imposed for breaking N =Z balance

• Pure neutron matter well constrained at ρ≈(2/3)ρ0

• Slope is completely unconstrained by available nuclear data!

Adding the neutron radius of a single heavy nucleus to the
database will eliminate the large dispersion in the plot!
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Neutron Skin and the Symmetry Energy

Symmetry energy: penalty levied on the system for upsetting the N = Z
balance. Expand the binding energy around b≡(N − Z)/A=0:

B/A(kF, b) = B/A(kF, b=0) + b

(
∂B/A

∂b

)
b=0︸ ︷︷ ︸

0

+b2 1

2

(
∂2B/A

∂b2

)
b=0︸ ︷︷ ︸

S/A

+ . . .

PNM ≈ SNM + Symmetry Energy!

Slope of PNM (pressure) pushes neutrons out
against surface tension ⇒ neutron skin
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Neutron Skin and Heavy-Ion Collisions
[Danielewicz, Lacey, and Lynch; Science 298, 1592 (2002)]

Nuclear Collisions: Constraints and Predictions

• Sole terrestrial tool available to compress nuclear matter
• Compressions up to several (five) times nuclear saturation density
• Imprint of the EoS left in the flow and fragment distribution

Knowledge of the neutron radius of a single heavy
nucleus will eliminate the dispersion in the plot!
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Neutron Skin and Atomic Parity Violation

Measure E1 transition among (e.g., 6s and 7s) electronic states

APV(N,Z) = ξ(Z)QW (N,Z) ≡ ξ(Z)
[
QSM

W (N,Z) + ∆Qn−p
W (N,Z)

]
• ξ(Z)⇒ uncertainty in atomic structure:
? measure amplitude ratios along stable isotopes chains (Ba, Dy, Yb)
• ∆Qn−p

W (N,Z)⇒ uncertainty in nuclear structure:
? Nuclear structure remains the sole theoretical uncertainty!

∆Qn−p
W (N,Z) = N

(
1− qn

qp

)
qn = 1− (Zα)2

[
817
3150

+
232
525

(Rn−Rp)
Rp

+ . . .

]
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Neutron Skin and Neutron Stars
(Nuclear Astrophysics at Jefferson Lab)

The neutron skin of 208Pb and the crust of a neutron star are made up of
similar material: neutron-rich matter at (slightly) subnuclear densities

• Neutron stars contain a solid crust above a uniform liquid mantle
• The stiffer the EOS the lower the transition to non-uniform matter
? Energetically unfavorable to separate into low- and high-density regions
• The stiffer the EOS the larger the neutron skin of a heavy nucleus
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A powerful data-to-data relation

R
n
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p
=0.20 fm

A powerful data-to-data relation: The thicker the neutron skin
of a heavy nucleus, the lower the transition density from uniform
to non-uniform neutron-rich matter ...
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Neutron Skin and Neutron-Star Radii

Is there a correlation between the neutron skin of 208Pb and the radius of
a “canonical” 1.4M� neutron star?

• Study isolated radio-quiet neutron stars
• Study low-mass x-ray binaries in quiescence
• Study their black-body spectra and atmospheric data
• Several good candidates for radius measurements

• However, NOT a data-to-data relation:
? Neutron skin of 208Pb depends on the EOS at subnuclear densities
? Radius of N.S. also sensitive to the high-density EOS
• The thinner the skin of a heavy nucleus, the thinner the radius of the star

Large neutron skin together with a small neutron-star radius,
could provide strong signature in favor of a phase transition!
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Have we Discovered Quark Stars?
• Is the isolated neutron star RX J1856 too small?
• Is the pulsar in supernova remanent 3C58 too cold?
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Reports on the Temperature of 3C58

• 3C58 witnessed by Chinese and Japanese in 1181
• Accurate age of about 825 years
• Neutron stars are born hot
• Cool promptly by ν-emission (URCA)
• Surface temperature today suggests T ≤106 K

Conventional cooling scenarios predict a much hotter star!!
It was named Urca Process for the following: in Rio de Janeiro, we (Schenberg) went gambling at the Urca Casino,
and Gamow was impressed by the roulette table where money just disappeared. Very gaily, he said: ”well, the energy

disappears in the nucleus of the supernova as quickly as the money disappeared at that roulette table”.
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Neutron Skin and Neutron-Star Cooling

Enhanced (DURCA) cooling of non-exotic stars?
• Core-collapse Supernovae generates proto-neutron star (Tcore'1012K)

• Direct URCA process cools down the star until (Tcore'109K)

• Depending on the EoS [or Rn(208Pb)] direct URCA may continue
? Is Yp large enough to conserve momentum?

• Best case for DUrca (soft-stiff):
? Soft EoS for symmetric matter → large ρc

? Stiff symmetry energy → large Yp

Direct URCA process:
a) n→ p + e− + ν̄e

b) p + e− → n + νe

may continue cooling the neutron star if
proton fraction is large enough! FSUG-
old predicts that the pulsar in 3C58
does NOT need to be an exotic (quark)
star provided Rn−Rp≤0.21 fm.
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Conclusions
The widespread impact of one single number: Rn(208Pb)

• On the structure of neutron-rich nuclei
• On the structure of neutron-rich matter
• On the dynamics of heavy-ion collisions
• On the atomic-parity-violating program
• On the EOS of neutron-rich matter
• On the size of neutron stars
• On the cooling of neutron stars
• On the existence of quark stars

Model K (MeV) J (MeV) L (MeV) Rn−Rp (fm)
NL3 271 37.4 118.5 0.28

FSUGold 230 32.6 60.5 0.21

Neutron-Star Observable NL3 FSUGold
ρc (fm−3) 0.052 0.076
R (km) 15.05 12.66

Mmax(M�) 2.78 1.72
ρUrca (fm−3) 0.21 0.47
MUrca(M�) 0.84 1.30

∆MUrca 0.38 0.06

JLAB measurement will have strong impact on MSU, RIA, GSI,
RIKEN, HST, Chandra, XMM-Newton, etc. Need strong com-
munity support (which exists in part) to get this crucial JLAB
experiment off the ground!


