Outline

Møller Polarimeter Upgrade

E.Chudakov¹ for Hall A Møller group

¹Hall A, JLab

For Hall A collaboration meeting, June 2006

Outline

Outline

Current Status

In 2005-2006 many measurements have been done with several foils. Analysis is in progress.

he goal for the systematic error			
Variable		Error	
	OLD	Present	
Target polariza	ation 3.5%	2.0%	
Target angle	0.5%	0.5%	
Analyzing pow	ver 0.3%	0.3%	
Levchuk effect	t 0.2%	0.2%	
Dead time	0.3%	0.3%	
Total	3.6%	2.1%	

Proposal for PREX

Requirement for the systematic error: \sim 1% at 850 MeV, 50 μ A

Hall C Møller, present

- Foil at 90°, saturated at $4 \text{ T} \Rightarrow \sigma \mathcal{P}_T = 0.3\%$
- Beam current $< 5\mu A$

Hall C Møller upgrade

- Round foil ⇒ a band
- Fast beam kicker $\sim 2 \text{ mm}$ deflection
- Beam current $> 50 \mu A$

Proposed Hall A upgrade

- Hall C target clone, using the spare Hall C magnet
- Round target foil \sim 1 μ m thick
- Pulsed beam, >1 ms per pulse, at 30 Hz
- Fast raster
- Detector/electronics upgrade

Systematics <1%

Problems

Restrictions for high beam current

- Foil heating should $\Delta T < 50 \text{K}$
- Counting rates should not be much higher than now

Target heating

Target heating with the real raster

Conditions

Beam 50 μ A, $\sigma_X \sim$ 30 μ m, 1 ms pulses at 30 Hz Raster $\sim 1.4 \times 1.4 \text{ mm}^2$, 25×24 kHz

Results

- In pulse $\Delta T_{max} \sim 12$ K
- Average, by 30 Hz $\Delta T_{max} \sim$ 12 K
- Total $\Delta T_{max} \sim$ 24 K acceptable!

Issues

Beam optics for this raster

Counting rates

Instantaneous rates

	OLD	NEW
Beam current	0.3 μ A	50 µA
Target thickness	12 μ m/sin 20 $^\circ$	1 μ m
Ap.counter's rate	2 MHz	$(imes 4.75) \sim 7.5 \text{ MHz}$

Modifications

- Close the collimator: single rates $\times 0.5$, coincidence $\times 0.3$
- Electronics upgrade: pulses 8 ns \Rightarrow 3.5 ns

Statistical accuracy

Duty cycle 3% \Rightarrow 1% in \sim 30 min

Project summary

Target

- Build a new target chamber for the coils and the target
- Build the cryo supply system
- Build a movable frame for the target foils

Detector, electronics

- New aperture counters
- Discriminator \Rightarrow 300 MHz NIM, add remote controls
- New PLU
- Coincidence units \Rightarrow 250 MHz NIM

Beam line

- Find the optimal optics for the raster
- Additional correctors?