

E03-104 Probing the Limits of the Standard Model of Nuclear Physics with the ${}^{4}\text{He}(\vec{e},e'\vec{p}){}^{3}\text{H}$ Reaction

Steffen Strauch for the Hall A Collaboration

Student: Michael Paolone, ... Spokespeople: R. Ent, R. Ransome, S. Strauch, P. Ulmer

Hall A Collaboration Meeting, 22-23 June 2006

Nucleon in the Nuclear Medium

QCD vs. conventional Nuclear Physics

- Underlying theory: QCD
 - Nucleons and mesons are not the fundamental entities
 - In the chiral limit, phase transition to quark-gluon plasma
- Conventional Nuclear Physics:

Nuclei are effectively and well described as

- point-like protons and neutrons
- interaction through effective forces (meson exchange)
- Nuclear Mass

$$M_A \approx \left[NM_N + ZM_P \right] (1 - 0.01)$$

P.A.M. Guichon and A.W. Thomas, Phys. Rev. Lett. 93, 132502 (2004)

Interpretation of the EMC Effect

• $R(x,Q^2) = F_2^A / AF_2^N$: Depletion of the nuclear structure function $F_2^A(x)$ in the valence-quark regime $0.3 \le x \le 0.8$ (1983)

- Conventional nuclear physics does not explain EMC effect
 Nucleon structure is modified in the nuclear medium [G. Miller]
- E.g., chiral quark-soliton model of the nucleon

SLAC-E139 data for Iron and Gold; Figure from Jason R. Smith and Gerald A. Miller, Phys. Rev. Lett. **91**, 212301 (2003)

Polarization-Transfer Technique

• Free electron-nucleon scattering

$$\frac{G_E}{G_M} = -\frac{P'_x}{P'_z} \cdot \frac{\left(E_i + E_f\right)}{2m} \tan\left(\frac{\theta_e}{2}\right)$$

- Bound nucleons → evaluation within model
- Reaction mechanism effects in A(e,e'p)B predicted to be small and minimal for
 - Quasielastic scattering
 - Low missing momentum
 - Symmetry about $p_m = 0$

[1] R. Arnold, C. Carlson, and F. Gross, Phys. Rev. C 23, 363 (1981).
[2] E.g. J.M. Laget, Nucl. Phys. A 579, 333 (1994), J.J. Kelly, Phys. Rev. C 59, 3256 (1999), A. Meucci, C. Guisti, and F.D. Pacati, Phys. Rev. C 66, 034610 (2002).

Proton Polarization in ${}^{4}\text{He}(\vec{e},e'\vec{p}){}^{3}$

- MAMI and JLab: Q² = 0.4, 0.5, 1.0, and 2.6 (GeV/c)²
- Low missing momentum, quasielastic scattering

- Polarization-transfer ratio P'_x/P'_z: sensitive to G_E/G_M
- Induced polarization P_v: sensitive to Final-State Interactions (FSI)

S. Dieterich, et al., Phys. Lett. B500, 47 (2001);

S. Strauch et al., Phys. Rev. Lett. 91, 052301 (2003)

4 He(\vec{e} ,e' \vec{p}) 3 H - Polarization-Transfer Ratio

$R = \left(P_x' / P_z' \right)_{He} / \left(P_x' / P_z' \right)_H$

Optical potential vs. Glauber approximation to describe FSI

RDWIA: J.M. Udias *et al.*, Phys. Rev. Lett. **83**, 5451 (1999); RMSGA: P. Lava, J. Ryckebusch, B. Van Overmeire, and S. Strauch, Phys. Rev. C **71**, 014605 (2005)

Induced Polarization

- Final-state interactions are small
- RDWIA results consistent with data

In-Medium Nucleon Form Factor

- Quark meson coupling model
- Chiral quark-soliton model
- Modified Skyrme model
- Form-factor ratio suppressed as density increases
- Calculations in agreement with existing experimental limits on medium modifications

QMC: D. H. Lu *et al.*, Phys. Rev. C. **60**, 068201 (1999) CQSM: J. R. Smith and G. A. Miller, Phys. Rev. Lett. **91**, 212301 (2003) Skyrme: U. Yakhshiev, U. Meißner, A. Wirzba, Eur. Phys. J. A **16**, 569 (2003)

Polarization-Transfer Double Ratio

- Data effectively described by proton medium modifications
- In-medium form factors reduce double ratio by $\approx 6\%$ at 1 GeV²/c²

Is the Ratio G_{Ep}/G_{Mp} Modified in the Nuclear Medium?

- Accurate bound-state wave function
- Realistic model for the nuclear electromagnetic current operator
- Treatment of final-state interactions with an optical potential
- Charge-exchange components in the optical potential crucial.

R. Schiavilla, et al., Phys. Rev. Lett. 94, 072303 (2005); Results given for a single kinematical point.

Induced Polarization

R. Schiavilla, et al., Phys. Rev. Lett. 94, 072303 (2005)

Effect of acceptance average: +0.5% for R, -40% for P_y

- Are the (unconstrained) charge-exchange FSI overestimated? (P_v ≈ -0.08)
- A reduction of CH-EX effects would no longer give a good description of the polarizationtransfer ratio.

Induced Polarization

- Far more detailed investigation possible with upcoming experiment:
 - angular distribution
 - missing momentum distribution
 - response functions
- Tightly constrain FSI

Understanding False Asymmetries

- E93-049: σ_{Syst}(P_y) = 0.02
- Sources of false asymmetries
 - misalignment
 - detector inefficiencies
 - detector acceptance (cone-test)
- Data needed to understand and correct for false asymmetries:
 - ${}^{1}H(e,e'p)$
 - 4 He(e,e'p)
 - ¹H(e, π) : possible option

E03-104: Run Plan

Q ² (GeV ² /c ²)	Run Plan	Time (d)
0.8	He, H Production	5
1.3	He, H Production	10
	False Asymmetry studies and Overhead	3
	Total	18

- Schedule: October 3 November 12, 2006
- New 10-cm ¹H and ⁴He target cells

E03-104: Projected Results

New data on polarization-transfer ratio and induced polarization could put conventional model of nuclear physics to rigorous test.

Summary

• Present ⁴He(e,e'p) recoil-polarization data

Polarization transfer

Significant deviation from RDWIA and most microscopic results; effectively described by proton medium modifications; also described by large charge exchange FSI

- Induced polarization
 Crucial to constrain FSI
- Goals of upcoming experiment
 - Obtain high-precision data of polarization-transfer ratio, individual polarization-transfer observables, and induced polarization
 - Put conventional model of nuclear physics to its most rigorous test by providing significantly improved data for this reaction