E03-101: 3He(g,pp)n Hard pp photodisintegration

R Gilman, Eli Piasetzky and the Hall A Collaboration

- Introduction deuteron photo-disintegration review
- ³He photo-disintegration

Hall A Collaboration Meeting Jefferson Lab

January 2007

Is There a Quark-Hadron Transition in Exclusive Nuclear Reactions?

- Numerous studies: d,³He,⁴He(e,e'), d,³He,⁴He(e,e'p) in quasi-free kinematics, d(γ,p)n
 - Quark effects typically are subtle: theory based on NN force generally provides good explanation of data, various quark-based models do not help
- Exceptions: d(γ,p)n goes to high -t and high W, and there are several competing quark models

Recent Hall A Photodisintegration

- E00-007: X Jiang
 - Ran Oct 2002, paper distributed to collaboration
 - Angular distribution for recoil polarizations at 2 GeV
- E05-103: J Glister
 - Ran July-Sep 2006
 - Angular distribution for recoil polarizations at 280
 360 MeV, to see the start of the breakdown in hadronic calculations

Some Observables in d(y,p)n

• $d\sigma/d\Omega$, Σ , T, $C_{x'}$, p_{y} , $C_{z'}$

Hard Scattering Regime

- SLAC NE8, NE17
- JLab Hall C E89-012, E96-003
- Yerevan (Σ)

- Does pQCD apply?
 -> Is there a good quark model? Is
 - there a phase
 - transition?
- JLab Hall A E89-019 (C_x, p, C_z), E99-008
- JLab Hall B E93-017
- JLab Hall A E00-007 (C_{x'}, p_y, C_{z'}) (X. Jiang)
- JLab Hall B: ³He (S. Strauch)

90° Excitation Functions

- Cross sections fall by a factor of 30,000 from 1

 4 GeV, ~following
 `expected'' quark scaling, dσ/dt ~ s⁻¹¹
- Hadronic theories not satisfactory and not shown
- Most quark models normalized

The Quark Models

- QGS: Regge phenomenology to evaluate 3-quark exchange, justified by dominance of planar diagrams
- RNA, HRM, TQC, CQM: Photon absorbed and quarks exchanged; might be related to NN elastic scattering – all use hard scattering approximations

90° Excitation Functions

- Cross sections fall by factor of 1.2×10⁶ from 1
 - 6 GeV
- The onset of ~quark scaling, d σ /dt ~ s^{-11} , at each angle corresponds to p_{τ} ~ 1.1 GeV: P Rossi et al, PRL 94, 012301 (2005)

Σ Asymmetry

- HHC Hadron Helicty
 Conservation leads to
 Σ = -1
- Adamian *et al.* showed
 Σ heads away from
 HHC, with increasing
 energy
- Grishina et al. pointed out iso-vector (scalar) limit is Σ = 1 (-1)

Induced Polarization p

- Hadronic prediction, that D₁₃ + D₁₅ leads to large resonance peak, falsified
- HHC leads to p_y = 0, and p_y vanishes above 1 GeV
- HRM predicts p_y small,
 <0

Polarization Transfer

- Schwamb & Arenhövel prediction good at low energies
- C_x, small, but not vanishing, so no HHC
- Cannot rule out or strongly support HRM
 / QGS / approach to HHC

Hall A E00-007: X Jiang et al.

- E_v ~ 2 GeV
- $C_{z'}$ large at forward angles, like QGS + HR
- C_x and p_y cross 0 near
 90°: in HR, if isovector photon dominance, these ≈ φ₅, which vanishes at 90°
- Perhaps similar to Σ?

³He (pp) Disintegration

- Brodsky et al, PLB
 578, 69 (2003): ratio
 of pp to pn well
 determined in theory
- At low energy, σ(γpp)
 / σ(γpn) ~ 0.1: pp
 dipole moment
 vanishes: JM Laget
- Quark models predict larger ratio: slow 2nd order or fast 1st order phase transition?

³He (pp) a_n Distribution

 Light cone momentum fraction, a = (E-p_z)/m,

is conserved:

- $a_{y} + a_{He} = 0 + 3 = a_{p1} + a_{p2} + a_{n}$
- Soft FSI "do not" affect a, so a_n reflects neutron spectator wave function
- RNA short range/broad, HRM long range/narrow

 Model-independent check of long vs short range dynamics

³He (pp) Oscillations

- Prominent oscillations in pp cross section, as opposed to flatter pn cross section, reflected in oscillations in ypp, as opposed to flatter energy dependence in yd?
- To match s and t, compare 60° pp to 90° ypp

³He(y,pp)n Measured!

 Hall B experiment, analyzed by S.
 Strauch, GWU (now SC)

PRELIMINARY

³He(y,pp)n Neutron Spectator?

Is the neutron a spectator? Cut at 0.1 - 0.25 GeV/c

³He(y,pp)n Cross Sections

- Red: "γpp->pp", symmetric about
 90°
- Blue: $\gamma d \rightarrow pn \times \frac{1}{4}$, asymmetric about 90°
- Cross sections for γpp like backangle γd, near 1 GeV

³He(y,pp)n Cross Sections

10 -2

0

2

Photon Energy E, (GeV)

3

 Fint of a phase transition starting at 1.4 GeV -orperhaps QGS or TQC is the right approach?

4

³He(γ ,pp)n a_n Distribution

- Hard distribution from short-range physics, evidence for TQC?
- 1 GeV/c nucleons

 in c.m. are too low
 in energy: lots of
 rescattering
 broadens
 distribution

³He(y,pp)n: Hall A E03-101

- Can cleanly distinguish 1/10, 1/4, ... x deuteron disintegration cross section vs "phase transition"
- Scheduled for June (December?) 2007

Summary

- Hadronic d.o.f. describe few-body elastic and QF scattering well; going to high Q² is insufficient to guarantee large quark effects
- We know lots of details in yd -> pn it is clear that detailed models like those used at low energy do not, and cannot, work - but the underlying quark dynamics is unclear
- ³He photo-disintegration might sort out if any of the existing quark models represents the underlying physics