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GDH sum rule (Q?* = 0)

First derived in the mid-1960’s by Gerasimov and Drell & Hearn, the sum rule
for spin-I particles is based on the following modest yet robust arguments:
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GDH sum rule (Q?* = 0)

First derived in the mid-1960’s by Gerasimov and Drell & Hearn, the sum rule
for spin-I particles is based on the following modest yet robust arguments:

Cause precedes Effect
analyticity = dispersion relations
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GDH sum rule (Q?* = 0)

First derived in the mid-1960’s by Gerasimov and Drell & Hearn, the sum rule
for spin-I particles is based on the following modest yet robust arguments:

Cause precedes Effect
analyticity = dispersion relations

Conservation of Probability
unitarity = Optical Theorem
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GDH sum rule (Q? = 0)

First derived in the mid-1960’s by Gerasimov and Drell & Hearn, the sum rule
for spin-I particles is based on the following modest yet robust arguments:

Cause precedes Effect
analyticity = dispersion relations Special Relativity

Conservation of Charge

Lorentz & gauge

Conservation of Probability = Low Energy Theorem

unitarity = Optical Theorem nvariance /
\
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GDH sum rule (Q? = 0)

First derived in the mid-1960’s by Gerasimov and Drell & Hearn, the sum rule
for spin-I particles is based on the following modest yet robust arguments:

Cause precedes Effect
analyticity = dispersion relations Special Relativity

Conservation of Charge

Lorentz & gauge

Conservation of Probability = Low Energy Theorem

unitarity = Optical Theorem Hnvatiance /
\
= dv pleh  Z 13
o — = —2 2 en (2 —
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total particle m.m. \

point-like m.m. is the charge-to-mass ratio
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GDH sum rule (Q? = 0)

First derived in the mid-1960’s by Gerasimov and Drell & Hearn, the sum rule
for spin-I particles is based on the following modest yet robust arguments:

Cause precedes Effect
analyticity = dispersion relations Special Relativity

Conservation of Charge

Lorentz & gauge

Conservation of Probability = Low Energy Theorem

unitarity = Optical Theorem Hnvatiance /
\
= dv pleh  Z 13
o — = —2 2 en (2 —
[, )=o) W (2mg) | M —

total particle m.m. \

point-like m.m. is the charge-to-mass ratio

I;py = —233.16 ub for the Neutron
IGDH = —497.95 I,Lb for 3He
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Generalization for Q* >0 (I =1/2)

/00 K'(v, Q%
Vth K,(V, 0)

lzaTT + (0or1) (%) 2aLT] o —27% e M (Q?)
| 74




Generalization for Q* >0 (I =1/2)

LHS: Experimentally measureable via
polarized inclusive electron
scattering from a polarized target
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Generalization for Q* >0 (I =1/2)

LHS: Experimentally measureable via
polarized inclusive electron
scattering from a polarized target

/00 K'(v, Q%
Vth K,(V, O)

[20'TT + (0or1) <9> ZULT] d— = —27T2OéemM(Q2>
v
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Generalization for Q* >0 (I =1/2)

RHS: Calculable quantity

LHS: Experimentally measureable via using theoretical tools

polarized inclusive electron
scattering from a polarized target

/00 K'(v, Q%
Vth K,(V, O)

[20'TT + (0or1) <9> ZULT] d— = _27T2aemM(Q2>
v
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Generalization for Q* >0 (I =1/2)

RHS: Calculable quantity

LHS: Experimentally measureable via using theoretical tools

polarized inclusive electron
scattering from a polarized target

>° K,(V7 Q2) Q dV 2 2
/Vth K'(1,0) [20'TT + (0or1) (;) ZULT] — = —27m aemM(Q )

Low @? expansion of the elastic-
subtracted virtual forward
Compton amplitude:

(@) = G+ S
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Generalization for Q* >0 (I =1/2)

RHS: Calculable quantity

LHS: Experimentally measureable via using theoretical tools

polarized inclusive electron
scattering from a polarized target

>° K,(V7 Q2) Q dV 2 2
/Vth K'(1,0) [20'TT + (0or1) (;) ZULT] — = —27m aemM(Q )

Low @? expansion of the elastic-
subtracted virtual forward
Compton amplitude:

= (31) +Q?
7

slope from Chiral Perturbation Theory
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Generalization for Q* >0 (I =1/2)

=": Science!
RHS: Calculable quantity

LHS: Experimentally measureable via using theoretical tools

polarized inclusive electron
scattering from a polarized target

>° K,(V7 Q2) Q dV 2 2
/Vth K'(1,0) [20'TT + (0or1) (;) ZULT] — = —27m aemM(Q )

Low @? expansion of the elastic-
subtracted virtual forward
Compton amplitude:

= (31) +Q?

7

slope from Chiral Perturbation Theory
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The spin structure of *He and the Neutron at low Q?

Q? squared four-momentum transfer (Ge\?/ )
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The spin structure of *He and the Neutron at low Q?
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The spin structure of *He and the Neutron at low Q?

Q? squared four-momentum transfer (Ge\%/ ) ® E94010 (PRL 89 2002)
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The spin structure of *He and the Neutron at low Q?

Q? squared four-momentum transfer (Ge\?/ )
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Kinematic Coverage

9 deg.
4.404 GeV

3.775 GeV
3.319 GeV

6 deg.
4.209 GeV

2.234 GeV

2.845 GeV

2.135 GeV

1.147 GeV

E97-110

1.2
A(1232)
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Asymmetries 2/8
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Asymmetries 3/8
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Asymmetries 4/8
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Asymmetries 5/8

(o) ~ (@)
A N Qi Ly Q_-L_ . 1

o < Ny > | < S ) By - P - dy, - dgass

QEOde cournt Moller corrected w/Hall C bleedthrough:
charge

livetime 6 degrees 68%

beam pol 9 degrees 75%

t tp |. overall ‘ 71%

arget pol.

N dilution Still need to check bleedthrough correction
glass dilution with Compton where available!
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Asymmetries 6/8

(av:) = (") 1
A - Q+- L4 Q--L_ .

o < Ny > | < = ) P, - P, - dy, - dgass

goode~ count

charge . . .

o Water NMR and EPR calibrations differ by

Iivetime 15% relative. There may be a subtle effect

beam pol. due to the fringe fields of the septum magnet

target pol. We are trying to track down the source of this
L difference.

Ny dilution

glass dilution
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Asymmetries 7/8
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goode~ count
charge
livetime can be as low a85% at low beam energy and
beam pol. highv
target pol. analysis by: Xiaohui Zhan (MIT)
N> dilution
glass dilution
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Asymmetries 8/8
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Unpolarized Cross Sections 2/5

{ Ny } 1

O — X

(Qoe) Lgpeye (AZAQAE:)
goode™ count _

. “standard” trigger and PID cuts
charge relatively tight acceptance cuts
livetime Ny reference cell subtraction
target density empty reference cell subtraction

“kinematic” matching

detector eif. V. Sulkosky and R. Feuerbach

acceptance
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Unpolarized Cross Sections 3/5

@topen) ¥ 7

oo = X

(Qoe)Lopeset (AZAQAE:)
goode™ count g avg (amg) fil-p.b. (rel.)
charge Proteus 6.869 —0.4%
livetime Penelope  8.900 —0.8%
target density Priapus 8.723 —1.8%

detector el creanalysis of PB data by: Vladimir Nelyubit

acceptance  (Uva)
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Unpolarized Cross Sections 4/5

{ Ny } 1
Og — X

goode~ count

charge

PID efficiencies done by Hai-jiang Lu
livetime (USTC)
target density ~ VDC multitrack identification in progress by

detector eff. Jing Yuan (Rutgers)

acceptance
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Unpolarized Cross Sections 5/5

o (a7

Og — X

(Qoe)LopEdet (AZAQAEf)

goode~ count

charge

livetime A lot of progress has been made by Vince
densi Sulkosky, but we still have some issues to

target density I BT

detector eff.
acceptance
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Kinematic Matching

Goal: To insure that the Ay,ys and og are extracted for the
samer and average scattering angl€fs.)

# Apply “loose” cuts to get more statistics fel,ys
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Kinematic Matching

Goal: To insure that the Ay,ys and og are extracted for the
samer and average scattering angl€fs.)

# Apply “loose” cuts to get more statistics fel,ys
» CalculateAynys perv bin
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Kinematic Matching

Goal: To insure that the Ay,ys and og are extracted for the
samer and average scattering angl€fs.)

# Apply “loose” cuts to get more statistics fel,ys
» CalculateAynys perv bin

# For eaclv bin, using theAg,ys Sample, calculateds.)
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Kinematic Matching

Goal: To insure that the Ay,ys and og are extracted for the
samer and average scattering angl€fs.)

# Apply “loose” cuts to get more statistics fel,ys

» CalculateAynys perv bin

# For eaclv bin, using theAg,ys Sample, calculateds.)
¥

Apply tighter cuts to select a “super-clean” subsetigf;
sample for thery analysis
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Kinematic Matching

Goal: To insure that the Ay,ys and og are extracted for the
samer and average scattering angl€fs.)

# Apply “loose” cuts to get more statistics fel,ys

» CalculateAynys perv bin

# For eaclv bin, using theAg,ys Sample, calculateds.)
¥

Apply tighter cuts to select a “super-clean” subsetigf;
sample for thery analysis

Calculateo for eachr & ¢+ bin
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Kinematic Matching

Goal: To insure that the Ay,ys and og are extracted for the
samer and average scattering angl€fs.)

# Apply “loose” cuts to get more statistics fel,ys

» CalculateAynys perv bin

# For eaclv bin, using theAg,ys Sample, calculateds.)
o

Apply tighter cuts to select a “super-clean” subsetigf;
sample for thery analysis

Calculatery for eachr & ¢+ bin

°

°

For eachv-¢., bin, using therg sample, calculat€ds.)
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Kinematic Matching

Goal: To insure that the Ay,ys and og are extracted for the
samer and average scattering angl€fs.)

# Apply “loose” cuts to get more statistics fel,ys
CalculateAg,ys perv bin

o
# For eaclv bin, using theAg,ys Sample, calculateds.)
o

Apply tighter cuts to select a “super-clean” subsetigf;
sample for thery analysis

Calculatery for eachr & ¢+ bin

| I

For eachv-¢., bin, using therg sample, calculat€ds.)

°

For eachv bin, interpolateoq alongg:, to match(fs.) with
the correspondingfs.) for the A,y sample
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Some linear algebra, pt. 1

| & L refer to the target spin para. & perp. to the beam line

Ao Is the cross section difference between the target spin
pointing “up” vs “down”

# the other stuff is just “kinematic” factors like the beam
energy, the energy loss, and the scattering angle

| I

AO'”,J_ 2 X A”’J_ X 00

Ao _ +cos(ar) +sin(a) | < OTT
( Ao | ) = 2 ( —sin(a) + cos(a) ) Proire ( OLT )
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RC Formalism

. Radiative Corrections to Elastic and Inelastic ep and up
Scattering
L.W. Mo and Y.S. Tsai, RMP 41, 205-235 (1969)

. Radiative Corrections to Electron Scatterings
Yung-Su Tsai, SLAC-PUB-848, January 1971

. Electron scattering at 4° with energies of 4.5-20 GeV
S. Stein et. al, PRD 12, 1884-1919 (1975)

. Measurement of kinematic and nuclear dependence of
R = OL/OT In deep inelastic electron scattering
S. Dasu, et. al, PRD 49, 5641-5670 (1994)

. POLRAD 2.0 FORTRAN code for the Radiative Corrections
Calculation to Deep Inelastic Scattering of Polarized Particles

|. Akushevich, A. llyichev, N. Shumeiko, A. Soroko, and T. Tolkachev
arXiv:hep-ph/9706516 v1 26 Jun 1997
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Raw datavs. Elastic tall

(US/ABIN/QU) ABIN GETZ ‘9 e

ov

600 800 1000 1200
v (MeV)

400
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After elastic RC vs. Elastic tall

600 800 1000 1200
v (MeV)

400

200
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Ao, at 6°, 2135 MeV (nb/MeV/sr)

After elastic RC vs. After inelastic RC

20

777777
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Ao, at 6°, 2135 MeV (nb/MeV/sr)

-10

After all RC vs. Raw data

A

u

’“"’A A ‘+

KL

288000000 ,0044
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Features INnAo from E94010

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 E E = 0.86 GeV 1 &E . E=17CGYV
§ el Ty
| $ ) pe \\ .//ttni
. ‘\\ §§//
% % ® */
3 $ %@% Ei@.&ﬁ’ﬁé e E/?jﬁ\\;~ . > %%
$ 0 L SO S PE Del t a
2 I+ & L E (Q'2 ~ 0.2 GeVA2)
1% % Delta
% (Q*2 ~ 0.04 GV 2)
$ % * Agy ¢ Agy
5 = Ao 2 Ao,
0 s io‘zs T 1125 1225 1325 1200 1400 1600
W (MeV) W (MeV)
(from K. Slifer)
1. broadA peak (defines absolute sign Afy)
2. zero-crossing neat-threshold
3. “less” broad QuasiElastic peak with opposite sign
4. “threshold” behaviour with same sign



Ao, at 6°, 2135 MeV (nb/MeV/sr)

-10

After all RC vs. Raw data

A

u

’“"’A A ‘+

KL

288000000 ,0044
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Some linear algebra, pt. 2

# I'is the virtual photon “flux”
® « Isthe lab angle between the target spin andghe

) (Bvirt IS the “virtuality” matrix

Ao . +cos(a) +sin(a) | < OTT
( Ao | ) = 2 ( —sin(a) + cos(a) ) Proire ( OLT )
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Integrand of I3

xPT calculations for the slope are given with respect to this for o
the generalized integral:

3Gy - / 21— 2)orr 2

vV

I’'m about to show you the integrand at constant energy vensus

NOTE: These results are preliminary!
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3.3 GeV at 9 deg

3.3 GeV

E =

1.4

1.2

Lo o [} (@) T} o o)
1 — i ~ n/._

(Anan/g M) a/Ho(x-T)

W (GeV)

nithreshold  A(1232)

elastic
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2.2 GeV at 9 deg

1.4

1.2

Lo o [} (@) T} o o)
1 — i ~ n/._

(Anan/g M) a/Ho(x-T)

W (GeV)

nithreshold  A(1232)

elastic
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2.8 GeV at 6 deg

1.4

1.2

Lo o [} (@) T} o o)
1 — i ~ n/._

(Anan/g M) a/Ho(x-T)

W (GeV)

nithreshold  A(1232)

elastic
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2.1 GeV at 6 deg

2.1 GeV

E=

1.4

1.2

Lo o [} (@) T} o o)
1 — i ~ n/._

(Anan/g M) a/Ho(x-T)

W (GeV)

nithreshold  A(1232)

elastic
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1.1 GeV at 9 deg

1.1 GeV

E =

1.4

1.2

Lo o [} (@) T} o o)
1 — i ~ n/._

(Anan/g M) a/Ho(x-T)

W (GeV)

nithreshold  A(1232)

elastic
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What do we need for the neutron integral?

Goal: Form the generalized integralI 4 (Q?) for the neutron
#» Model and subtract quasielastic contribution
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What do we need for the neutron integral?

Goal: Form the generalized integralI 4 (Q?) for the neutron
#» Model and subtract quasielastic contribution

# Interpolate quantities from constagriergy to constant)?
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What do we need for the neutron integral?

Goal: Form the generalized integralI 4 (Q?) for the neutron
#» Model and subtract quasielastic contribution

# Interpolate quantities from constagriergy to constant)?

# Extract integrated neutron quantities from integrateid
guantities
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What do we need for the neutron integral?

Goal: Form the generalized integralI 4 (Q?) for the neutron
#» Model and subtract quasielastic contribution

# Interpolate quantities from constagriergy to constant)?

# Extract integrated neutron quantities from integrateid
guantities

# Estimate the DIV > 2 GeV contribution to the integral

E97-110: Small Angle GDH — p.50/51



Error Budget, so far (last slide!)

Rad. corr. ? J. Singh (finite acc./target effects)
Acceptance 7.5% V. Sulkosky/J. Singh (elastic x-chec
Target pol. 7.5% J. Singh

Beam Pol. 3.5% J. Singh (x-check with Compton)

VDC multitracks  2.5%  J. Yuan (in progress)
Target density 2.0%  “done”
Charge 1.0%  “done”
PID cuts/effs < 1.0% “done”
dilution factors < 1.0% “done”

total syst. > 12% Qgetting there...
stat. nea’A tiny
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