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Introduction

For spin �� target (one-photon-exchange approx):

� � � Mott

� � � � �	

�

 � �	

where: �� �� � ��� � ���� ��� ��� � � � � � �� ! "# $ ! "% &(') * � $(+ ,# & % � - � ,/.0 �1

Nucleon: 2 3 4576 8 and 2 9 4 576 8 are Sachs Electric and Magnetic form factors.

Empirical Dipole approximation:

where (GeV/c)

Scaling approximation: and

Polarization-transfer measurements: const.

...but one-photon approx. should still be valid for .

X
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Motivation
� Opportunity to make precision measurements related to the structure of

hadrons

Pivotal meeting place of theory and experiment

As QCD advances in prediction of hadron structure, elastic form factors

will be stringent tests.

Quark transverse charge density (Miller, Carlson, Vanderhaeghen)

where:

important to understanding

transverse charge distribution of neu-

tron
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Motivation
� Combining ��� � with ��� � allows direct extraction of flavor (neglecting strange quarks)

��� � � � 	 � 	 
� � " � � � � 
� �

��� � � � 	 � 	 
� � " � � � � 
� �

� � 	 � � 
� � " � � � 	 
� �

Allows extraction of and

Sets sum rules constraining GPD’s (at each )
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Previous Data (5 6 � 1 (GeV/c)6 )
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Previous Data ( - �
� 1 (GeV/c) � ) and CLAS e5
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Previous Data ( - �
� 1 (GeV/c) � ) and CLAS e5 and projected error bars
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Technique
Ratio Method
Measure quasi-elastic scattering from the deuteron tagged by
coincident nucleon: d(e,e � p) and d(e,e � n)

��� � �
���� �� d(e,e� n)

���� �� d(e,e� p)

n(e,e )

p(e,e )

Mott

p(e,e )

Mott

p(e,e )

1% nuclear corrections (common factors cancel in ratio)

1% correction (Galster parameterization) for electric form factor

...given proton elastic cross section

Subsequent improvements...

nuclear corrections, , p(e,e )
...can be applied retrospectively to measured value of .
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�� � �
���� �� d(e,e� n)

���� �� d(e,e� p)

Ratio is insensitive to:

� target thickness

� target density

� beam current

� beam structure

� live time

� (electron) trigger efficiency

� electron track reconstruction efficiency

� electron acceptance ...

Important to understand:
neutron efficiency / proton efficiency

neutron acceptance / proton acceptance calibration reactions
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Kinematics
Q � Ebeam + � + 1 E� P 1

(GeV/c) � (GeV) (GeV) (GeV/c)

3.5 4 37.5 � 28.7 � 2.1 2.65

4.5 4 49.5 � 21.7 � 1.6 3.2

5.25 5 40.4 � 22.7 � 2.3 3.6

6 5 48.1 � 18.7 � 1.8 4.0

7 6 42.0 � 18.7 � 2.3 4.6

8 6 52.0 � 14.9 � 1.7 5.1
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Apparatus

BigBite

elec tr o n  s p ec tr o m eter

BigH A N D

n u c leo n  d etec to r

C C

1 7 m  T O F

Experience from GEn experiment with BigBite/BigHAND combination

Adding “BigBen” deflector magnet

� � ! ��� � ,�� � � ,�� (100 	 � of CLAS12)
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BigBite spectrometer
Electron arm (and � � for H( �� � � )n calibration)

� � �� � �� � �� � �� � �� � �� � �� � �
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MWDC1

Reconfigured for higher momentum running.

� 50 msr acceptance

0.5-0.6% momentum resolution (� � 	 GeV/c)

� 1 mr angular resolution

Gas Cerenkov � reduced singles rates � Single-arm trigger
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“BigHAND” Hall A Nucleon Detector
(neutron and proton arm)

244 scintillator bars in 7 layer with �� ” iron converters

Two veto layers with 2” lead and 1” iron shields

Lflight� ! � m � � � �# �
�

Time Resolution � � � � � ns

n vs. p PID would be complicated by hadronic interactions in shielding

13



Enhance neutron/ proton identification
with 48D48 magnet (BigBen) on nucleon flight path
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Enhance neutron/ proton identification
with 48D48 magnet (BigBen) on nucleon flight path

15



Enhance neutron/ proton identification
with 48D48 magnet (BigBen) on nucleon flight path
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Enhance neutron/ proton identification
with 48D48 magnet (BigBen) on nucleon flight path
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Enhance neutron/ proton identification
with 48D48 magnet (BigBen) on nucleon flight path

Choose �� �� ! � � MeV/c

� � � probability position will be shifted by less than � � �� �
�
	� � Lflight

Deflect proton by � # � � MeV/c for clean PID. � ��� �  � � � Tm

Remaining 5% corrected based on veto-based PID, opposite-side distribution
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BigHAND efficiency

and stability

� Efficiency ( � ) for

neutron/proton detection with

20 MeV (electron equivalent)

threshold

at 20 MeV (e.e.)
at 5 MeV (e.e.)
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BigHAND calibration reactions
p(e,e� p)

p( � , � � n) � elastic kinematics (massless e, � , � )

Neutron calibration p( � , � � n) uses bremsstrahlung end-point method

Require �� � at least 1.5% above maximum for three-body background reaction: p( � , � )N � .

Q � Ebeam + �


 �� �� 
 � � �� 
 �� � �	� 
 � ��

 � � � �

$ � � � & $ � �# � & $ � � � &

(GeV/c) � (GeV) (GeV) (GeV) (GeV) (GeV)

3.5 4 37.5 � 2.12 2.043 2.074 3.83 0.0029

4.5 4 49.5 � 1.603 1.540 1.563 3.78 0.0039

6 5 48.1 � 1.805 1.747 1.773 4.80 0.0028

8 6 52. � 1.73 1.688 1.713 5.79 0.0025
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Fiducial cut on

�
� � Acceptance losses � 5%

(... and tend to cancel in ratio)

Y (cm)
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X
 (

cm
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BigHAND Kinematics 1
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X
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0
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200
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BigHAND Kinematics 4

- �� � � � (GeV/c) � - �� � � � (GeV/c) �
Fermi-motion spreads events beyond region calibrated by single BigBite position
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Two calibration settings (at 4 of the 6 kinematic points)

Y (cm)
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��� � �� � (GeV/c)� ��� � �� � (GeV/c)�

�	� a) Fraction (%) in b) Fraction (%) in

(GeV/c)� Single Cal. Zone Double Cal. Zone

3.5 93.3 100.

4.5 71.1 95.3

6.0 68.4 94.4

8.0 71.7 88.6
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Simulation
Quasi-elastic

� On shell spectator ( � Struck nucleon off shell)

� Boost to struck nucleon rest frame

� Isotropic �� � $+ & , � distribution

� Dipole (&Galster) � cross-section for weight

� Boost back to lab

� Fold in resolution, (weighted) increment of spectra

Inelastic

� GENEV physics Monte Carlo (Genoa/CLAS)

� On-shell initial nucleons (

�
�� and � �
�� )

� Boost to struck nucleon rest frame

� Generate GENEV event (with boosted beam energy)

� Boost back to lab

� Fold in resolution, increment (un-weighted) spectra

Inelastic normalized empirically to quasi-elastic
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Normalization of inelastic to elastic

SLAC data (Stuart/Lung at E=5.5 GeV) and (Rock at+ � ! � � )
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Simulation Results (5 6 � � � � (GeV/c)6 )
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Simulation Results (5 6 � � � � (GeV/c)6 )
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Simulation �� cuts (5 6 � � � � (GeV/c)6 )
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Rates (inputs)

� � � ��� � � A /cm� /s Livetime=80% BigBite tracking eff=75%

�� (GeV/c)� 3.5 4.5 5.25 6.0 7.0 8.0

3 (GeV) 4. 4. 5. 5. 6. 6.
� � 37.5 	 49.5 	 40.4 	 48.1 	 42.0 	 52. 	

p efficiency (%) 78.4 86.0 90.1 93.8 96.5 97.6

n efficiency (%) 73.0 80.9 84.7 86.6 89.8 90.6

Quasi-elastic

p-coinc. 
 ��� �� (fb) 172 293 228 124 85.5 27

n-coinc. 
 ��� �� (fb) 74 131 102 60 40.6 12.4

� � cut (%) 98 92 89 84 80 77

Proton elastic (calibration)

Full � � (mSr) 39.5 53.6 — 53.4 — 53.2

��� � � � � ��� � (pb/sr) 71.3 10.9 — 3.00 — 0.57

� ��� ��� �� (calibration)


 � �! 0.0030 0.0039 — 0.0028 — 0.0025

�#" $&% 93 	 110 	 — 114 	 — 123 	

��� � � $ �% � ' � (pb/sr) 2380 1730 — 626 — 313
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Rates

Predicted coincidence rates (counts per hour)

- � (GeV/c) � 3.5 4.5 5.25 6.0 7.0 8.0

� $ � � �� � & 1400 2500 1700 1050 710 220

� $ � � �� � & 570 1050 830 470 315 93

� $ � � �� � & 47000 11000 — 3200 — 640

� $ � � � � � & 1100 1580 — 440 — 200
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Systematic Error Estimates
Estimated contributions (in percent) to systematic errors on � .

- � (GeV/c) � 3.5 4.5 5.25 6.0 7.0 8.0

Nuclear correction,

�� � , proton cross-section - - - - - -

Accidentals - - - - - -

Target windows .2 .2 .2 .2 .2 .2

Acceptance losses .5 .5 .5 .5 .5 .25

Inelastic contamination .1 .4 .3 1. .36 .1

Nucleon mis-identification .6 .6 .6 .6 .6 .6

BigHAND calibration 0 .13 2.8 .16 1.5 .32

Total (quadrature sum) .81 .91 2.9 1.3 1.7 .76

� Statistical error goals:

� 2% statistical errors on � at - �� 3.5, 4.5, 6.0 (GeV/c) �

� 3% statistical errors on � at - �� 5.25, 7.0, 8.0 (GeV/c) �
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Beam Time Request
Beam Time Request (beam hours)

� � (GeV/c)� 3.5 4.5 5.25 6.0 7.0 8.0� (GeV) 4. 4. 5. 5. 6. 6.
� � 37.5 � 49.5 � 40.4 � 48.1 � 42.0 � 52. �

d � � � �� �
Normal � 36 24 24 48 36 80

Dummy target 3 2 2 4 3 8

Half � 12 6

Dummy half � 2 1

H � � � �� �

Normal � 24 6 6 6

Half � 3 3 6 6

Quarter � 3 6

BigBen off 6 6 6 6

Dummy target 4 1 1 1

H �� �	 � �

Radiator 24 24 12 20

Dummy target 3 3 2 3

No radiator 6 6 3 5

Total 126 88 26 88 39 136 
 502

Commissioning 72

2 Energy changes 16

13 angle changes 52

8 polarity changes 32

Beam request 674

� 28 days 28 Days
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Previous Data ( - �
� 1 (GeV/c) � ) and CLAS e5 and projected error bars

32



33



Backup Slides
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- �� � SLAC (E=18.5 GeV,+ � ! � ) and prediction for (E=6 Gev,+ � # � )
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