E94-107 Hypernuclear Spectroscopy Experiment Status

John J. LeRose for the E94107 Collaboration

Electroproduction of Hypernuclei

• Hypernuclear physics accesses information on the nature of the force between nucleons and strange baryons. The nucleus provides a unique laboratory for studying this interaction.

·i.e. the Λ-N interaction

- The characteristics of the JLab electron beam, together with those of the experimental equipment, offer a unique opportunity to study hypernuclear spectroscopy via electromagnetic induced reactions.
 - •A new experimental approach: alternative to the hadronic induced reactions studied previously.
- E94-107 has completed its measurements, performing high-resolution hypernuclear spectroscopy on light (p-shell) targets

E94107 COLLABORATION

A.Acha, H.Breuer, C.C.Chang, E.Cisbani, F.Cusanno, C.J.DeJager, R. De Leo, R.Feuerbach, S.Frullani, F.Garibaldi*, D.Higinbotham, M.Iodice, L.Lagamba, J.LeRose, P.Markowitz, S.Marrone, R.Michaels, Y.Qiang, B.Reitz, G.M.Urciuoli, B.Wojtsekhowski, and the Hall A Collaboration

¹⁶O(e,e'K+)¹⁶_ΛN ¹²C(e,e'K+)¹²_ΛB ⁹Be(e,e'K+)⁹_ΛLi H(e,e'K+)Λ,Σ⁰ $E_{beam} = 4.016, 3.777, 3.656 \text{ GeV}$ $P_e = 1.80, 1.57, 1.44 \text{ GeV/c}$ $\theta_e = \theta_K = \mathbf{6}$

 $W \sim 2.2 \text{ GeV}$ $Q^2 \sim 0.07 (\text{GeV/c})^2$

Beam current : ≤100 μA Target thickness : ~100 mg/cm²

Counting Rates ~ **0.1 – 10 counts/peak/hour**

$$^{12}C(e,e'K^+)^{12}_{\Lambda}B$$

Results published: M.Iodice et al., Phys. Rev. Lett. E052501, 99 (2007).

PHYSICAL REVIEW LETTERS

An experiment measuring electroproduction of hypernuclei has been performed in hall A at Jefferson Lab on a 12 C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a ring imaging Cherenkov detector were added to the hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Thus, the observed $^{12}_{\Lambda}$ B spectrum shows for the first time identifiable strength in the core-excited region between the ground-state s-wave Λ peak and the 11 MeV p-wave Λ peak.

DOI: PACS numbers: 21.80.+a, 21.60.Cs, 25.30.Rw, 27.20.+n

Hypernuclear Spectrum of 12 AB

Position (MeV)	Experi Width (FWHM, MeV)	imenta SNR	l data Cross section (nb/sr²/GeV)
0.0 ± 0.03	1.15 ± 0.18	19.7	$4.48 \pm 0.29(stat) \pm 0.63(syst)$
2.65 ± 0.10	0.95 ± 0.43	7.0	$0.75 \pm 0.16 (\text{stat}) \pm 0.15 (\text{syst})$
$\textbf{5.92} \pm \textbf{0.13}$	1.13 ± 0.29	5.3	$0.45 \pm 0.13 (\text{stat}) \pm 0.09 (\text{syst})$
9.54 ± 0.16	0.93 ± 0.46	4.4	$0.63 \pm 0.20(\text{stat}) \pm 0.13(\text{syst})$
10.93 ± 0.03	0.67 ± 0.15	20.0	$3.42 \pm 0.50 (stat) \pm 0.55 (syst)$
12.36 ± 0.13	1.58 ± 0.29	7.3	$1.19 \pm 0.36(\text{stat}) \pm 0.35(\text{syst})$

Narrowest peak is doublet at 10.93 MeV

⇒ experiment resolution < 700 keV

G.S. width is 1150 keV; an unresolved doublet?
What would separation be between two 670 keV peaks? ⇒ ~650 keV (theory predicts only 140)

Very Preliminary Analysis of ⁹Be(e,e'K⁺)⁹_∧Li

Results from the WATERFALL target

$$^{16}O(e,e'K^{+})^{16}{}_{\Lambda}N$$

 $H(e,e'K^+)\Lambda,\Sigma^0$

Waterfall target allows energy-scale calibration of ${}^{16}O(e,e'K){}^{16}{}_{\Lambda}N$ by ${}^{1}H(e,e'K)\Lambda$ (peak at binding energy = 0)

the waterfall target: provides 160 and H targets

• Excellent determination of the missing mass scale using the Λ & Σ peaks

Hypernuclear Spectrum of ¹⁶ N

Peak Search: Identified 4 regions with excess counts above background

- Fit to the data (red line): Fit 4 regions with 4 Voigt functions \Rightarrow $X^2_{/ndf} = 1.19$
- Theoretical model (blue line)

Summary of fitting and Theoretical calculation

E_x/E_{Λ} (MeV)	Width (FWHM, MeV)	Cross section $(nb/sr^2/GeV)$	E_x (MeV)	Wave function	J^{π}	Cross section $(nb/sr^2/GeV)$
$0.0/13.68 \pm 0.16$	1.71	1.46 ± 0.29	0.00	$p_{1/2}^{-1} \otimes s_{1/2\Lambda}$ $p_{1/2}^{-1} \otimes s_{1/2\Lambda}$	0-	0.002
			0.03	$p_{1/2}^{-1} \otimes s_{1/2\Lambda}$	1-	1.45
6.76 ± 0.06	0.88	3.16 ± 0.63	6.71	$p_{3/2}^{-1} \otimes s_{1/2\Lambda} \\ p_{3/2}^{-1} \otimes s_{1/2\Lambda}$	1-	0.80
			6.93	$p_{3/2}^{-1} \otimes s_{1/2\Lambda}$	2-	2.11
10.81 ± 0.07	0.99	2.11 ± 0.42	11.00	$p_{1/2}^{-1} \otimes p_{3/2\Lambda}$	2^{+}	1.82
			11.07	$p_{1/2}^{-1} \otimes p_{3/2\Lambda} \\ p_{1/2}^{-1} \otimes p_{1/2\Lambda}$	1+	0.62
17.01 ± 0.07	1.00	3.44 ± 0.69	17.56	$p_{3/2}^{-1} \otimes p_{1/2\Lambda} = p_{3/2}^{-1} \otimes p_{3/2\Lambda}$	2+	2.10
			17.57	$p_{3/2}^{-1} \otimes p_{3/2\Lambda}$	3+	2.26

Theory Particulars:

- DWIA
- Saclay-Lyon model for elementary production
- YNG interaction adjusted to reproduce the spectra of ¹⁶_ΛO and ¹⁵_ΛO
- The ground state of ¹⁶O is assumed to be a simple closed shell
- •The shell-model wave functions for $^{16}{}_{\Lambda}{\rm N}$ are computed in a simple particle-hole model space.

The four pronounced peaks in the spectrum are reproduced in the shell-model calculation but there is non-negligible discrepancy in absolute cross sections and position for the fourth peak.

[2] O. Hashimoto, H. Tamura, Part Nucl Phys 57, 564 (2006)

[3] private communication from D. H. Davis, D. N. Dovee, fit of data from Phys Lett B 79, 157 (1978)

[4] private communication from H. Tamura, erratum on Prog Theor Phys Suppl 117, 1 (1994)

•Binding Energy B_{Λ} =13.68 ± 0.16 (stat) ± 0.05 (sys) MeV Measured for the first time with this level of accuracy

With hadronic probes calibration is performed by comparing

to ^{12}C , where the binding energy is well known.

•But, Involves comparison with different targets of different equipment ⇒ larger systematic errors

Difference expected with respect to mirror nucleus: 400 - 500 keV (M. Sotona)

Results on H target - The $p(e,e'K)\Lambda$ Cross Section

 $p(e,e'K^{+})\Lambda$ on Waterfall

Work on normalizations, acceptances, efficiencies still underway. Estimate ~1 month till reportable results.

Thesis work of Armando Acha (FIU)

Summary

- Carbon results are published
 - M.Iodice et al., Phys. Rev. Lett. E052501, 99 (2007)
- Oxygen results are about to be published
 - PRL circulating
- Beryllium work has just started
- · Elementary production analysis is underway
 - Expect results soon
- Ultimately there will be an archival paper on the whole business
 - All targets, magnets, RICH, Waterfall, ...