E94-107 Hypernuclear Spectroscopy Experiment Status John J. LeRose for the E94107 Collaboration ### Electroproduction of Hypernuclei • Hypernuclear physics accesses information on the nature of the force between nucleons and strange baryons. The nucleus provides a unique laboratory for studying this interaction. #### ·i.e. the Λ-N interaction - The characteristics of the JLab electron beam, together with those of the experimental equipment, offer a unique opportunity to study hypernuclear spectroscopy via electromagnetic induced reactions. - •A new experimental approach: alternative to the hadronic induced reactions studied previously. - E94-107 has completed its measurements, performing high-resolution hypernuclear spectroscopy on light (p-shell) targets #### E94107 COLLABORATION A.Acha, H.Breuer, C.C.Chang, E.Cisbani, F.Cusanno, C.J.DeJager, R. De Leo, R.Feuerbach, S.Frullani, F.Garibaldi*, D.Higinbotham, M.Iodice, L.Lagamba, J.LeRose, P.Markowitz, S.Marrone, R.Michaels, Y.Qiang, B.Reitz, G.M.Urciuoli, B.Wojtsekhowski, and the Hall A Collaboration ¹⁶O(e,e'K+)¹⁶_ΛN ¹²C(e,e'K+)¹²_ΛB ⁹Be(e,e'K+)⁹_ΛLi H(e,e'K+)Λ,Σ⁰ $E_{beam} = 4.016, 3.777, 3.656 \text{ GeV}$ $P_e = 1.80, 1.57, 1.44 \text{ GeV/c}$ $\theta_e = \theta_K = \mathbf{6}$ $W \sim 2.2 \text{ GeV}$ $Q^2 \sim 0.07 (\text{GeV/c})^2$ Beam current : ≤100 μA Target thickness : ~100 mg/cm² Counting Rates ~ **0.1 – 10 counts/peak/hour** $$^{12}C(e,e'K^+)^{12}_{\Lambda}B$$ Results published: M.Iodice et al., Phys. Rev. Lett. E052501, 99 (2007). #### PHYSICAL REVIEW LETTERS An experiment measuring electroproduction of hypernuclei has been performed in hall A at Jefferson Lab on a 12 C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a ring imaging Cherenkov detector were added to the hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Thus, the observed $^{12}_{\Lambda}$ B spectrum shows for the first time identifiable strength in the core-excited region between the ground-state s-wave Λ peak and the 11 MeV p-wave Λ peak. DOI: PACS numbers: 21.80.+a, 21.60.Cs, 25.30.Rw, 27.20.+n ### Hypernuclear Spectrum of 12 AB | Position
(MeV) | Experi
Width
(FWHM, MeV) | imenta
SNR | l data Cross section (nb/sr²/GeV) | |-----------------------------------|--------------------------------|---------------|--| | 0.0 ± 0.03 | 1.15 ± 0.18 | 19.7 | $4.48 \pm 0.29(stat) \pm 0.63(syst)$ | | | | | | | 2.65 ± 0.10 | 0.95 ± 0.43 | 7.0 | $0.75 \pm 0.16 (\text{stat}) \pm 0.15 (\text{syst})$ | | $\textbf{5.92} \pm \textbf{0.13}$ | 1.13 ± 0.29 | 5.3 | $0.45 \pm 0.13 (\text{stat}) \pm 0.09 (\text{syst})$ | | | | | | | 9.54 ± 0.16 | 0.93 ± 0.46 | 4.4 | $0.63 \pm 0.20(\text{stat}) \pm 0.13(\text{syst})$ | | 10.93 ± 0.03 | 0.67 ± 0.15 | 20.0 | $3.42 \pm 0.50 (stat) \pm 0.55 (syst)$ | | | | | | | | | | | | 12.36 ± 0.13 | 1.58 ± 0.29 | 7.3 | $1.19 \pm 0.36(\text{stat}) \pm 0.35(\text{syst})$ | | | | | | Narrowest peak is doublet at 10.93 MeV ⇒ experiment resolution < 700 keV G.S. width is 1150 keV; an unresolved doublet? What would separation be between two 670 keV peaks? ⇒ ~650 keV (theory predicts only 140) #### Very Preliminary Analysis of ⁹Be(e,e'K⁺)⁹_∧Li ### Results from the WATERFALL target $$^{16}O(e,e'K^{+})^{16}{}_{\Lambda}N$$ $H(e,e'K^+)\Lambda,\Sigma^0$ Waterfall target allows energy-scale calibration of ${}^{16}O(e,e'K){}^{16}{}_{\Lambda}N$ by ${}^{1}H(e,e'K)\Lambda$ (peak at binding energy = 0) ### the waterfall target: provides 160 and H targets • Excellent determination of the missing mass scale using the Λ & Σ peaks ### Hypernuclear Spectrum of ¹⁶ N Peak Search: Identified 4 regions with excess counts above background - Fit to the data (red line): Fit 4 regions with 4 Voigt functions \Rightarrow $X^2_{/ndf} = 1.19$ - Theoretical model (blue line) #### Summary of fitting and Theoretical calculation | E_x/E_{Λ} (MeV) | Width
(FWHM, MeV) | Cross section
$(nb/sr^2/GeV)$ | E_x (MeV) | Wave function | J^{π} | Cross section
$(nb/sr^2/GeV)$ | |-------------------------|----------------------|----------------------------------|-------------|--|-----------|----------------------------------| | $0.0/13.68 \pm 0.16$ | 1.71 | 1.46 ± 0.29 | 0.00 | $p_{1/2}^{-1} \otimes s_{1/2\Lambda}$
$p_{1/2}^{-1} \otimes s_{1/2\Lambda}$ | 0- | 0.002 | | | | | 0.03 | $p_{1/2}^{-1} \otimes s_{1/2\Lambda}$ | 1- | 1.45 | | 6.76 ± 0.06 | 0.88 | 3.16 ± 0.63 | 6.71 | $p_{3/2}^{-1} \otimes s_{1/2\Lambda} \\ p_{3/2}^{-1} \otimes s_{1/2\Lambda}$ | 1- | 0.80 | | | | | 6.93 | $p_{3/2}^{-1} \otimes s_{1/2\Lambda}$ | 2- | 2.11 | | 10.81 ± 0.07 | 0.99 | 2.11 ± 0.42 | 11.00 | $p_{1/2}^{-1} \otimes p_{3/2\Lambda}$ | 2^{+} | 1.82 | | | | | 11.07 | $p_{1/2}^{-1} \otimes p_{3/2\Lambda} \\ p_{1/2}^{-1} \otimes p_{1/2\Lambda}$ | 1+ | 0.62 | | 17.01 ± 0.07 | 1.00 | 3.44 ± 0.69 | 17.56 | $p_{3/2}^{-1} \otimes p_{1/2\Lambda} = p_{3/2}^{-1} \otimes p_{3/2\Lambda}$ | 2+ | 2.10 | | | | | 17.57 | $p_{3/2}^{-1} \otimes p_{3/2\Lambda}$ | 3+ | 2.26 | #### **Theory Particulars:** - DWIA - Saclay-Lyon model for elementary production - YNG interaction adjusted to reproduce the spectra of ¹⁶_ΛO and ¹⁵_ΛO - The ground state of ¹⁶O is assumed to be a simple closed shell - •The shell-model wave functions for $^{16}{}_{\Lambda}{\rm N}$ are computed in a simple particle-hole model space. The four pronounced peaks in the spectrum are reproduced in the shell-model calculation but there is non-negligible discrepancy in absolute cross sections and position for the fourth peak. [2] O. Hashimoto, H. Tamura, Part Nucl Phys 57, 564 (2006) [3] private communication from D. H. Davis, D. N. Dovee, fit of data from Phys Lett B 79, 157 (1978) [4] private communication from H. Tamura, erratum on Prog Theor Phys Suppl 117, 1 (1994) •Binding Energy B_{Λ} =13.68 ± 0.16 (stat) ± 0.05 (sys) MeV Measured for the first time with this level of accuracy With hadronic probes calibration is performed by comparing to ^{12}C , where the binding energy is well known. •But, Involves comparison with different targets of different equipment ⇒ larger systematic errors Difference expected with respect to mirror nucleus: 400 - 500 keV (M. Sotona) ### Results on H target - The $p(e,e'K)\Lambda$ Cross Section $p(e,e'K^{+})\Lambda$ on Waterfall Work on normalizations, acceptances, efficiencies still underway. Estimate ~1 month till reportable results. Thesis work of Armando Acha (FIU) ## Summary - Carbon results are published - M.Iodice et al., Phys. Rev. Lett. E052501, 99 (2007) - Oxygen results are about to be published - PRL circulating - Beryllium work has just started - · Elementary production analysis is underway - Expect results soon - Ultimately there will be an archival paper on the whole business - All targets, magnets, RICH, Waterfall, ...