PREx Status Update

Dustin McNulty UMass mcnulty@jlab.org

June 13, 2008

1

PREx Status Update

Outline

- Review: PREx Measurement and Challenges
- Results from Recent Beamtests
- New Septum Design and FOM Changes
- Summary and Outlook

PREx Measurement

- $A_{PV}\sim 0.6$ ppm, $Q^2\sim 0.01~GeV$
- $E_{beam} = 1 \text{ GeV}, 5^{\circ} \text{ scattering}, \sim 2 \text{ GHz Rate}$
- Statistical error goal $\sim 15 \text{ ppb}$
- Systematic Error $\lesssim 2$ %

Physics Extracted

- Weak charge density
- Neutron density
- Neutron radius (~ 1 % level)

 \rightarrow With broad-based fundamental nuclear physics applications: Neutron stars, atomic PNC, heavy ion beams.

* PREx Workshop Aug 17 - 19, 2008 at JLab

Experiment Challenges

- Precision Measurement of Q²
 - \rightarrow Requires beam monitoring at 0.05 μ A using new BCMs
 - $\rightarrow \pm 0.02^{\circ}$ accuracy in spectrometer angles
- Precision beam polarimetry at 1-pass beam energies
 - \rightarrow Upgrade Compton polarimeter: new cavity, e^- and γ detectors
- Unprecedented control over helicity correlated beam asymmetries

 ${\rightarrow}Q_{asym} \lesssim 100 \pm 10 \text{ ppb}$

 \rightarrow Maintain beam position differences $\lesssim 1 \pm 0.1$ nm

→High precision beam trajectory corrections: cavity BPMs and new dithering system

• Require sub-100 ppm pulse-to-pulse electronics noise

→Employ new 18-bit ADCs (in development)

→Improve Luminosity Monitor performance

• Keep all sources of systematics in check...for example

 \rightarrow Septum collimator alignments/acceptances

 \rightarrow Spect. optics tuning and prex detector size and positioning

Recent Beamtest Results

- Beam Cavity Monitors: Initial checkout, low current tests
- Compton Polarimeter: Integrating Compton DAQ test using FADC and Accumulator
- Lead Target: 50, 80, and 100 μ A stress tests
- Luminosity Monitor: Signal, bkgd, and noise level tests for diff. targets, I_{beam}, pmt light filters, Pb-brick shielding, ...
- PREx Detectors: Design tests-detector size, resolution, efficiency, and more

Beam Cavity Monitors

BCM low current tests

•Observed $\sim 250 \,\mu m$ resolution at 50 nA (online analysis)

•Offline analysis ongoing to unfold any beam motion

Compton Polarimetry

• Upgrades to laser cavity and γ -detector are requirements for PREx

Compton Polarimetry

Goal : < 1% error

Compton Integrating DAQ Test

• Purpose: To prove that we have the tools in place to measure the polarization: Electronics noise, signal size, linearity

Dustin McNulty, June 13, 2008, Hall A Collaboration Meeting

PREx ²⁰⁸**Pb Target Stress Tests**

Lumi Performance: Normalized Regressed Asymmetries

- 60 μ A on thin ²⁰⁸Pb target
- Individual Lumi asymmetry widths at $\sim 100 \text{ ppm}$

Regressed Lumi Signal RMS vs. PMT Cathode Current

- Noise levels follow 1/sqrt(I)
- Demonstrates great progress toward optimizing Lumi setup

Dustin McNulty, June 13, 2008, Hall A Collaboration Meeting

Examined Tantalum Spectrum (in rHRS) at $12.5\,^\circ$

- Position 4×4 cm² detectors in elastic Ta peak:
 - \rightarrow Tune HRS dipole for x-positioning
 - \rightarrow Physically move detectors for y-positioning
- Examine effect of Q3 tweaking (focusing in y)
- Determine detector rates, resolution, and efficiencies
- Perform integrating DAQ runs; compare results

Dustin McNulty, June 13, 2008, Hall A Collaboration Meeting

Jefferson Lab Hall A

Dustin McNulty, June 13, 2008, Hall A Collaboration Meeting

Summary and Outlook

- Steady progress is ongoing to meet the experimental challenges
- Changes in septum design (6° \rightarrow 5°) give optimized FOM at $E_{beam} = 1.05 \text{ GeV}$
- Target design passed stress tests even without full cooling
- Other specific ongoing projects:
 - \rightarrow Design, fabrication and testing of optimized quartz detectors
 - \rightarrow Bench testing and finalizing design of 18bit ADCs
 - → Pinpointing and minimizing sources of signal noise, electronic and otherwise
 - \rightarrow Compton activities
 - \rightarrow Polarized source studies
 - \rightarrow Helicity-correlated beam-asymmetry studies
 - \rightarrow Transverse-asymmetry sensitivity studies
 - \rightarrow Beam Modulation system redesign

Lead Radius Experiment (PREx) Workshop and Neutron Rich Matter in the Heavens and on Earth

August 17 - 19, 2008 at JLab

Must register to attend

Registration is free

http://conferences.jlab.org/PREx/index.html