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In Short

• High Precision Measurement of Deuteron 
FF A(Q) at Low Q (0.1 to 0.7 GeV/c)

• Better understanding of the deuteron, 
simplest interacting NN system

• Test relativistic corrections and PT

• Resolve discrepancy in the existing data set
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FIG. 2: The data for A at low and moderate Q, divided by a fit function described in the text.
The data sets are described in Table I. The !πEFT calculations are described in the text.

the experimental details.

DETAILED MOTIVATION

In the one-photon exchange approximation [11] elastic scattering from the spin-1 deuteron
is fully described by two structure functions involving three deuteron form factors [12–14].
The cross section is given by
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is the cross section for scattering from a particle without internal structure (σM is the Mott
cross section), and θ, E, E ′, and dΩ are the electron scattering angle, the incident and final
electron energies, and the solid angle of the scattered electron, all in the lab system. The
structure functions A(Q) and B(Q) depend on the three electromagnetic form factors as
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Previous Measurements
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FIG. 1: Experimental data for A, B, and t20 compared to eight calculations. The calculations, in
order of the Q2 of their mimima in B, are: CK (long dot-dashed line), PWM (dashed double-dotted

line), AKP (short dot-dashed line), VOG full calculation (solid line), VOG in RIA (long dashed
line), LPS (dotted line), DB (widely spaced dotted line), FSR (medium dashed line), and ARW

(short dashed line). See text for details.

has become an important issue that needs to be resolved. Experimentally, data rates are
high, and the experiment can be done in Hall A with only six days of beam time. The
main experimental issues include maintaining a good control of systematics and being able
to prove the correctness of the results, as they are likely to disagree with one of the existing
high precision data sets.

In the following sections, we thoroughly review the motivation for the experiment and
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Previous Measurements

• In log scale, details 
are well hidden.
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Previous Measurements

• In log scale, details 
are well hidden.

• Disagreement 
between Saclay 
and Mainz 
measurements

FIG. 2: The data for A at low and moderate Q, divided by a fit function described in the text.
The data sets are described in Table I. The !πEFT calculations are described in the text.

the experimental details.
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Theories
• Non-relativistic 

calculations agree 
within 2% at low Q

• The curves are in 
between Mainz and 
Saclay data

• The new 
measurement can 
confirm the sign of 
the relativistic 
corrections.
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FIG. 4: The data for A at low and moderate Q, divided by the fit function, compared to five

nonrelativistic calculations described in the text.

- assuming the Saclay data are correct - is possible up to momentum transfers of perhaps
0.6 GeV. With the B data, which has only 20% or so uncertainties, the agreement is only
good up to 0.3 GeV; it is expected that there is a larger short distance contribution to B
and thus the convergence of the theory for B is not as good. If the Mainz A data are more
nearly correct, it would be necessary to continue the calculation to higher order, which will
include terms that have to be determined from the form factor data. Presumably the next
order would then improve agreement with both A and B. If the Saclay A data are more
nearly correct, higher order corrections are significant for B but nearly vanish for A. These
recent results represent an improvement on the earlier work of [24]. The recent calculation
of [25], which also claims technical improvements upon [24], tends to overpredict GC and
GM , while underpredicting GQ.

Conventional nonrelativistic calculations

A set of conventional nonrelativistic calculations, with no meson exchange currents or
other corrections, is shown in Fig. 4. In this limit, the deuteron properties depend solely on
the wave functions. The calculations (in order of decreasing magnitude at Q = 0.1 GeV2)
use W16 (long dot-dashed), CD Bonn (short dashed), AV18 (solid), IIB (short dot-dashed),
and Paris (long dashed) wave functions. The W16 and IIB models use the S and D wave
functions of a relativistic model, neglecting the P -state components. The variation of these

is gradually becoming resolved with increasing amounts of polarization data as input to nucleon form

factor fits.
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PT

• For A(Q), better 
agreement with 
Saclay Data

• Depending on the 
confirmation by the 
new measurement

• Either next order 
contribution is 
significant or 
negligible

FIG. 3: χPT calculation of the deuteron A and B structure functions compared to data. The data

and curves were divided by the corresponding A and B fit functions. The first authors of the B
references are listed to the right of the figure, see [5–8] for the references.

Low momentum transfer calculations, related to QCD

Figure 2 showed pionless EFT (! πEFT) calculations, from the recent work of Phillips,
Rupak, and Savage [21] (PRS), applied to A(Q). The NNLO calculation gives factor of two
agreement with the data for momentum transfer up to Q ≈ 0.25 GeV. While this !πEFT is
extremely useful for understanding the static properties of the deuteron and the structure
for very low Q, it is limited in applicability to perhaps Q up to 2mπ; it is unlikely that the
measurements we propose here will be described by this theory.

Several χ perturbation theory (χPT) calculations have also appeared. Figure 3 compares
the A(Q) data to a recent calculation [22] using χPT wave functions for the deuteron, with
the χPT current operator at NNLO. Once NN phase shifts have been fitted, the calculation
to this order is essentially parameter free, with only a choice of the nucleon form factor
parameterization - the MMD parameterization [23] was used - and a question about to what
order the calculation must be carried out so that it has converged. Because χPT includes
pions, the calculations are applicable up to much higher momentum transfers than is the
! πEFT calculation. Figure 3 shows that precise agreement2 between χPT and the A data

2 One has to worry about the possible logical circularity of the agreement of this and other theories. The

MMD fit uses the Saclay extraction of GEn from their A data. Insofar as the wave function model and

corrections are similar, other calculations should then reproduce the Saclay data. The relativistic VOG

calculation in contrast uses the MMD form factors but agrees better with the Mainz data. This situation
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Experiment

• Measurement of A(Q) with 2-3% absolute 
and less than 1% relative

• Several cross checks

• Carbon elastic cross section

• Proton elastic cross seciton

• Beam energy calibration with Ta
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Kinematics

• Q range: 0.1 ~ 0.7 GeV/c

• Two beam energies:
680 and 360 MeV

• Targets: D, H, C and Ta

• Small collimator (~2msr)

• Silver calorimeter for low 
beam current



Beam Energy Calibration
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BCM Calibration
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12C yield vs Current
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2D yield vs Current
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Summary

• Carbon yield analysis finished

• LH2, LD2 yield analysis in the final stage

• Finding and fixing small corrections: BCM and 
BPM variations etc

• Next step

• Analysis of low energy data

• Radiative corrections


