CLAS Two Photon Exchange Experiment

Dasuni Adikaram

Old Dominion University

Dipak Rimal, Larry Weinstein, Brian Raue and CLAS Collaboration

2014 Joint Hall A/C Summer Meeting

Newport News, VA

June 06, 2014

Proton form factor puzzle

• Proton form factors, $G_E(Q^2)$ and $G_M(Q^2)$ describe its charge and magnetization distributions.

• The possible explanation is the two photon exchange (TPE) correction to the Rosenbluth separation measurements.

Possible TPE effect on Rosenbluth measurements

• The general 1- γ and 2- γ exchange cross-sections

$$\begin{array}{lll} 1: \frac{d\sigma}{d\Omega} & \propto & \left[\varepsilon G_E^2 + \tau G_M^2 \right] \\ 2: \frac{d\sigma}{d\Omega} & \propto & \left[\varepsilon \tilde{G}_E^2 + \tau \tilde{G}_M^2 \right] + & \left[2\varepsilon \left(\tau |\tilde{G}_M| + |\tilde{G}_E \tilde{G}_M| \right) Y_{2\gamma} \right] \end{array}$$

[Guichon and Vanderhaegen, PRL 91 (2003) 142303)]

- Another ε dependent term
- Modified G_E and G_M
- A few percent change in the cross section has a large impact on the Rosenbluth G_E extraction.

Hadronic calculation of TPE

- Integrating over all intermediate proton states is difficult.
- Increasing no. of resonances increases Q^2 range.
- Proton intermediate state only, more significant at low ε and high $Q^2.$

P.Blunden et al., Phys.Rev.C72: 034612 (2005).

Two Photon Exchange

Measure the positron-proton to electron-proton cross section ratio to determine the TPE correction.

Lepton-proton elastic scattering cross-section,

$$\sigma(e^{\pm}p) \propto |A_{ep \rightarrow ep}|^2 = |A_{\text{Born}} + ... + A_{2\gamma}|^2$$

$$\sigma(e^{\pm}p) \propto |A_{\mathsf{Born}}|^2 \pm 2A_{\mathsf{Born}}\mathsf{Re}(A_{2\gamma})$$

$$R = rac{\sigma(e^+p)}{\sigma(e^-p)} = 1 + rac{4 \mathrm{Re}(A_{2\gamma})}{A_{\mathrm{Born}}}$$

R provides a model-independent measurement of the TPE contribution.

We measured e^+p and e^-p scattering simultaneously using a mixed electron-positron beam.

Producing a mixed electron positron beam in Hall-B

- Primary electron beam: 5.5 GeV and 100-120 nA
- Radiator: 0.9% of primary electrons radiate high energy photons
- Tagger magnet: sweep the primary electrons to the tagger dump
- Converter: 9% of photons convert to electron/positron pairs
- Chicane: separate the lepton beams, stop photons and recombine the e^+ and e^- beams
- Target: 30 cm liquid hydrogen
- Detector: CEBAF Large Acceptance Spectrometer (CLAS)

The experiment

- 1. Continuous incident energy distribution
- Detect scattered particles over a wide range
- 3. Match acceptance
 - Select regions of detector with 100% acceptance for both e^+ and e^-
- 4. Systematic controls
 - Reversed torus and beam line magnetic fields periodically to cancel artificial charge asymmetries
- 5. Select elastic events using four kinematic cuts

Kinematic Coverage (Q^2 vs. ε) and Binning

Ratios

Single Ratio

Measure elastic scattering ratio for given CLAS torus magnet polarity: Proton acceptance cancels

$$\mathsf{R}_1^{\pm} = \frac{\mathsf{N}^{e^+ p}}{\mathsf{N}^{e^- p}}$$

Double Ratio

Flip torus polarity and form a ratio for given chicane polarity: Lepton acceptance cancels

$$R_2^{\pm} = \sqrt{(R_1^+ R_1^-)}$$

Quadruple Ratio

Flip beamline chicane magnet polarity and form a ratio: Beam asymmetry cancels

$$R=\sqrt{(R_2^+R_2^-)}$$

Results at $Q^2 = 1.45 \text{ GeV}^2$

Results at $\varepsilon = 0.88$

- $\langle \varepsilon \rangle \approx 0.88.$
- Background subtracted
- Dead detector cuts applied
- With radiative corrections

Sources of Systematic Uncertainty

- e^+/e^- beam luminosity
 - beam chicane cycle variance
- CLAS detector imperfections
 - sector variance
- Background fitting
- Elastic event selection and

background subtraction

- Fiducial cuts
- Target vertex cuts

Systematics - e^+/e^- Luminosity

 The reconstructed electron and positron incident energy distributions are slightly different due to asymmetric beam transportation through beamline magnets (chicane).

Systematics - e^+/e^- Luminosity

Energy distribution measured by TPE calorimeter.

- The e⁺/e⁻ pair-production is inherently charge-symmetric.
- Chicane is not perfectly symmetric but e⁺-left is the same as e⁻-left.
- Periodically flipping the chicane leads to symmetric luminosities.
- Uncertainty due to luminosity is measured by the comparison of magnet cycles.

Systematic Uncertainty Due to Lepton Beam Variation

- Periodically reversed beamline and torus magnet polarities results four magnet cycles.
- Measure the e+/e- ratio for each chicane polarity and each magnet cycle.
- The measured variance of ratios ($\sigma_{\rm total}^2$) includes both statistical and systematic uncertainties.
- Systematic uncertainty: $\sigma_{syst}^2 = \sigma_{total}^2 \sigma_{stat}^2$
- Repeat this for the six CLAS sectors to determine the systematic uncertainties for dead detectors.

Comparison to the world data at $Q^2 \sim 1.5~{ m GeV^2}$

Proton form factor measurements at $Q^2 = 1 - 2 \text{ GeV}^2$

Implications of the CLAS TPE measurements on the existing Rosenbluth measurements

- Estimate R from the linear fit
- Calculate $\delta_{2\gamma}$
- Correct the electron-proton cross section measurements of Andivahis et al.
- Extract G_E, G_M and calculate µ_PG_E/G_M

Implications of the CLAS TPE measurements on the existing Rosenbluth measurements

Summary

- Proton form factors measured from Rosenbluth & polarization transfer methods disagree.
- Probable explanation: two photon exchange corrections to the Rosenbluth measurements.
- CLAS TPE experiment measured $\frac{e^+p}{e^-p}$ over wide range of Q^2 and ε .
 - The $\frac{e^+\rho}{e^-\rho}$ ratio is the only way to measure the TPE correction to the elastic cross section.
 - systematic uncertainties $\sim 1\%$.
- Results agree with the hadronic calculations which reconcile the form factor measurements up to Q² ≤ 2 − 3 GeV².
- TPE corrected Rosenbluth G_E/G_M agrees with the polarization G_E/G_M at $Q^2 = 1.77$ GeV².
- Proton form factor discrepancy appears solved up to Q² = 2 GeV². Need more measurements for Q² > 2 GeV².

Back up slides

Selecting elastic events

- Select two track events
- Measure $(p, \theta, \phi)_{\text{lepton}}$ and $(p, \theta, \phi)_{\text{proton}}$
- Select elastic events using energy and momentum conservation
 - 1. Coplanarity cut $\Delta \phi = \phi_{\text{lepton}} \phi_{\text{proton}}$
 - 2. Calculate
 - incident lepton energy (E_{Beam})
 - scattered lepton energy (E[']_e)
 - proton momentum (P_p)
 - a) from θ_e and θ_p
 - b) from measured momenta
 - 3. Cut on differences: ΔE_{Beam} , $\Delta E'_e$ and ΔP_p

- There is a strong correlation between ΔE_{Beam} and ΔE'_e.
- So makes cuts on

$$\Delta E^+ = \Delta E_{Beam} + \Delta E'_e$$

 $\Delta E^- = \Delta E_{Beam} - \Delta E'_e$

 $\Delta\phi$: cut on other 3

 $\Delta \phi(\text{deg})$

 ΔE^- : cut on other 3

Dasuni Adikaram (ODU)

 ΔP_p : cut on other 3

 ΔP_p (GeV/c)

 ΔE^+ : cut on other 3

Dasuni Adikaram (ODU)

Variance of Ratios for Different Sectors

- Five independent measurements at five CLAS sectors.
- Systematic uncertainty due to dead detector and other CLAS issues takes into account.
- Same procedure as magnet cycle variance.

Systematic Uncertainty Due to Background Fitting

- The background is determined by a Gaussian fitted to the tails of the $\Delta \phi$ distributions.
- Nominal fitting range: 160-172°(left) and 188-200°(right).
- Uncertainties estimated by varying the fitting ranges.

Systematic Uncertainty Due to Elastic Event Selection

- Vary the widths of the elastic kinematic cuts: 3σ , 3.5σ (nominal) and 4σ .
- Varying the kinematic cuts changes the amount of background by a factor of 2.
- Therefore the effects due to the background subtraction is also taken into account.

	$\langle \varepsilon angle pprox 0.88$
Bin	$\sigma_{\rm syst}$ (Kinematic cut)
1	0.0012
2	0.0005
3	0.0007
4	0.0011
5	0.0017
6	0.0016

Systematic Uncertainty Due to Fiducial Cuts

- Both inbending and out bending fiducial cuts were applied to all leptons to select regions of detector with 100% acceptance for both e⁺ and e⁻.
- Tightened fiducial cuts: change in ratio included as the systematic uncertainty.

	$\langle arepsilon angle pprox {\sf 0.88}$
Bin	$\sigma_{\sf syst}(Fiducial\ cut)$
1	0.0013
2	0.0006
3	0.0002
4	0.0005
5	0.0011
6	0.0041

Background subtraction

- Validate Gaussian background shape by comparing to sampled background from ΔE_{Ream} - ΔE_e
 - Sampling fails at high ε due to increased width of $\Delta E_{Beam} \Delta E_e$ peak
- Subtract fitted background from peak

Comparison to the world data at $\varepsilon = 0.88$

