Proton and Neutron Momentum Distributions in A=3 Asymmetric Nuclei

PR12-13-012

Spokespersons: Werner Boeglin (FIU), Or Hen (Tel-Aviv), Lawrence Weinstein (ODU), and Shalev Gilad (MIT).

Cheerleader: Douglas Higinbotham (JLab)

Guesstimation Problem

- Guesstimate the ³He(e,e'p) to ³H(e,e'p) ratio at missing momentum near zero.
 - First in an independent particle picture
 - Second using a realistic NN potential
- Bonus Question
 - What are these ratio for momentums much great then the Fermi momentum?

Asymmetric nuclei momentum distributions: the broader picture

		N-Z	<	KE>	< <u>KE</u> >
T'1, 1'4,11			p	n	p - n
Light nuclei A<11	⁸ He	0.50	30.13	18.60	11.53
	$^{6}\mathrm{He}$	0.33	27.66	19.06	8.60
Ab initio Variational	⁹ Li	0.33	31.39	24.91	6.48
Monte Carlo calculations	$^{3}\mathrm{He}$	0.33	14.71	19.35	-4.64
by Wiringa	$^{3}\mathrm{H}$	0.33	19.61	14.96	4.65
5 0	$^{8}\mathrm{Li}$	0.25	28.95	23.98	4.97
	$^{10}\mathrm{Be}$	0.2	30.20	25.95	4.25
	$^{7}\mathrm{Li}$	0.14	26.88	24.54	2.34
	${}^{9}\mathrm{Be}$	0.11	29.82	27.09	2.73
	$^{11}\mathrm{B}$	0.09	33.40	31.75	1.65

Qualitative connections:

Heavy nuclei Possible explanation to the NuTeV anomaly (if *u* quarks move faster than *d* quarks)

Neutron stars

$$p_p > k_{Fermi}^p$$
 .

- Changes the cooling rate via the direct URCA process
- Changed momentum distribution changes the spatial distribution

Previous ${}^{3}H(e,e'p)$ measurements

8

FIG. 2. The energy spectrum of protons at 51.5° in coincidence with 441-MeV electrons at 51.7° from H³ (e,e'p).

FIG. 4. The coincidence cross section of reaction (C) as a function of proton angle. The curve is explained in Sec. VI of the text.

A. Johansson by himself, PR136 (1964) 1030B.

PR12-13-012 PAC Defense

Special Triton Target Setup

9

 Identical 25-cm sealed-cell gas target cells for H₂, D₂, T₂, ³He

• $I_{\text{beam}} \leq 25 \ \mu \text{ A}$

Cell	Thickness (mg/cm ²)	Pressure (psi)	Number density
H_2	55	400	2
D_2	111	400	2
T ₂	82	200	1
³ He	82	400	1

PR12-13-012 PAC Defense

6/6/14

New Triton (e,e'p) Experiment

- $Q^2 \approx 2 \ GeV^2$
 - Reduces non-nucleonic currents (MEC, IC)
 - Proton energies high enough for eikonal FSI calculations
- $x = Q^2/2m\omega > 1$ to minimize non-nucleonic currents
- $\theta_{\rm rq} < 40^{\rm o}$ to minimize FSI
- $E_{\text{beam}} = 4.4 \text{ GeV}$
 - Maximum beam energy for HRSe
 - Maximizes the cross section
- $0 < p_{\rm miss} < 450 \, {\rm MeV/c}$
 - Covers the region from mean field to SRC
- HRS with standard electron and proton detection packages

Changes Since PAC40

- Reduced beam time from 33 to 10 days:
 - Remove highest Pmiss kinematical setting
 - Remove deuterium measurements
- More focused physics case:
 - Study the individual proton and neutron momentum distributions in A=3 nuclei – the only highly asymmetric system where one can perform such measurements.
 - Study the effect of np-SRC in both high and low p_{miss} region
 - Compare to detailed calculations.
 - Study the momentum sharing in asymmetric systems.
 - Map the inversion of the momentum sharing in the system.

Summary

- Measure 3 H and 3 He (*e*,*e'p*)
 - 10 days of beam time at 4.4 GeV
 - $Q^2 = 2 \text{ GeV}^2$ and x > 1 to minimize MEC, IC
 - $\theta_{rq} < 40^{\circ}$ to maximize sensitivity to nucleon momentum distributions
 - ³He/³H ratio cancels residual FSI
- Measure the mean-field to SRC transition in the ³He/³H ratio from >2 at low p_{miss} to 1 at high p_{miss}
- Measure absolute cross sections and ratios to deuterium to constrain detailed calculations
- Unique opportunity to measure ³H(*e*,*e'p*) to better understand nucleon momentum distributions in asymmetric nuclei.