Wide Angle Compton Scattering off A Longitudinal Polarized Proton

Jixie Zhang, Donal Day, Dustin Keller University of Virginia June 6th. 2014 Hall A/C Collabortion Meeting

Outline

- Theory background
- Proposed experiment
 - 1. Experiment setup
 - 2. Kinematics
 - 3. Cuts
 - 4. Expected result
 - 5. Beam time
- Summary

Why WACS?

•RCS itself is interesting. It can provide information of nucleon structure.

•RCS works in some kinematics regime where DVCS does not apply.

DVCS: small t and large Q2 WRCS: large t and large Q2

- •Can help to understand TPE effects.
- •Can help to answer the following:
- 1. What is the nature of the quark which absorbs and emits photons in the RCS process in the wide angle regime? Is it a constituent or a current quark?
- 2. If the GPD approach is correct, is it indeed true that the RCS reaction proceeds through the interaction of photons with a single quark?
- 3. What are the constraints on the GPD integrals imposed from the proposed measurement of the A_{LL} observable.

Reaction Mechanism

pQCD:

- •3 active quarks
- •2 hard gluons
- •3-body "form factor"

Which one is right? And in what kinematics range they dominate?

Handbag:

- •1 active quark
- 0 hard gluons
- 1-body "form factor"

Asymptotic Mechanism (pQCD)

Brodsky/Lepage Kronfeld, Nizic Vanderhaeghen, Guichon Brooks, Dixon, ...

- 2 hard gluons exchange
- 3 valence quarks are active
- constituent scaling: $d\sigma/dt = f(\theta^{CM})/s^6$
- Already proved to dominate at sufficiently high energy
- Predict $K_{LL} = A_{LL}$
- Measured K_{LL} and dσ/dt from E99-114 (6GeV) do not agree with pQCD predictions, which means pQCD does not apply at this energy. Does it work in 12 GeV range?

Handbag Mechanism (GPD)

Radyushkin Diehl, Feldman, Jakob, Kroll

- One active quark, no gluon envolved
- Momentum share by soft overlap
- 1-body "form factor" $d\sigma/dt = d\sigma^{KN}/dt * f(t)$

Handbag Mechanism (GPD)

$$\gamma p \to \gamma p$$
 $ep \to ep$

$$\begin{split} R_{_{V}}(t) &= \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} H^{a}(x,0,t), & F_{_{1}}(t) &= \sum_{a} e_{a} \int_{-1}^{1} dx H^{a}(x,0,t), \\ R_{_{A}}(t) &= \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} \operatorname{sign}(x) \hat{H}^{a}(x,0,t), & G_{_{A}}(t) &= \sum_{a} \int_{-1}^{1} dx \operatorname{sign}(x) \hat{H}^{a}(x,0,t), \\ R_{_{T}}(t) &= \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} E^{a}(x,0,t), & F_{_{2}}(t) &= \sum_{a} e_{a} \int_{-1}^{1} dx E^{a}(x,0,t), \end{split}$$

$$\frac{d\sigma}{dt} = \frac{d\sigma}{dt}_{_{KN}} \left\{ \frac{1}{2} \left[R_{_V}^2 + \frac{-t}{4m^2} R_{_T}^2 + R_{_A}^2 \right] - \frac{us}{s^2 + u^2} \left[R_{_V}^2 + \frac{-t}{4m^2} R_{_T}^2 - R_{_A}^2 \right] \right\}$$

WACS can help to constrate GPDs at large t and x, due to the fact that RCS contains factors of 1/x and e_a^2 but electromagnetic form factors do not.

Exist Data

K_{LL}: the longitudinal polarization transfer observables, which involves the helicity of the final proton

A_{LL} and K_{LL}

A_{LL}: the initial state helicity correlation observables, which involves the helicity of the initial proton

Kroll:
$$A_{11} = K_{11}$$

VS

Miller: $A_{LL} = K_{LL}$

Experiment Setup: HMS + NPS

HMS:

About 1.66 m to target The acceptance is determined by the collimater. Solid Angle = \sim 7 msr. Momentum acceptance: +/-9% dP/P = 0.2% dTheta_tr =1 mr , dPhi_tr =1 mr dY_tg = 1 mm

NPS: Size = 30" (w) x 36" (h) dE/E = 3% Positon = 3 mm

Distance to target and vertical offset depends on kinematics

NPS

Will take 3mm position resolution and 3% energy resolution

Requirements of the experiments

Parameter	DVCS (E12-13-010)	DVCS (pol. 3He)	WACS (PR12-12-009)	DES π ⁰ (E12-13-010)	SIDIS π ⁰ (E12-13-007)
Min. dist. From. Tgt. (m)	~3.0-6.0	~3.0-4.0	3.0-5.0	4.0	4.0
Coordinate res. (mm)	3-4	3-4	3-4	2-3	2-3
Photon angl. Res. (mrad)	1-2	1-2	1-2	0.5-0.75	0.5-0.75
Energy res. (%)	(5-6)/√E	$\sim 6/\sqrt{E}$	$\sim 5/\sqrt{E}$	(2-3)/√E	(2-3)/√E

- Energy resolution
- Coordinate resolution ->
- Angular resolution
- → high light yield, best achievable crystals
 → fine granularity, small Moller radius, best 2x2 cm² or 3x3 cm²
 → combine fine granularity with distance from the target

Polarized Target

UVA polarized proton target, NH3|ND3 +/- 55 degrees openning in forward (But Target Chamber only cover +/-51 deg +/-19 degrees openning in transverse side (But Target Chamber only cover +/-18 deg

2.82 cm long target cell 55% packing fraction Target nose diameter is 4.2 cm Density of solid NH3 = 0.817 g/cm3 Density of liquid Helium = 0.145 g/cm3

Number of 14N = 4.5E22Number of 1H = 13.45E22Number of 4He = 5.78E22

Assuming 100 nA beam current, $Lumi_1H = 8.4E34$ $Lumi_4He = 3.6E34$ $Lumi_14N = 2.8E34$ $Lumi_nucleon = 62E34$

Target Chamber Opening

The RCS Event Rate

 $L_{ep} = 8.4E34$, assuming 100 nA electron beam scattering off a 55% packing fraction of a 2.82 cm target cell, the same configuration as G2P|GEP.

Totoal nucleon luminosity is 14.8E34

Proposed Kinematics

kin.	t,	θ_{γ}^{lab} ,	θ_{γ}^{cm} ,	θ_p^{lab} ,	E_{γ}^{lab} ,	p_p ,	L,	Н,
P#	$(\text{GeV}/c)^2$	degree	degree	degree	GeV	GeV/c	$^{\mathrm{cm}}$	$^{\rm cm}$
P1	-1.7	22	60	45	2.87	1.56	785	41.2
P2	-3.3	37	90	30	2.00	2.52	445	21.5
P3	-5.4	78	136	13	0.88	3.55	245	10.0

Systematic error:

Statistics error:

kinematic	P1	P2	P3
$N_{\scriptscriptstyle RCS}$, events	2333	1666	1404
ΔA_{LL}	0.05	0.07	0.09

Source	Systematic
Polarimetry	5%
Packing fraction	3%
Trigger/Tracking efficiency	1.0%
Acceptance	0.5%
Charge Determination	1.0%
Detector resolution and efficiency	1.0%
Background subtraction	4.0%
Total	8%

HMS Kinematics, $\theta_{CM} = 60^{\circ}$, $P_0=1.56$

Cut on dY and dE

dY: the differece between measured RCS photon hit horizontal position and the inferred horizontal position, which is inferred by the proton.

dE/sqrt(E): the differece between measured RCS photon energy and the inferred energy, which is inferred by the proton.

NPS dY vs dX

After dE Cut, no dY cut

dX

dX: the difference between the measured RCS photon vertical position and the inferred vertical position, which is inferred by the proton.

After both dY and dE cuts

Proposed A_{LL} measurement

kin.	t,	θ_{γ}^{lab} ,	θ_{γ}^{cm} ,	θ_p^{lab} ,	E_{γ}^{lab} ,	p_p ,	L,	Н,
P#	$(\text{GeV}/c)^2$	degree	degree	degree	GeV	${\rm GeV}/c$	$^{\mathrm{cm}}$	cm
P1	-1.7	22	60	45	2.87	1.56	785	41.2
P2	-3.3	37	90	30	2.00	2.52	445	21.5
$\mathbf{P3}$	-5.4	78	136	13	0.88	3.55	245	10.0

Beam Time

Kin.		beam,	time
P#	Procedure	nA	hours
P1	RCS data taking	90	52
P2	RCS data taking	90	293
P3	RCS data taking	90	185
P1	NPS and HMS calibration	1000	8
P2	NPS and HMS calibration	1000	8
P3	NPS and HMS calibration	1000	8
	Packing Fraction	90	22
	Moller Measurements	200	33
	Beam Time		609
	Target Anneals		55
	Target T.E.		25
	Stick Changes		15
	BCM calibration		13
	Optics		13
	kinematics change		12
	Total Requested Time		742

Summary

- We propose to do a polarized WACS experiment in Hall C using HMS and NPS, with 742 hours of beam time. We will use the UVA|Jlab target, which is longitudinally polarized with 5 T magnetic field. We plan to use 4.4 GeV electron beam at 90 nA with 80% longitudinal polarization
- We will measure A_{LL} at 3 kinematics: $\theta_{CM} = 60$, 90 and 136 degree to the uncertainty of 0.05, 0.07 and 0.09, respectively
- We will put a 6% copper radiator inside the UVA target chamber.
- The expected result will reveal if ALL differ from KLL in large θ_{CM} angle regime. It will provide crutial information to understand GPS and Hand-Bag mechanism in regard of RCS.