E08-025 DVCS Experiment in the Hall A : Calibration monitoring of the calorimeter using π^0 events

IPNOrsay (France)

Camille Desnault

Presentation of the DVCS Experiment

DVCS : ep \rightarrow **e'p** γ

Deeply Virtual Compton Scattering (DVCS) is the simplest process which gives access at **Generalized Partons Distributions** (GPDs)

GPDs inform on the correlation between the longitudinal momentum and the transverse position of the quarks in the nucleon

- E08-025 DVCS Experiment :
 - Data taking in 2010 during 3 months
 - 2 Targets : LH2 and LD2
 - Measure of cross-section DVCS at :
 - 2 Beam Energies : 4.82 GeV and 6.0 GeV
 - Fixed $Q^2 = -q^2 = -(e-e')^2 = 1.9 \text{ GeV}^2$

Experimental set-up for the DVCS in the Hall A

DVCS Calorimeter

- Description of the Calorimeter
 - Photons Detection
 - Structure of 13 x 16 blocks

- Blocks = 208 Lead Fluoride (PbF2) cristals of 3 x 3 cm² and 18.4 cm of length
- Cristals → Production of Cerenkov light
- Resolution on the position (2-3 mm) better than Resolution in Energy (5% / sqrt(E))
- Why is it important to monitor the calibration of the Calorimeter ?
 - To take into account the alteration of cristals blocks due to the high radiation \rightarrow Data taking with a high Luminosity : L = 10^{37} cm⁻².s⁻¹

2 Methods to calibrate the Calorimeter

Elastic calibration (I)

The polarity of HRS is reversed to detect the proton, the Elastic calibration is not possible during the data taking !!

Elastic calibration (II)

Elastic calibration (III)

⁻⁻⁻⁻

 π^0 Calibration (II)

$$\chi^2 = \sum_{j=1}^N (E_j - \sum_i (C_i \cdot A_j^i))^2$$

Theoretical pion energy is obtained by :

- M : Proton mass = 0.938272 GeV
- minv : Theoretical pion mass = 0.1349766 GeV
- γ * : virtual photon = (e e') (given by the HRS)
- Θ : angle between the pion and the virtual photon (<u>assuming a good resolution in position of the calo.</u>)

10

Severals cuts for the π^0 calibration

- Cuts on the HRS :
 - Number of tracks = 1
 - R-function() depends of : theta, phi, dp and vertex
- <u>Cuts on the Calorimeter</u> :
 - Number of clusters = 2
 - Photons energies > 0.5 GeV
- <u>Cut-2D on the minv and the Mx2</u> minv=Invariant Mass= $\sqrt{(\gamma_1 + \gamma_2)^2}$ M_x^2 =Missing Mass= $M^2(ep \rightarrow e \gamma \gamma(X))$
 - 0.5 < Mx2 + 17.5*minv 2.31 < 1.2
- Cut on the vertex-position (v)

- Θ is determined by the **reconstruction of the Pion position** !
- The reconstruction in position depend of the blocks energies which change at each iteration !

1st
iteration :
$$E1_{block}^{Real} = E_{block}^{Measured} \cdot C^{Elastic} \longrightarrow \Theta 1 \longrightarrow C_1^{\pi^0}$$

2nd
iteration : $E2_{block}^{Real} = E_{block}^{Measured} \cdot C^{Elastic} \cdot C_1^{\pi^0} \longrightarrow \Theta 2 \longrightarrow C_2^{\pi^0}$
3rd
iteration : $E3_{block}^{Real} = E_{block}^{Measured} \cdot C^{Elastic} \cdot C_1^{\pi^0} \cdot C_2^{\pi^0} \longrightarrow \Theta 3 \longrightarrow C_3^{\pi^0}$

Selected Data for the π^0 calibration method

- We need more statistic than 1 run to calibrate !
- With 1 day of data taking (~20 runs) is possible to calibrate
- Each kinematic separated in groups of runs of one day each
- Studied kinematic :
 - Beam Energy = 4.82 GeV
 - D2 target
- 2 Studied groups of runs between the two first Elastic Calibrations :
 - Group A : 23 runs
 - Group B : 23 runs

 π^0 coefficients of the 1st iteration for the Group A

Calibration coefficients as a function of the number of iterations for the group A

After several iterations, the Coefficients converge !

Calibration coefficients as a function of the number of iterations for the group B

After several iterations, the Coefficients converge !

The minv and the Mx2 for the group A

minv = Invariant Mass =
$$\sqrt{(\gamma_1 + \gamma_2)^2}$$

► Without π^0 coefficients <u>Fit</u> : mean = 0.131 GeV Sigma = 10.43 MeV

With 5 iterations of π⁰
 coefficients

<u>Fit</u> : peak = 0.135 GeV Sigma = 10.93 MeV

$$M_x^2 = Missing Mass = M^2(ep \rightarrow e \gamma \gamma(X))$$

\rightarrow Without π^0 coefficients

 $\frac{\text{Fit}}{\text{Sigma}} = 1.013 \text{ GeV}^2$ $\text{Sigma} = 0.23 \text{ GeV}^2$

→ With 5 iterations of π⁰ coefficients

Fit : mean =
$$0.916 \text{ GeV}^2$$

Sigma = 0.21 GeV^2

The minv and the Mx2 for the group B

Conclusion

- We manage to calibrate the calorimeter with 1 day of data taking
- The calibration coefficients converge after 5 or 6 iterations → We will do more iterations to check
- > The calibration works \rightarrow After calibration :
 - > minv is closer of the pion mass
 - > M_x^2 is closer of the (proton mass)²
- > We will continue the calibration with :
 - > others days of data taking (= others groups of runs)
 - others kinematics

BACK-UP

 π^0 Calibration (III)

$$M_{x}^{2} = M^{2} = (q + p_{0} - q_{1} - q_{2})^{2}$$

$$\downarrow$$
The expression of the Missing Mass

$$M_{x}^{2}$$
 gives a quadratic equation of $E\pi$:

$$aE\pi^{2} + bE\pi + c = 0$$

$$\downarrow$$

$$\Delta = b^{2} - 4ac > 0 : 2 \text{ solutions for } E\pi$$

$$E\pi = -b \pm \sqrt{b^{2} - 4ac}$$

$$\downarrow$$
The good one is closer of
the measured $E\pi$ value !

20