HRS Optics in the APEX Test Run

• Optics General • Test Run Calibration • Comment on Full Runs Trying to collect materials from three years ago. May NOT present the full picture.

> Jin Huang Brookhaven National Lab

Optics As Everyone Knows

- Dispersive prism + detector
- Analyze wavelength (momentum) of incoming light

Optics Reconstruction:

@ Detector• Position• Direction

Inverse Prism Transportation @ Source

Momentum

2

Direction

Magnetic Spectrometer Optics

High Resolution Spectrometer (HRS) for APEX

Setup

Target

Center

- QQDQ vertical bending 45^o, well studied over years 0
- Septum magnet to access scattering angle to 5^o 0
- Vertical Drift Chamber (VDC) for tracking
- Acceptance w/ septum

Detector

Optics for APEX

- Use tracking information on VDC
 - 2D hit position/2D angle
- Reconstruct target side
 - Small acceptance, large size → Fine res.
 - Momentum $\sigma^{1}\times 10^{-4}$ (Rel. to p_0)
 - Angle σ ~0.4mrad (H) , ~2mrad (V) , APEX tune
 - Vertex σ~1cm, Trans. Pos. σ~1mm
 - +Target multi-scattering (~0.4mrad on angles)
- Uncertainty contribution
 - Tracking precision not included in this talk
 - Optics calibration precision

Early estimation on uncertainties in optics

- Inv mass uncertainty (ex. Kine A)
 - To leading order:
 - $m^{2} \approx p_{0}^{2} \left(4\theta_{0}^{2} + 4\theta_{0}^{2}dp_{+} + 4\theta_{0}^{2}dp_{-} + 8\theta_{0} \left(\phi_{+} \phi_{-} \right) + 2\theta_{+}\theta_{-} \right)$ • Momentum Contribution is small
 - $\sigma^{-1} \times 10^{-4} \rightarrow \delta m^{-2}$ OkeV
 - Vertical angle res. is minor too
 - $\sigma^{1}mrad \rightarrow \delta m < 120 keV$
 - Resolution of horizontal angles res. dominates
 - σ ~0.5mrad $\rightarrow \delta$ m~570keV
 - Sum of horizontal angles -> high order
 - Systematic offset of diff -> do not contribute to peak width
 - +Target multi-scattering
 - ~0.4mrad (~500keV on δ m), target design dependant

 $\begin{array}{c} \theta_0 & \text{Central angle} \\ dp_{\pm} & \text{Momentum dev.} \\ (\phi_{\pm} - \phi_{-}) & \text{H. angle diff} \\ \theta_{\pm} & \text{V. angles} \end{array}$

Calibrating optics

- Reconstructing optics
 - Input: Track position/direction @ VDC, Beam location
 - Output: 3D momentum at vertex side, vertex
 - Formula: 4D polynomial fitting & interpolation
 - Calibration: Minuit2 based Chi2 fit with central bias correction
- Calibration require clean tracks with known value on the vertex and VDC side and cover acceptance used in analysis
- Calibration is separating into 3 groups calibration to calibrate each component of optics reconstruction
 - Tracks with known angles from vertex: Sieve slit data
 - Tracks with known momentum (dp = momentum/central -1): Elastic data
 - Tracks with known vertex: Multi-foil data
- The result polynomial constant and description: APEX Elog 63
- Calibration tools setup (not including calibration data): JLabFarms:/work/halla/apex/disk1/jinhuang/optics/

7

Test Run Calibration / Angles

- Calibration data set
 - Elastic-near elastic scattered electrons
 - Sieve slit, to calculate vertex angle using holes and vertex
 - Great to have active detector here
 - Scan through momentum acceptance
- Improvement for future: septum polarities
 - In test run, calibrated in septum anti-parallel field mode leads to large correction for parallel field mode in production
 - In future, we can calibrate in parallel field for one arm at a time or use sci-fi detector
- Improvement for future: sieve plate/sci-fi survey
 - "Central Angle" is arbitrarily defined
 - Relative distance between two sieves → offset of angle difference
 - Possible improvement: single sieve slit for both arm or specific survey
 - Other contribution (δm less sensitive to)
 - Beam position
 - Foil location

Test Run Calibration / Angles

- Calibrated with 2010 test run data
 - Elastic peak + Elastic tails events 0
 - Only calibrated in negative charged mode on both arm
 - Acceptance reduced 0
 - PRFX collimation
 - Full running : larger acceptance, opposite charge mode
- Calibration
 - Example plots -> 0
 - Max polynomial order:
 - LHRS: 8 ϕ -columns, polynomial order<=4, 51 non zero terms
 - LHRS: 14 ϕ -columns, polynomial order<=6, 95 non zero terms
 - Robust fit 0
 - we identified errors on Sieve drawing, confirm with rulers Elog 45
- Study alignment error by check average deviation of holes away from the expected location \rightarrow Horizontal ~0.1mrad Vertical ~ 0.2mrad

n Lab

Jin Huang <jinhuang@jlab.org>

Optics was verified with large beam raster too Run 1896 18973, 4x4mm MCC raster

Many steps are checked to make it right: raster size/direction, beam position corrections, optics

Angular space : theta VS phi

Track projection to Sieve slit hit location

Septum field effect check in test run

Calibrated in septum anti-parallel field mode, check for parallel field mode (production mode) Two pass data was available but with higher punch through rate

Compare to sieve pattern \rightarrow 1.3mrad shift with variation of ~0.3mrad from hole to hole

L-HRS with electrons

Sieve can be observed with heavy punch through

R-HRS with positrons with Sieve

No obvious difference with Sieve in, half-in and out

Test Run Calibration / Momentum

- Few 10⁻³ level good out of box
- Ideal calibration
 - Select elastic scattered electrons events
 - Fit reconstructed momentum →elastic calc.
- 2010 test run data
 - limited to 0%<=dp<=4% due to septum current limit
 - Used past-calibrated HRS optics + linear (a+b*x) correction
 - Data list: APEX Elog 82
- Well developed procedure for full running

 (p/p_0-1) – elastic angular dependence

•One elastic peak

Calibration / Vertex

- Not included in test run
 - Old optics target
 - A single foil presented in main data
- Calibration method
 - Separated foil target
 - Each foil form a stripe on 2D plot
 - Horizontal angle
 - Horizontal position
 - Calibration
 - Select each stripe
 - Fit towards surveyed foil location

2010 optics target design

Multi-array target needed

- Significantly improve foil separation during calib.
- Enough foils for reliable interpolation

Beam Position Correction

- Two part optics reconstruction
 - 1. Approximate target variable construction with ideal beam
 - 2. Apply correction with beam location
- Leading beam correction on 3D momentum
 - 0.5 mrad on vertical angle / 1mm vertical beam shift
 - 0.2×10⁻³ on dp / 1mm vertical beam shift
 - 0.04mrad on horizontal angle / 1mm vertical beam shift
 - Rest correlation are 2nd order or higher
- Calibrating the correction coefficients
 - Theory calc. : 2009 Hall A Analysis Workshop talk
 - Fit from data
 - Consistency between methods (tested w/o septum)

Jin Huang <jinhuang@jlab.org>

Early estimation for optics calibration for full scale running

- Only based on experience from test run
- Optics data
 - Two data sets: 5.0º @ 1pass, 5.5º @ 2pass
 - Each HRS, data taken separately (septum parallel field mode)
 - May not necessarily do so with sci-fi detector
 - Elastic scan on 2 carbon foils arrays, w/ sieve
 - 7 mom. point: 0%, $\pm 2\%$, $\pm 3\%$, $\pm 4\%$ relative to central p_0
 - Momentum and angular calibration
 - Inelastic run on 2 carbon arrays, w/o sieve
 - Vertex calibration
 - + beam correction check
- Beam time
 - 2× (2×~1Shift+Conf. Change) <u>≤ 2 day</u>

Conclusion

	Acceptance	Resolution as σ
Momentum	±4.5% (Rel. to p ₀)	1×10 ⁻⁴ (Rel. to p ₀)
Horizontal Angle	±20mrad	~0.4mrad
Vertical Angle	±60mrad	~2mrad
Vertex	>50cm	1cm (along beam)

• Resolution of diff. between H. angle dominants δm

2010 test run

- Optics calibration precision (point to point)
 - 0.2mrad (V. Angle), 0.1mrad(H. Angle)
- Calibrated in septum anti-parallel field mode leads to large uncertainty in corrections for parallel field mode in production
- Learned toward better preparing full production optics

Electron, P = E0/2

Positron, P = E0/2

HRS-le

HRS-right

Septum

Beam

W target

Back up slides

Vertex acceptance 1st order matrix

Jin Huang <jinhuang@jlab.org> APEX Collaboration Meeting 18

Vertex acceptance

Correlated with horizontal angular acceptance

1st Order Optics Matrix Arbitrary Trajectory Reference Trajectory Define of optics variables APEX optics tune Magnetic Mid-plane Target side variable x0 δ $\theta \theta$ y0 φ0 -2.1742-0.00432-0.03602-0.03618 13.39705 Х

Detector side variable -0.23112-0.459770.000884 0.003852 2.319847 θ 0.024489 0.008417 -1.74647-0.24110.020057 y 0.018126 0.021383 0.575993 -0.72164-0.22927φ

: New w/ septum and APEX tune

Inverse polarity

- Repeatability of HRS polarity inversion
- Guild line from John Lerose
- Special cycling precedure
- Verified in June test run, under analysis

