The A' Experiment (APEX) Search for new forces at JLab Welcome + APEX in Global Context Rouven Essig (Stony Brook) Philip Schuster (Perimeter) Natalia Toro (Perimeter) Bogdan Wojtsekhowski (JLab) on behalf of APEX APEX Collaboration Meeting, JLab 4/22/2014 #### Outline - Why are we here? - Physics overview & motivation - APEX's unique role in global dark photon search ### Outline - Why are we here? - Physics overview & motivation - APEX's unique role in global dark photon search review APEX's current status, preparations, outstanding tasks - review APEX's current status, preparations, outstanding tasks - while a small experiment, we need active involvement from collaborators to prepare for full run (possibly as early as 2016) - review APEX's current status, preparations, outstanding tasks - while a small experiment, we need active involvement from collaborators to prepare for full run (possibly as early as 2016) - update organizational structure and begin to identify pointpersons for upcoming roles - review APEX's current status, preparations, outstanding tasks - while a small experiment, we need active involvement from collaborators to prepare for full run (possibly as early as 2016) - update organizational structure and begin to identify pointpersons for upcoming roles - formalize and vote on collaboration rules (important for full run) - 8:50 Welcome, APEX in Global Context (Essig) - 9:15 JLab update (McKeown) - 9:40 Update on HPS (Szumila-Vance) - 10:10 APEX Goals and Strategy (Toro) - 11:00 Hall A update (Keppel) - 11:25 APEX Status: Big Picture (Wojtsekhowski) - 11:55 Measuring charge asymmetry (Ron) Blue: global picture Gold: JLab, Hall A, HPS update Green: details about an APEX subsystem Purple: future/other physics w/ APEX - 8:50 Welcome, APEX in Global Context (Essig) - 9:15 JLab update (McKeown) - 9:40 Update on HPS (Szumila-Vance) - 10:10 APEX Goals and Strategy (Toro) - II:00 Hall A update (Keppel) - I I:25 APEX Status: Big Picture (Wojtsekhowski) - 11:55 Measuring charge asymmetry (Ron) - I:30 HRS DAQ Rate Capability (Abrahamyan) - 1:55 Software for high-rate VDC analysis (Riordan) - 2:20 HRS Preparations (Allada) - 3pm Colloquium: New Forces Beneath the Weak Scale (Schuster) - 4:30 Septa (Wojtsekhowski) - 4:55 HRS Optics in the APEX Test Run (Huang) - 5:20 A New Tool for Optics: SciFi (Markowitz) - 7:00pm Group Dinner (Bonefish Grill) Blue: global picture Gold: JLab, Hall A, HPS update Green: details about an APEX subsystem Purple: future/other physics w/ APEX - 9:20 The APEX target (Oriunno) - 9:40 Outstanding Tasks for APEX Target (Schuster) - 9:45 Collaboration business -- identify point persons, discuss bylaws, theses & publications, funding & manpower (moderated by Essig and Schuster) - 10:50 Radiation study update (Degtiarenko) - 11:15 Remaining beam line items and vacuum chamber (Wojtsekhowski) - 11:40 Bump-hunt analysis (Beacham) - 12:05 Future APEX (Toro) - 12:30 Concluding talk (Schuster) #### Please sign up for Group Dinner Bonefish Grill, Tuesday, 7pm Group photo TBA #### Outline • Why are we here? - Physics overview & motivation - APEX's unique role in global dark photon search (see Philip's colloquium today for more details) Dark Matter? SM only describes \longrightarrow this Dark Matter? SM only describes \longrightarrow this Dark Energy? Dark Matter? SM only describes \longrightarrow this Dark Energy? Baryon asymmetry? Dark Matter? SM only describes \longrightarrow this Dark Energy? Baryon asymmetry? Why is gravity so weak? etc... Dark Matter? SM only describes \longrightarrow this Dark Energy? Baryon asymmetry? Why is gravity so weak? etc... Dark matter suggests the presence of a dark sector, neutral under all Standard Model forces ## Portals to a dark sector? only a few important interactions exist that are allowed by Standard Model symmetries Dark Sector forces + particles dark matter? ## Portals to a dark sector? only a few important interactions exist that are allowed by Standard Model symmetries APEX built to probe the dark photon portal #### focus on $m_{A'} \sim 1 \text{ MeV} - 1 \text{ GeV}$ (theoretically natural, motivated from data: muon g-2 + anomalies related to dark matter) allows production of A' in e⁺e⁻ colliders, electron & proton beam dumps, meson decays etc. #### Outline - Why are we here? - Physics overview & motivation APEX's unique role in global dark photon search #### **Status** ~2008 dark photon can explain muon g-2 in green band #### **Status** ~2008 dark photon can explain muon g-2 in green band dark photons considered well before 2008, but constraints never discussed in detail #### Lots of activity since then, e.g. - Dark forces workshop, SLAC Sept. 2009: http://www-conf.slac.stanford.edu/darkforces2009/ - Searching for a New Gauge Boson at JLab, Sept. 2010: http://conferences.jlab.org/boson2010/program.html - Intensity Frontier Workshop: ``` http://www.intensityfrontier.org Summary document — arXiv:1205.2671 ``` Snowmass 2013 http://www.snowmass2013.org/ Major summary document — arXiv:1311.0029 #### rare meson decays $$\pi^0 o \gamma A'$$ $\phi o \eta A'$ #### rare meson decays $$\pi^0 o \gamma A'$$ $\phi o \eta A'$ #### rare meson decays $$\pi^0 \to \gamma A'$$ $\phi \to \eta A'$ proton fixed target # A' decays # A' decays $(A' \rightarrow \text{other states also possible})$ # A' decays $(A' \rightarrow \text{other states also possible})$ ### APEX mass range # Status ~Today (published results) (only showing strongest constraints) 16 # Status ~Today (published results, zoomed in) (only showing strongest constraints) 17 # BaBar # Re-interpretation by theorists of a BaBar analysis looking for pseudo-scalar decaying to $\mu^+\mu^-$ ### Use rare meson decays $$\phi \rightarrow \eta A'$$ $$A' \rightarrow e^+ e^-$$ $$A' \rightarrow e^+ e^- \qquad \eta \rightarrow \pi^+ \pi^- \pi^0$$ $$\eta \to \pi^0 \pi^0 \pi^0$$ **KLOE** #### WASA detector at COSY 2013 $$\pi^0 \to \gamma A'$$ $$A' \rightarrow e^+ e^-$$ $5 \times 10^5 \ \gamma e^+ e^-$ events WASA ### APEX & MAMI Test Runs 2011 # Two-arm spectrometer searches for A' to e⁺e⁻ # PHENIX@RHIC (BNL) 2013/14 $$\pi^0 \to \gamma A'$$ $A' \to e^+ e^-$ (unpublished, presented in a talk) ## Status ~soon? Existing data; analyses almost complete? MAMI (various run settings) projections are rough; final results may differ!!! ### Status ~soon? Existing data; analyses almost complete? BaBar (full dataset, various final states) projections are rough; final results may differ!!! ### Status ~2015? # HPS 2015 engineering run in Hall B (approved settings of 1.1 & 2.2 GeV) covers g-2 decisively, unique vertexing reach # Status ~2015? # HPS 2015 engineering run in Hall B (approved settings of 1.1 & 2.2 GeV) w/ additional 2 week run at 4.4 GeV (not yet approved) covers g-2 decisively, unique vertexing reach ### **APEX** # APEX's projected full run (as in PAC 37) Will have significant new <u>unique</u> reach re-optimization of run plan in progress ## **APEX** even assuming HPS 4.4 GeV run, APEX has significant, new reach # DarkLight uses JLab FEL H-gas target 2016? # 2016 and beyond? VEPP-3 Mu3e # 2017? ### **HPS 2017** ## 2017? **HPS 2017** ### Unclear: What are final MAMI and BaBar reach? More Phenix data? CERN-SPS? other experiments? ## 2017? as far as we know, over next several years, APEX will have unique sensitivity at higher masses # Field very active APEX has important role to play