The A' Experiment (APEX)

Search for new forces at JLab

Welcome + APEX in Global Context

Rouven Essig (Stony Brook)
Philip Schuster (Perimeter)

Natalia Toro (Perimeter)

Bogdan Wojtsekhowski (JLab)

on behalf of APEX

APEX Collaboration Meeting, JLab 4/22/2014

Outline

- Why are we here?
- Physics overview & motivation
- APEX's unique role in global dark photon search

Outline

- Why are we here?
- Physics overview & motivation
- APEX's unique role in global dark photon search

review APEX's current status, preparations, outstanding tasks

- review APEX's current status, preparations, outstanding tasks
- while a small experiment, we need active involvement from collaborators to prepare for full run (possibly as early as 2016)

- review APEX's current status, preparations, outstanding tasks
- while a small experiment, we need active involvement from collaborators to prepare for full run (possibly as early as 2016)
- update organizational structure and begin to identify pointpersons for upcoming roles

- review APEX's current status, preparations, outstanding tasks
- while a small experiment, we need active involvement from collaborators to prepare for full run (possibly as early as 2016)
- update organizational structure and begin to identify pointpersons for upcoming roles
- formalize and vote on collaboration rules (important for full run)

- 8:50 Welcome, APEX in Global Context (Essig)
- 9:15 JLab update (McKeown)
- 9:40 Update on HPS (Szumila-Vance)
- 10:10 APEX Goals and Strategy (Toro)
- 11:00 Hall A update (Keppel)
- 11:25 APEX Status: Big Picture (Wojtsekhowski)
- 11:55 Measuring charge asymmetry (Ron)

Blue: global picture

Gold: JLab, Hall A, HPS update

Green: details about an APEX subsystem

Purple: future/other physics w/ APEX

- 8:50 Welcome, APEX in Global Context (Essig)
- 9:15 JLab update (McKeown)
- 9:40 Update on HPS (Szumila-Vance)
- 10:10 APEX Goals and Strategy (Toro)
- II:00 Hall A update (Keppel)
- I I:25 APEX Status: Big Picture (Wojtsekhowski)
- 11:55 Measuring charge asymmetry (Ron)
- I:30 HRS DAQ Rate Capability (Abrahamyan)
- 1:55 Software for high-rate VDC analysis (Riordan)
- 2:20 HRS Preparations (Allada)
- 3pm Colloquium: New Forces Beneath the Weak Scale (Schuster)
- 4:30 Septa (Wojtsekhowski)
- 4:55 HRS Optics in the APEX Test Run (Huang)
- 5:20 A New Tool for Optics: SciFi (Markowitz)
- 7:00pm Group Dinner (Bonefish Grill)

Blue: global picture

Gold: JLab, Hall A, HPS update

Green: details about an APEX subsystem

Purple: future/other physics w/ APEX

- 9:20 The APEX target (Oriunno)
- 9:40 Outstanding Tasks for APEX Target (Schuster)
- 9:45 Collaboration business -- identify point persons, discuss bylaws, theses & publications, funding & manpower (moderated by Essig and Schuster)
- 10:50 Radiation study update (Degtiarenko)
- 11:15 Remaining beam line items and vacuum chamber (Wojtsekhowski)
- 11:40 Bump-hunt analysis (Beacham)
- 12:05 Future APEX (Toro)
- 12:30 Concluding talk (Schuster)

Please sign up for Group Dinner

Bonefish Grill, Tuesday, 7pm

Group photo

TBA

Outline

• Why are we here?

- Physics overview & motivation
- APEX's unique role in global dark photon search

(see Philip's colloquium today for more details)

Dark
Matter?

SM only describes \longrightarrow this

Dark
Matter?

SM only describes \longrightarrow this

Dark Energy?

Dark
Matter?

SM only describes \longrightarrow this

Dark Energy?

Baryon asymmetry?

Dark
Matter?

SM only describes \longrightarrow this

Dark Energy?

Baryon asymmetry?
Why is gravity so weak?
etc...

Dark
Matter?

SM only describes \longrightarrow this

Dark Energy?

Baryon asymmetry?
Why is gravity so weak?
etc...

Dark matter suggests the presence of a dark sector, neutral under all Standard Model forces

Portals to a dark sector?

only a few important interactions exist that are allowed by Standard Model symmetries

Dark Sector

forces + particles dark matter?

Portals to a dark sector?

only a few important interactions exist that are allowed by Standard Model symmetries

APEX built to probe the dark photon portal

focus on $m_{A'} \sim 1 \text{ MeV} - 1 \text{ GeV}$

(theoretically natural, motivated from data: muon g-2 + anomalies related to dark matter)

allows production of A' in e⁺e⁻ colliders, electron & proton beam dumps, meson decays etc.

Outline

- Why are we here?
- Physics overview & motivation

 APEX's unique role in global dark photon search

Status ~2008

dark photon can explain muon g-2 in green band

Status ~2008

dark photon can explain muon g-2 in green band

dark photons
considered well
before 2008,
but constraints
never discussed in
detail

Lots of activity since then, e.g.

- Dark forces workshop, SLAC Sept. 2009: http://www-conf.slac.stanford.edu/darkforces2009/
- Searching for a New Gauge Boson at JLab, Sept. 2010: http://conferences.jlab.org/boson2010/program.html
- Intensity Frontier Workshop:

```
http://www.intensityfrontier.org
Summary document — arXiv:1205.2671
```

Snowmass 2013
 http://www.snowmass2013.org/
 Major summary document — arXiv:1311.0029

rare meson decays

$$\pi^0 o \gamma A'$$
 $\phi o \eta A'$

rare meson decays

$$\pi^0 o \gamma A'$$
 $\phi o \eta A'$

rare meson decays

$$\pi^0 \to \gamma A'$$
 $\phi \to \eta A'$

proton fixed target

A' decays

A' decays

 $(A' \rightarrow \text{other states also possible})$

A' decays

 $(A' \rightarrow \text{other states also possible})$

APEX mass range

Status ~Today (published results)

(only showing strongest constraints) 16

Status ~Today (published results, zoomed in)

(only showing strongest constraints) 17

BaBar

Re-interpretation by theorists of a BaBar analysis looking for pseudo-scalar decaying to $\mu^+\mu^-$

Use rare meson decays

$$\phi \rightarrow \eta A'$$

$$A' \rightarrow e^+ e^-$$

$$A' \rightarrow e^+ e^- \qquad \eta \rightarrow \pi^+ \pi^- \pi^0$$

$$\eta \to \pi^0 \pi^0 \pi^0$$

KLOE

WASA detector at COSY 2013

$$\pi^0 \to \gamma A'$$

$$A' \rightarrow e^+ e^-$$

 $5 \times 10^5 \ \gamma e^+ e^-$ events

WASA

APEX & MAMI Test Runs 2011

Two-arm spectrometer searches for A' to e⁺e⁻

PHENIX@RHIC (BNL) 2013/14

$$\pi^0 \to \gamma A'$$
 $A' \to e^+ e^-$

(unpublished, presented in a talk)

Status ~soon?

Existing data; analyses almost complete?

MAMI (various run settings)

projections are rough; final results may differ!!!

Status ~soon?

Existing data; analyses almost complete?

BaBar
(full dataset,
various final states)

projections are rough; final results may differ!!!

Status ~2015?

HPS 2015 engineering run in Hall B (approved settings of 1.1 & 2.2 GeV)

covers g-2 decisively, unique vertexing reach

Status ~2015?

HPS 2015 engineering run in Hall B (approved settings of 1.1 & 2.2 GeV)

w/ additional 2 week run at 4.4 GeV (not yet approved)

covers g-2 decisively, unique vertexing reach

APEX

APEX's projected full run (as in PAC 37)

Will have significant new <u>unique</u> reach

re-optimization of run plan in progress

APEX

even assuming HPS 4.4 GeV run, APEX has significant, new reach

DarkLight

uses JLab FEL

H-gas target

2016?

2016 and beyond?

VEPP-3

Mu3e

2017?

HPS 2017

2017?

HPS 2017

Unclear:

What are final MAMI and BaBar reach? More Phenix data? CERN-SPS? other experiments?

2017?

as far as we know, over next several years, APEX will have unique sensitivity at higher masses

Field very active APEX has important role to play