DARK FORCES, DARK MATTER, AND THE GEV-SCALE DISCOVERY FRONTIER

PHILIP SCHUSTER PERIMETER INSTITUTE

APS DNP MEETING, NEWPORT NEWS OCTOBER, 2013

DARK FORCES BELOW THE WEAK SCALE

- Theory, motivation, and goals for new-particle searches at the GeV-scale
- Searching for Dark Forces at colliders
- Fixed-Target Dark Force & Dark Matter Searches

BEYOND THE STANDARD MODEL

We know there is dark matter

...but what is it?

LHC and direct detection results challenge connection of dark matter to "weak-scale naturalness"

COPERNICAN PARTICLE PHYSICS?

BEYOND THE STANDARD MODEL

Known matter interacts through three gauge forces (strong, weak, and electromagnetic)

LHC looking for new matter *interacting through the same forces*

...but what about matter that is not charged under these forces?

Gauge- & Lorentz-invariance *restrict possible interactions* with such matter to high dimension operators. New sub-GeV matter can be consistent.

BEYOND THE STANDARD MODEL

Dark sector gauge forces provide a simple explanation for why dark sector is "dark" with long-lived dark matter components

Look for residual interactions allowed symmetry!

THE "PORTALS"

Searches can be organized around a small number of interactions allowed by Standard Model symmetries

Higgs Portal $\epsilon_h |h|^2 |\phi|^2$ exotic rare Higgs decays?Neutrino Portal $\epsilon_{\nu} (hL)\psi$ not-so-sterile neutrinos?Vector Portal $\frac{1}{2} \epsilon_Y F_{\mu\nu}^Y F'^{\mu\nu}$ kinetic mixing?Axion Portal $\frac{1}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu}$ axion-like particles?

THE "PORTALS"

Searches can be organized around a small number of interactions allowed by Standard Model symmetries

VECTOR-PORTAL INTERACTIONS

massive Consequences of a new mixed U(1): "heavy (dark) $\mathcal{L} \supset -\frac{1}{4}F_Y^2 - \frac{1}{4}F'^2 + \frac{\epsilon_Y}{2}F_YF'$ photon" $+eA_YJ_Y + gA'J' + m^2A'^2$ A'Diagonalize: $A^Y_{\mu} \to A^Y_{\mu} - \epsilon_Y A'_{\mu}$ $e \times \epsilon$ Induces coupling $\epsilon e A' J_{EM}$ of dark U(1) to EM-charged particles $(\epsilon = \epsilon_Y \cos \theta_W)$ μ,π,\ldots mediates production and (if $m > 2 m_e$)decay What are reasonable couplings and masses? 8

Sources and Sizes of Kinetic Mixing $\frac{1}{2} \epsilon_Y F_{\mu\nu}^Y F'^{\mu\nu}$

- If absent from fundamental theory, can still be generated by **perturbative** (or non-perturbative) quantum effects
 - Simplest case: one heavy particle ψ with both EM charge & dark charge

generates $\epsilon \sim \frac{e g_D}{16\pi^2} \log \frac{m_{\psi}}{M_*} \sim 10^{-2} - 10^{-4}$

Sources and Sizes of Kinetic Mixing $\frac{1}{2} \epsilon_Y F_{\mu\nu}^Y F'^{\mu\nu}$

- If absent from fundamental theory, can still be generated by **perturbative** (or non-perturbative) quantum effects
 - In Grand Unified Theory, symmetry forbids treelevel & 1-loop mechanisms. GUT-breaking enters at 2 loops

generating $\epsilon \sim 10^{-3} - 10^{-5}$ ($\rightarrow 10^{-7}$ if both U(1)'s are in unified groups)

SOURCES AND SIZES OF MASS TERM

- MeV-to-GeV is **allowed** at couplings >10⁻⁷
- Possible origin: related to M_Z by small parameter
 - e.g. supersymmetry+kinetic mixing ⇒ scalar coupling to SM Higgs, giving

 $m_{A'} \sim \sqrt{\epsilon} M_Z \lesssim 1 {
m GeV}$ [e.g. Cheung, Ruderman, Wang, Yavin; Katz, Sundrum; Morrissey, Poland, Zurek]

motivated by g-2 and dark matter anomalies

a motivated target of opportunity

TARGET OF INTEREST? PRECISION ANOMALIES

Muon g-2 U(1)_D coupling modifies (g-2)_μ, with correct sign. ε~1-3 10⁻³ can explain discrepancy with Standard Model

Muonic hydrogen

MeV-scale force carriers can explain the discrepancy between (μ -,p) Lamb shift [Pohl et al. 2010] and other measurements of proton charge radius.

Requires couplings *beyond* kinetic mixing (lepton flavor-violating component)

[[]Tucker-Smith & Yavin, 1011.4922]

TARGET OF INTEREST? DARK MATTER INTERACTIONS

Light dark matter hints (DAMA, CoGeNT, CRESST, CDMS-Si)

Many instrumental challenges & constraints...

A dark force easily reconciles ≤10 GeV DM with Standard-Model-like decays of Z and h

GEV-SCALE DISCOVERY FRONTIER

Tremendous opportunity to explore GeV-Scale dark matter and weakly coupled physics with novel small-scale experiments!

What will we find?

SEARCHING FOR MEV-GEV DARK FORCES: PRODUCTION

Broad Array of Searches! (done, ongoing, planned)

High Energy Hadron Colliders (indirect) – New heavy particles can decay into dark sector "lepton jets" (ATLAS, CMS, CDF & D0)

Colliding e+e-: On- or Off- shell A', X=dark sector or leptons & pions (BaBar, BELLE, BES-III, CLEO, KLOE)

Fixed-Target: Electron or Proton collisions, A' decays to di-lepton, pions, invisible (FNAL, JLAB (Hall A & B & FEL), MAMI (Mainz), WASA@COSY ...)

SEARCHING FOR MEV-GEV DARK FORCES: DECAY

via same mixing operator as production \Rightarrow tiny width $\Gamma \sim \epsilon^2 \alpha m_{A'}$

SEARCHING FOR MEV-GEV **DARK FORCES: DECAY**

(not *\varepsilon*-supressed!)

Important! Testing the idea of dark sectors requires a collection of searches sensitive to all possible A' decays, visible & invisible. 17

ADVANTAGES OF FLAVOR FACTORIES

- Highest collider $(Lumi.)/(E_{CM})^2$ in the world
- 4π detectors & clean reconstruction
 - **Broadest** possible search program: $A' \rightarrow l^+l^-$, invisible A', multi-body cascade decays
- Large dataset "in the bank"
 - Many searches viable using standard triggers
 - Some decays (e.g. γ+invisible A') require and motivate new, non-standard trigger

FIXED-TARGET ADVANTAGES

FIXED-TARGET TERRITORY: "MINIMAL" VISIBLE DECAY (l^+l^-) 0.001 10^{-4} 0.1 0.01 10^{-4} $a_{\mu,5\sigma}$ 10^{-5} 10^{-5} one-loop KLOE $a_{\mu,\pm 2\sigma}$ favored 10^{-6} 10^{-6} BaBar APEX/MAMI E774 a_e Test Runs two-loop 10⁻⁷ 10^{-7} (GUT) E141 10^{-8} 10^{-8} Orsay 10⁻⁹ 10^{-9} direct decay three-10⁻¹⁰ 10^{-10} loop U70 10^{-11} 0.001 10^{-11} 0.01 0.1 $m_{A'}(\text{GeV})$

S

 α'

BEAM-DUMP LIMITS

 α

 $\alpha'/$

ELECTRON BEAM SENSITIVITY

Approved and funded experiments will explore much of the parameter space below 300 MeV in next few years

(Bjorken, Essig, Schuster, NT)

TWO SEARCH STRATEGIES

High-Statistics Resonance Search Displaced Resonance search

(MAMI, APEX, HPS, DarkLight)

Demands high data-taking rate, background suppression and excellent mass resolution

Demonstrated in test runs: Mainz (1101.4091) and APEX (1108.2750)

DarkLight: full reconstruction of recoil → sensitive to invisible A' decays

...and forward vertex resolution (well-controlled tails)

APEX $A' \rightarrow e^+e^-$ resonance search using Hall A highresolution spectrometers and septa magnet

HPS: RESONANCE + VERTEX SEARCHES

 $\Delta m/m \sim 1\%$ (bump hunt) $\Delta z \sim 1 mm$ (vertexing)

Vertexing allows sensitivity to weakly coupled A' that produce only ~25 events!

Decay Length Distribution

FIXED-TARGET SUMMARY: DIRECT DECAY CASE

Complementary approaches: – beam dump (~1980s) – vertex search (HPS) – resonance search (Mainz, APEX, DarkLight, HPS)

First-generation vertex and resonance searches will cover a lot of new ground, in theoretically interesting parameter region, $m_{A'} \leq 200-800$ MeV

SEARCHING FOR MEV-GEV **DARK FORCES: DECAY**

(not *\varepsilon*-supressed!)

Important! Testing the idea of dark sectors requires a collection of searches sensitive to all possible A' decays, visible & invisible. 29

SEARCHING FOR MEV-GEV DARK FORCES: DECAY

WHAT IF THE DARK PHOTON DOESN'T COME BACK?

+

Collider: look for photon recoiling off invisible A' resonance

Fixed-target: A' is produced, then decays to invisible χ (dark matter?):

 \rightarrow $\gamma + \chi \chi$

Look for neutral current scattering of χ

PROTON & ELECTRON BEAMS

Proton beams:

- Use existing accelerator v detectors
- Large v-scattering backgrounds, almost irreducible

Electron beams:

- Need new detector behind dump (but forward production ⇒ can be small)
- Minimal beam-related backgrounds but using CW
 e⁻ beam ⇒ limited by cosmogenic bkg

32

relative merits & complementarity of different scattering signals not thoroughly explored in either case

 m_{χ}

STATUS AND PROSPECTS

Red lines = quasi-elastic scattering behind JLab-like beam dump, with (top to bottom) no neutron bg rejection, 1/20 rejection, 10^{-3} rejection Dedicated MiniBoone run sensitivity comparable to middle line [arXiv: 1211.2258]; see also [arXiv:1309.5084 Essig et al] for impact of aggressive analysis with new triggers at Belle 2

STATUS AND PROSPECTS

Harder than visible A' searches! $- \text{signal} \propto \epsilon^4 \text{ not } \epsilon^2$

But important parameter range - (g-2)_μ preferred region - motivated ε² range - generic possibility of light dark-sector matter - χ dark matter not constrained by direct detection or LHC

Red lines = quasi-elastic scattering behind JLab-like beam dump, with (top to bottom) no neutron bg rejection, **1/20 rejection**, 10^{-3} rejection Dedicated MiniBoone run sensitivity comparable to middle line [arXiv: 1211.2258]; see also [arXiv:1309.5084 Essig et al] for impact of aggressive analysis with new triggers at Belle 2

CONCLUSIONS

- Dark Forces are an exciting window into physics far beyond the Standard Model
 - Possible connections to dark matter and physics at very high scales
- Several mass ranges are testable in moderatescale experiments
 - New-particle searches in B-factories many results already, continuing to extend
 - Dedicated fixed-target experiments are extending range to much lower couplings
 - Many recent developments in searches for invisible A' decays
- A lot of uncharted territory: opportunities for further exploration – and maybe discovery – abound!

CONCLUSIONS

 A lot of uncharted territory: opportunities for further exploration – and maybe discovery – abound!