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Introduction

• Momentum distributions and the spectral function P(k,E).
• Short Range Correlations and Multi-Nucleon Correlations
• Scaling (x, y, φ’, ξ ) 
• Medium Modifications -- tests of  EMC; 6-quark admixtures
• Duality
• Structure Function Q2 dependence and Higher Twists

Inclusive scattering may provide an important contribution in the 
exploration of rare and exotic fluctuations that may allow an 
exposure the properties of dense nuclear matter.

Inclusive electron scattering from nuclei provides a rich, yet 
complicated mixture of physics that has yet to be fully exploited.

The inclusive nature of these studies make disentangling all the different 
pieces a challenge but experiments over a range of Q2 and with different A 
will help. 



DIS at x > 1 or studying 
Superfast Quarks

•  In the nucleus we can have 0<x<A 
•  In the Bjorken limit, x > 1 DIS tells us the virtual photon scatters 
incoherently from quarks

•  Quarks can obtain momenta x>1 by abandoning confines of the nucleon
•  deconfinement, color conductivity, parton recombination multiquark 
configurations

•  correlations with a nucleon of high momentum (short range 
interaction)

•  DIS at x  > 1 is a filter that selects out those nuclear configurations in 
which the nucleon wave functions overlap. We are studying the dynamics 
of partons that have abandoned the confines of the nucleon. 

< rNN> ≈ 1.7 fm ≈ 2 × rn = 1.6 fm

The probability that nucleons overlap is large and at x > 1 we are 
kinematically selecting those configurations.



Shaded domain where scattering is restricted solely 
to correlations. Czyz and Gottfried (1963)

Correlations and Inclusive Electron Scattering
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2m
+

q2

2m
ω′

c =
q2

2m
−

qkf
2m

Czyz and Gottfried proposed to replace the Fermi n(k) 
with that of an actual nucleus. (a) hard core gas; (b) 
finite system of noninteracting fermions; (c) actual large 
nucleus. 



!e
!e′

MA M∗
A−1, −!k

!k
W2 ≥ (Mn + mπ)

2

Inclusive Quasielastic and Deep Inelastic Scattering at High 
Momentum Transfers
Two distinct processes Quasielastic from the nucleons in the nucleus

Inelastic, Deep Inelastic from the 
quark constituents of the nucleon.

!e
!e′

MA M∗
A−1, −!k

!k
!k + !q, W2 = M2

Inclusive final state means 
no separation of two 
dominant processes

x > 1 x < 1



The two processes share the same initial state
d2σ
dΩdν

∝
∫
d#k

∫
dEσei Si(k, E)︸#︸

Spectral function

δ()QES in PWIA

d2σ
dΩdν

∝
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d#k

∫
dE W

(p,n)
1,2 Si(k, E)︸#︸

Spectral function

DIS

However they have very  different Q2 dependencies
σei ∝ elastic (form factor)2 W1,2 scale with ln Q2 dependence

n(k) =
∫
dE S(k, E)

Nonetheless there is a rich, if 
complicated, blend of nuclear and 
fundamental QCD interactions available 
for study from these types of 
experiments.

pX

k1
k2

q

PA
PA - 1

p

Exploit this Q2 dependence

The limits on the integrals 
are determined by the 
kinematics. Specific (x, Q2) 
select specific pieces of 
the spectral function. 



• The shape of the low ν cross section is determined by the momentum 
distribution of the nucleons.

• As Q2 >> inelastic scattering from the nucleons begins to dominate
• We can use x and Q2 as knobs to dial the relative contribution of QES 
and DIS.

The quasielastic peak 
(QE) is broadened by 
the Fermi-motion of the 
struck nucleon.

The quasielastic 
contribution dominates 
the cross section at low 
energy loss (ν) even at 
moderate to high Q2.

3He



Exploit A dependence: higher momenta 
broadens the peak



k> 250 MeV/c
15% of nucleons
60% of KE

k < 250 MeV/c
85% of nucleons
40% of KE

Mean field contributions: k < kF

Short Range Correlations (SRCs)

Well understood

High momentum tails: k > kF Calculable for few-body nuclei, nuclear matter.

Dominated by two-nucleon short range correlations.

Isolate short range interaction (and

SRCs) by probing at high Pm (x>1)

Poorly understood part of nuclear structure

Significant fraction of nucleons have k > kF

Uncertainty in short-range interaction leads to
  uncertainty at large momenta (>400-600 MeV/c),
  even for the Deuteron

60% of the K.E.

15% of nucleons

k > 250 MeV/c

40% of the K.E.

85% of nucleons

k < 250 MeV/c

r [fm]

V(r)

~1 fm

0

N-N potential

Calculation of
proton momentum
distribution in 4He

Wiringa, PRC 43

1585 (1991)

Mean field contributions: k < kF

Well understood 
High momentum tails: k > kF 
Calculable for few-body nuclei, 
nuclear matter. 
Dominated by two-nucleon 
short range correlations

Short Range Correlations (SRCs)

Isolate short range 
interactions (and SRC’s) by 
probing at high pm

Poorly understood part of 
nuclear structure

Sign. fraction have k > kF

Uncertainty in SR interaction leads to 
uncertainty at k>>, even for simplest 
systems

Deuteron

Carbon

NM
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Fig. 2. Momentum distributions for 4He, H J: Hamada- 
Johnston potential, RSC: Reid soft core potential, SSCB: de 
Tourreil-Sprung super soft core potential B, UNC: uncor- 
related, for the RSC potential. The other uncorrelated distri- 
butions do not differ appreciably for q > 2 fm-1. 
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Fig. 3. Same as fig. 2, for 160. 
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S2(q) = q2 + co ~ - ~  d 3 q'u(lq - q'l)  S2(q ) , S2(q) = (q - q l S  2 l0 0), 

for a purely central interaction where u is the Fourier transform of  this interaction and q the momentum transfer 

(Bethe-Goldstone equation in momentum space). For a central component  of  the Reid potential the second term 

in brackets may be neglected compared to the first term only for momenta  greater than 30 fm -1 . With n(q) 
2 2 1 2 S2(q) (from eq. (3)) the asymptotic behaviour n(q) ~x [(q + co)-  u(q)] is obtained in accord with the result 

obtained from general considerations [ 12]. The higher-order contributions proportional to S 3 which have been 

omitted in eq. (3) can be shown to decrease faster. A physical discussion of this region of extremely high momenta  

is not reasonable, however, as mesonic and relativistic effects surely cannot be neglected here. 

In order to check our assumption that three-body processes may be neglected in the evaluation of the momen- 

tum distribution, we performed some calculations taking into account three-body and some four-body processes, 

i.e. using the FBHF (4) (Faddeev-Brueckne r -Har t r ee -Fock)  approximation of  ref. [8]. No additional terms are 

used in eq. (3), but there is a modification of  S 2 proportional to S 3 so that the corrections included are of  the 

same order S2S 3 as the contributions omitted in eq. (3). 

The difference between our "standard" calculation and the FBHF(4)  calculation therefore gives a rough esti- 

mate of  the order of  magnitude these effects may have. This difference is displayed in fig. 4 and seen to be neg- 

ligible in the high-momentum region. The main effect comes from the modification of the self-consistent single- 

particle wave-functions important  only below 0.5 fm -1 which is due to the presence of three-body terms in the 

s.p. potential. 
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Zabolitzky and Ey, PLB 76, 527

Van Orden et al., PRC21, 2628

Calculations of SRC



Figure 11: FC
2 (x) at Q2 = 5GeV 2. Free nucleon response folded with n(k). HF

(dot-dashed line) enhanced by correlations (solid line). L.Conci and M. Traini,

UTF 261/92.

XEMPT Meeting Donal Day

CdA, Day, Liuti, PRC 46 1992 (1045) L. Conci and M. Traini, UTF 261/92. 

Correlations contribute to 
both in QES and DIS



Scaling
• Scaling refers to the dependence of a cross section, in certain 
kinematic regions, on a single variable. If the data scales in the single 
variable then it validates the assumptions about the underlying physics 
and scale-breaking provides information about conditions that go 
beyond the assumptions. 

• At moderate Q2 inclusive data from nuclei has been well described in 
terms y-scaling, one that arises from the assumption that the electron 
scatters from a quasi-free nucleons.

• We expect that as Q2 increases we should see for evidence (x-scaling) 
that we are scattering from a quark that has obtained its momenta 
from interactions with partons in other nucleons. These are super-fast 
quarks.



y-scaling in inclusive electron scattering (3He)

F (y) = σexp

(Zσ̃p+N σ̃n) · K n(k) = −
1

2πy
dF (y)

dy

y is the momentum of the struck nucleon parallel to the momentum transfer and is

determined from energy conservation. Assumption is that we are scattering from a "quasi"

free proton or neutron in the nucleus. We find momenta on the order of 1 GeV/c !

Correlations are the source of high momenta

in the nucleus – probe extreme and rare condi-

tions inside the nuclear volume when the nu-

cleons are nearly overlapping.

Assumption:  scattering takes place from a quasi-free proton or neutron in the 
nucleus.

y is the momentum of the struck nucleon parallel to the momentum transfer:
y ≈ -q/2 + mν/q

y-scaling in inclusive electron scattering from 3He



Scaling of the response function shows 
up in a variety of disciplines. Scaling in 
inclusive neutron scattering from atoms 
provides access to the momentum 
distributions.

Momentum distributions are “distorted” 
by the presence of FSI

FSI have a 1/q dependence

y-scaling as a test for presence of FSI



Helium-3

Hanover group, T = 0 and T = 1 pieces (right)

XEMPT Meeting Donal Day

In nuclei the 
excitation of the 
residual nucleus 
complicates the 
relationship 
between the 
scaling function 
and n(k). The 
spectral function
 S(k,E)



Scaling and Correlations
dσQE

dΩdω
=

∫
dEmdp(Zσ̃p + Nσ̃n)

×δ(MA − EB + ν − EX)P (p, Em).

Scaling and Correlations

dσQE

dΩdω
=

∫

dEmdp(Zσ̃p + N σ̃n)

×δ(MA − EB + ν − EX)P (p, Em).

EM is the missing energy and determines the invariant
mass of MB such that Em = MB + M − MA and EX =
√

M 2 + (p2 + q2). When B is the A−1 ground state then
the missing energy is minimal Emin ≡ MA−1 + M − MA.

k

k’

X

B

p

A

q

The particular case when Em = Emin defines the y-scaling
variable

y = −
W 2 + M2

A−1 − M2

2W 2

(

|q|− (MA + ν)

[

1 −
4W 2M2

A−1

(W 2 + M2
A−1 − M2)2

]1/2
)

XEMPT Meeting Donal Day

Em is the missing energy and determines the 
invariant mass of MB such that Em = MB + M - MA 
and EX = √( M2 + (p2 + q2)).

When B is the (A-1) ground state then the 
missing energy is minimal: Em ≡ MA-1 + M - MA.

This specific case defines the y-scaling variable.

y = −
W2 + M2

A−1 − M2

2W2

(

|q| − (MA + ν)

[

1 −
4W2M2

A−1

(W2 +M2
A−1 − M2)2

]1/2
)



Integrating and pulling out of the integral terms that change slowly 
over range of integration.

dσQE

dΩdω
! (Zσ̃p + Nσ̃n) ·

EX
|q|

· 2π

∫Emax

Emin

dEm

∫pmax(Em)

pmin(Em)

pdpP (p, EM)

︸ # ︸
F(y,|q|)

pmin(Em) →
(MA + ν − |q|)2 −M2

B

2(MA + ν − |q|)

We should study the properties of F(y,q) as q ⇒ ∞ limit.

The upper bounds both tend toward infinity so the kinematic 
dependence comes from the  lower bound, which as q ⇒ ∞ 

becomes



Because |y| ≠ |pmin(Em)|, (|pmin(Em)| > |y|) it is instructive to  rewrite F(y,|q|) 
by breaking integral into two parts:

The subtracted term 

is the "binding" correction. The continuum missing energy distribution in 
the spectral function spoils a direct connection between the y-scaling 
function and the momentum distribution by an amount B(y,|q|). 
 

B(y, |q|) = 2π
∫∞
Emin

dEm
∫pmin(Em)
|y| pdpP (p, Em)

F(y, |q|) = 2π

∫∞

Emin

dEm

[
∫∞

|y|
−

∫pmin(Em)

|y|

]

pdpP (p, Em)

= 2π

∫∞

|y|
n(p)pdp − B(y, |q|)

Note that B(y) = 0 from 2H and that B(y) scales!



Original motivation has been the possibility of using those 
measurements where the quasi-elastic function has reached the 
scaling limit 

F(y, |q|) = σexp

Zσ̃p+Nσ̃n)
· |q|√

M2+(y+|q|)2

F(y) ≡ F(y, |q| → ∞)

F(y) = 2π
∫∞
|y| n(p)pdp − B(y).

B(y) must be calculated from a model spectral function and is small 
for moderate values of |y|.

However, for large |y| this correction is large and sabotages the 
connection between F(y) and n(p) just where we wish to learn 
about the correlation part of the momentum distribution!



Figure 5: Difference between f(y) ≡ 2π
∫ ∞

|y| n(p)pdp originating from momen-

tum distribution and the quasielastic function F (y) = 2π
∫ ∞

|y| n(p)pdp − B(y) in

scaling limit as computed from model spectral function for 12C. Significant high
momentum components are not accessible.

Figure 6: Binding correction B(y) for each data set.

eterization

f(y) = A
e−ay2

α2 + y2
+ Be−b|y|.
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f(y) ≡ 2π
∫∞
|y| n(p)pdp

F(y) = 2π
∫∞
|y| n(p)pdp − B(y)

B(y, |q|) = 2π
∫∞
Emin

dEm
∫pmin(Em)
|y| pdpP (p, Em)



Deuteron

Assumption:  scattering takes place from a quasi-free proton or neutron in the 
nucleus.

y is the momentum of the struck nucleon parallel to the momentum transfer:
y ≈ -q/2 + mν/q

F(y) =
σexp

(Zσp + Nσn)
· K

n(k) = −
1

2πy
dF(y)
dy



F(y) for heavier nuclei and theory

Gaidarov, Antonov (CDFM)



Cross section and 
convolution model

Gaidarov, Antonov (CDFM)



σ(x, Q2) =
A∑

j=1

A
1
j
aj(A)σj(x, Q2)

=
A
2
a2(A)σ2(x, Q2) +

A
3
a3(A)σ3(x, Q2) +

...

In the region where correlations 
should dominate, large x,

aj(A) are proportional to finding a nucleon in a j-nucleon correlation. 
It should fall rapidly with j as nuclei are dilute.

⇒
2
A
σA(x, Q2)
σD(x, Q2)

= a2(A)

!"""#
1<x≤2

3
A

σA(x, Q2)
σA=3(x, Q2)

= a3(A)

!"""#
2<x≤3

In the ratios, off-shell effects and 
FSI largely cancel.

Short Range Correlations

σ2(x, Q2) = σeD(x, Q2) and σj(x, Q2) = 0 for x > j.

aj(A) is proportional
to probability of finding
a j-nucleon correlation



Short Range Correlations
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FIG. 4: Cross section (A/3He) ratios at large x as measured in CLAS.

state interactions, due to the different mix of nn, np, and pp correlations in non-isoscalar nuclei.
However, there are calculations indicating that there are significant final state interactions that do
not vanish rapidly as Q2 increases, and which do not cancel in the target ratios [19] (i.e. do not come
from short range configurations that are identical in all nuclei). This calculation indicates that the
FSI (when including inelastic channels) has a very weak Q2 dependence and will persist, challenging
our interpretation of the impulse approximation analysis. In addition, it predicts that the FSI effects
will increase the x > 1.5 cross section in iron by approximately a factor of ten, and that even in the
ratio of iron to deuterium, there is a factor of five effect from these FSIs. An important portion of
the proposed measurement is the ability to test these precisions of FSIs by extracting absolute cross
sections for x > 1.5 on a variety of few-body (and heavy) nuclei over a range of Q2.

For the deuteron, which is dominated by the simple two-body breakup assumed in an impulse
approximation analysis, we can extract the nucleon momentum distribution from the inclusive data
without the complications caused by neglecting the separation energy of the full spectral function.
The momentum distribution for the deuteron as extracted from experiment E89-008 is shown in
Fig. 5 [3]. The normalization of the extracted momentum distribution is consistent with unity,
and the high momentum components are in good agreement with calculations based on modern
two-body nucleon–nucleon potentials. This sets limits on the impact of FSI, even in the region
dominated by short range correlations, indicating that the scattering is consistent with the impulse
approximation and that final state interactions much smaller than those observed in coincidence
A(e,e’p) measurements, or those predicted in some calculations. In the proposed measurements, we
will extract absolute cross sections for 2H, 3He, and 4He, not available for the CLAS results, which
will allow us to set limits on the size (and A dependence) of final state interactions.

The extension of these ratio measurements to higher Q2 will allow us to better test the x and Q2

aj(A) is proportional
to probability of finding
a j-nucleon correlation

CLAS data
Egiyan et al., PRL 96, 
082501, 2006

2
A
σA
σD

= a2(A); (1.4 < x < 2.0)

FSDS, Phys.Rev.C48:2451-2461,1993

α2N ≈20%
α3N ≈1%



 

Sensitivity to SRC increase with Q2 and x

Q
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We want to be able to isolate 
and probe two-nucleon and 
multi-nucleon SRCs

Dotted = mean field approx. 
Solid = +2N SRCs. 
Dashed = +multi-nucleon. 

11 GeV can reach Q2= 20( 13) GeV2 at x = 1.3(1.5)
%  - very sensitive, especially at higher x values 

x = 1

x = 1.5

+ multi-nucleon

+2N SRC

mean field



The solution

• Direct ratios to 2H, 3He, 4He out to large x and over wide 
range of Q2

• Study Q2, A dependence (FSI)

• Absolute Cross section to test exact calculations and FSI

• Extrapolation to NM

Arguments about role of FSI

Benhar et al.: FSI includes a 
piece that has a weak Q2 
dependence

There is the cancellation of 
two large factors (≈ 3) that 
bring the theory to describe 
the data. These factors are Q2 
and A dependent



2.5 
3.3 
4.1
5.2
6.4
7.4

x and ξ scaling
An alternative view is suggested when the data (deuteron) is presented 
in terms of scattering from individual quarks

νWA
2 versus x νWA

2 versus ξ

νWA
2 = ν ·

σexp

σM

[
1 + 2 tan2(θ/2) ·

(
1 + ν2/Q2

1 + R

)]−1

x =
Q2

2Mν
ξ =

2x

1 +
√
1 + 4M2x2/Q2

→ x

2H
2H



FA2 (ξ) =
∫A

ξ
dzF(z)Fn2(ξ/z)

︸ # ︸
averaging

The Nachtmann variable (fraction ξ of 
nucleon  light cone momentum  p+)  has 
been shown to be the variable in which  
logarithmic violations of scaling in DIS 
should be studied.

Local duality (averaging over finite range 
in x) should also be valid for elastic peak 
at x = 1 if analyzed in ξ

νWA
2 versus x

2.5 
3.3 
4.1
5.2
6.4
7.4

νWA
2 versus ξ

12C

12C

Evidently the inelastic and quasielastic 
contributions cooperate to produce ξ 
scaling.  Is this duality?



Medium Modifications generated by high density configurations

> 5 times nuclear 
matter densities 

0.6 fm separation 

1.7 fm separation 

Nucleon separation is 
limited by the short 
range repulsive core 

High Density Configurations

nucleon charge radius ~ 0.86 fm

Ave. separation ~1.7 fm in heavy nuclei

Nucleons are already closely packed in nuclei

Nucleon separation is limited by

the short range repulsive core

Average
nuclear
density

1.7 fm separation

Potential between

two nucleons

r [fm]

V(r)

~1 fm

0

1.2 fm separation

3x nuclear
matter

0.6 fm separation

>5 times
nuclear matter
densities

Even for a 1 fm separation, the
central density is ~4x nuclear matter.

Comparable to neutron star densities!

High enough to modify nucleon structure?

Comparable to neutron star densities! 

High enough to modify nucleon structure?

Gold nucleus

R = 1.2A1/3

Volume =
4

3
πR

3
! 1400fm

3

A single nucleon, r = 1 fm, has a volume of 4.2 fm3 
197 times 4.2 fm3 ≈ 830 fm3

60% of the volume is occupied - very closely packed!

Even for a 1 fm separation, 
the central density is about 

4x nuclear matter

To which nucleon does the quark belong?



Sensitivity to non-hadronic components

13

out as source of the EMC effect, because they would require very large non-hadronic components
which were often excluded by other measurements. Figure 12 provides a simple example: It shows
the nuclear structure function for deuterium, as calculated from a convolution of neutron and proton
structure functions (red), and compares it to the structure function obtained by assuming that 5%
of the deuteron wave function is described by a 6-quark bag, using the model of Mulders and
Thomas [34] for the quark distribution for the 6-q bag. The difference is at most 2% throughout
the region of large EMC effect (0.3 < x < 0.8), and so one would need an extremely large exotic
component in nuclei to explain the EMC effect in terms of this kind of non-hadronic contribution in
nuclei.

FIG. 12: The left figure shows the Deuteron valence quark distribution from a convolution of proton and neutron quark
distributions (dashed red), and with the inclusions of a 5% 6-quark bag component (blue). The dotted green line shows the
contribution from the 6-quark bag component. The right figure shows the ratio of F2 with the 6-quark bag contribution to F2

with no 6-quark contribution.

Many of these early models attempted to explain the entire EMC effect in terms of exotic expla-
nations, while we now know that much (if not all) of the effect at large x is due to binding. While
there is insufficient data at present to make precise comparisons between calculations of binding
effects and the data, it is clear that non-hadronic degrees of freedom do not need to be large enough
to explain the 10-20% modifications to the quark distributions in nuclei.

One can gain orders of magnitude more sensitivity to such configurations by examining the struc-
ture function at x > 1. A six-quark bag contribution breaks down the individual identities of the
two nucleons, allowing a greater sharing of momentum between the quarks in the two nucleons and
enhancing the distribution of high-momentum quarks. While this has a small impact in the region of
the EMC effect, it has a much larger effect at x > 1, where the quark distributions fall off extremely
rapidly. Figure 13 shows the same models of the quark distributions in deuterium as Fig. 12: A
convolution of proton and neutron quark distributions, and a mix of 95% proton plus neutron, and
5% contribution from a 6-quark bag. In this case, the quark distribution for the simple convolu-
tion model dies off rapidly above x = 1, and so the contribution from the 6-quark bag can lead to
enhancements of 100’s of percent in the structure function, compared to the percent level effects
observed for x < 1. While we show here the example of a 6-quark bag, any configuration in which
there is direct sharing of the momentum between the quarks in the two nucleons will lead to an
enhancement of this kind, with a similar increase in sensitivity in these large x structure functions.
Larger effects might be observed in heavier nuclei, but one needs a quantitative understanding of the
distribution of high momentum nucleons to provide a reliable “baseline” calculation for the purely
hadronic picture. Measurements of quasielastic scattering at large missing momentum, planned for 6
and 12 GeV, combined with the large x ratios proposed here, should provide significant information
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on the short range correlations that provide the high-momentum part of the spectral function, and
allow us to separate the contribution of superfast quarks that come from high-momentum nucleons
and those that come from other configurations in nuclei.

FIG. 13: Same as Fig. 12, but showing the effect of a small 6-quark bag component in the large x region. The blue circles
indicated the projected measurements, with uncertainties smaller than the points shown.

Here we will be DIS dominated at least up to x = 1.3; however, for higher x values, the quality of
scaling at lower Q2 indicates that deviations from the scaling limit should be relatively small even
for x = 1.4 − 1.5 . Our measurements of the Q2-dependence for selected targets will allow us to
investigate this.

We can see from Fig. 6 that for large x and Q2, the scattering is dominated by scattering from
the short range correlations in nuclei. This makes it clear that it will still be important to have
quantitative measurements of the contributions of short range correlations, although any uncertainty
in our knowledge of the strength and detailed structure of these contributions will partially cancel
in the ratio. It also provides another way to view the sensitivity to these non-hadronic components.
The cross section is dominated by scattering from these short range correlations, which represent
two or more nucleons in very close proximity, and therefore represents scattering from a high density
configuration in the nucleus. It is then natural that one would have much greater sensitivity to
modification of the nucleon structure when using the scattering kinematics to isolate scattering from
high density configurations, thus probing the quark structure as a function of local density, rather
than average nuclear density.

V. OTHER TOPICS OF INTEREST

In addition to providing information about short range correlations and parton distributions at
x > 1, these measurements will provide data that can be used to study duality and to make precise
measurements of the nuclear dependence of QCD moments. Current moment analyses are limited
at moderate to high Q2 values by the knowledge of the structure function at x > 1, especially for
the higher moments [35]. Combining this data with lower x measurements from duality studies of
hydrogen and deuterium will allow a more precise determination of the first several moments of the
nuclear structure function. A comparison of the moments of deuterium and hydrogen may allow a
determination of the moments for the neutron without some of the theoretical ambiguities that arise
when attempting to directly extract the neutron structure function from data on nuclei.

This data will also provide new ways to probe the details of duality in nuclei [4, 30, 36, 37]. Studies
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Two measurements (very high Q2) 
exist so far: 
CCFR (ν-C): F2(x) ∝ e-sx     s = 8

BCDMS (μ-Fe): F2(x) ∝ e-sx  s = 16 

Limited x range, poor resolution 
Limited x range, low statistics

With 11 GeV beam, we should 
be in the scaling region up to 
x≈1.4
 

Quark distributions at x > 1
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FIG. 10: CCFR distribution of events as a function of x, compared to some PDF fits (top right and lower left), and compared
to a fit of F A

2 ∝ exp (−sx), for s=8.3 (lower right).

FIG. 11: BCDMS 200 GeV muon data from C. An exponential fit of F A
2 ∝ exp (−sx)) agrees with the JLAB 89-008 data with

an exponent s # 16 when fit in ξ

dependence was in general agreement with the BCDMS measurement with F A
2 ∝ exp (−sξ) with

s # 16. However, there are significant contributions from the quasielastic peak in the vicinity of
ξ = 1 at these kinematics, and there is still some Q2 variation to the structure function fall off at
the largest Q2 values from E89-008. With the proposed measurements, we can reach Q2 values of 20
GeV2 for ξ ≥ 1, where quasielastic scattering is only a small contribution to the total cross section
and scaling violations should be much smaller than those observed in previous measurements.

B. Sensitivity to Quark Degrees of Freedom in Nuclei

The EMC effect provides clear evidence that the quark distribution in nuclei is not a simple sum
of the quark distributions of it’s constituent protons and neutrons. Many explanations of the EMC
effect were proposed which involved non-hadronic degrees of freedom in the nucleus. Many were ruled
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Approach to Scaling - Deuteron
Dashed lines are 
arbitrary normalization 
(adjusted to go
through the high Q2 
data) with a constant 
value of dln(F2)/dln(Q2 )

filled dots - experiment with 11 
GeV

Next slide



5.2 (GeV/c)2 7.4 (GeV/c)2

Approach to Scaling (Deuteron)

Convolution model
QES
RR (W2 < 4)
DIS (W2 > 4)

Scaling appears to work well even 
in regions where the DIS is not 
the dominate process
We can expect that any scaling 
violations will melt away as we go 
to higher Q2

QES < RR >> DIS QES ≅ DIS << RR



Approach to Scaling (Carbon)

Convolution model
QES
RR (W2 < 4)
DIS (W2 > 4)

5.2 (GeV/c)2 7.4 (GeV/c)2

Scaling appears to work well even 
in regions where the DIS is not 
the dominate process
We can expect that any scaling 
violations will melt away as we go 
to higher Q2

QES < RR >> DIS QES ≤ DIS = << RR



Inclusive DIS at x > 1 at 12 GeV
• New proposal approved at last JLAB 

PAC

• Target ratios (and absolute cross 
sections) in quasielastic regime: map out 
2N, 3N, 4N correlations

• Measure nuclear structure functions 
(parton distributions) up to x = 1.3 - 1.4

• Extremely sensitive to non-hadronic 
configurations

• Targets include several few-body nuclei 
allowing precise test of theory.

• Extend measurements to large enough 
Q2 to fully suppress the quasielastic 
contribution

• Extract structure functions at x > 1

• Q2 ≈ 20 at x=1, Q2 ≈ 12 at x = 1.5



Predictions for 11 GeV

Quark distributions at x > 1

13.2 (GeV/c)2

Convolution model
QES
DIS + RR

17.3 (GeV/c)2

Deuteron is worst case 
as narrow QE peak 
makes for larger scaling 
violations

Deuteron

Deuteron



Convolution model
QES
DIS + RR

Predictions for 11 GeV
 

17.3 (GeV/c)2

Quark distributions 
at x > 1

13.2 (GeV/c)2

Carbon

Carbon



 Kinematic range to be explored

Black - 6 GeV, red - CLAS, blue - 11 GeV

SRC, n(k), FSI, σ

super-fast quarks,
quark distribution functions

medium modifications
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• High Q2 scattering at x>1 holds great promise and is not nearly fully 
exploited.

• Window on wide variety of interesting physics.

• Provides access to SRC and high momentum components through 
y-scaling, ratios of heavy to light nuclei, φ’-scaling

• Testing ground for EMC models of medium modification, quark 
clusters, and other non-hadronic components 

• DIS is does not dominate over QES at 6 GeV but should be at 11 
GeV and at Q2 > 10 - 15  (GeV/c)2. 

• Experiments are relatively straightforward. JLAB at 12 GeV will 
significantly expand the coverage in x-Q2

Summary



http://faculty.virginia.edu/qes-archive/index.html

http://faculty.virginia.edu/qes-archive/index.html
http://faculty.virginia.edu/qes-archive/index.html
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Preliminary Results - 12C
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Preliminary Results - 197Au
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