Introduction	Analysis	Results	Conclusion
000 000	00 00		

Short-Range Correlations In ${}^{12}C(e, e'pn)$

Ramesh Raj Subedi (For E01-015 and Hall A collaborations) Kent State University Kent, OH 44242

> DNP Meeting (Oct 25-28, 2006) Nashville, TN

Short-Range Correlations In ${}^{12}C(e, e'pn)$

Introduction	Analysis	Results	Conclusion
000	00		

Correlations account for deviations from mean field behavior of nucleons.

- 100% occupancy from shell model.
- ~60-75% occupancy from (e, e'p) studies.
- Short-range and long-range correlations may account for the descripency.
- Major contribution from short-range correlations.

Plot from: L. Lapikas, Nucl. Phys. A553(1993) 297c.

Introduction	Analysis	Results	Conclusion
000	00 00		

Brookhaven EVA Collaboration result

BNL experiment in $^{12}C(p, ppn)$ reaction showed a clear back-to-back nature of correlated np-pairs inspiring the present experiment.

A. Tang et al., Phys. Rev. Lett. 90 (2003) 042301.

Introduction	Analysis	Results	Conclusion
00 000	00		

Jefferson Lab Hall A Short-Range Correlations Experiment: E01-015

- Studying semi-exclusive ${}^{12}C(e, e'p)$ and exclusive ${}^{12}C(e, e'NN)$ reactions at $Q^2 = 2$ (GeV/c)² and $x_B = 1.2$ in anti-parallel kinematics.
- Extracting $\frac{{}^{12}C(e,e'pp)}{{}^{12}C(e,e'p)}$ and $\frac{{}^{12}C(e,e'pn)}{{}^{12}C(e,e'p)}$ cross section ratios.
- Extracting $\frac{{}^{12}C(e,e'pn)}{{}^{12}C(e,e'pp)}$ cross section super-ratio.
- This talk concentrates only in ${}^{12}C(e, e'pn)$ analysis.

Introduction	Analysis	Results	Conclusion
000 ●00	00		

Bird's Eye View of Jefferson Lab Accelerator Site

Short-Range Correlations In ${}^{12}C(e, e'pn)$

Introduction	Analysis	Results	Conclusion
000 000	00 00		

Typical Kinematic Setup

Short-Range Correlations In ${}^{12}C(e, e'pn)$

Analysis

Results

Conclusion

Detectors in real life

Introduction	Analysis	Results	Conclusion
000	••		
000	00		

Hall A high resolution spectrometers (HRS) response

- Coincident time between two HRS's: the signal is almost background free and has σ about 0.5 ns.
- 2ns beam structure is also seen.

Introduction	Analysis	Results	Conclusion
	00		
000	00		

Neutron Detector check

 Detector check for *D(e, e'pn)* using low energy (2.345 GeV) beam.

Neutron TOF [ns] from low energy D(e,e'pn)

Introduction	Analysis	Results	Conclusion
000	00		

 Detector check with high energy (4.6275 GeV) beam for D(e, e'pn).

Neutron TOF [ns] from high energy D(e,e'pn)

Introduction 000 000	Analysis ○○ ○●	Results 00	Conclusion

Introduction	Analysis	Results	Conclusion
000 000	00	0	

Back-to-back correlations revisited

Short-Range Correlations In ${}^{12}C(e, e'pn)$

Introduction

Analysis

Results ○● Conclusion

Main result

- The yield ratio
 ¹²C(e,e'pn)
 ¹²C(e,e'p)
 has only
 efficiency correction but
 not the neutron detector
 angular acceptance
 correction.
- Preliminary analysis after angular acceptace correction (not shown) shows the yield ratio as little less than 1.0 indicating that the SRC is np-pair dominating.

Introduction 000 000	Analysis 00 00	Results 00	Conclusion ●○

Conclusion I

- First time commissioning of BigBite at Jefferson lab looks successful.
- Newly built large acceptance neutron detector working well.
- Neutron detection efficiency of the neutron detector turns out to be $\sim 17\%$ for the neutrons above 350 MeV/c momenta.

Introduction	Analysis	Results	Conclusion
			00
000	00		

Conclusion II

- Observed clean back-to-back np-pairs.
- $\frac{{}^{12}C(e,e'pn)}{{}^{12}C(e,e'p)}$ yield ratio looks promising.
- In a preliminary analysis, the yield ratio of ¹²C(e,e'pn)/(12C(e,e'p)) is about 10-times higher than that of ¹²C(e,e'pp)/(12C(e,e'p)). This shows the dominance of np-pair short-range correlations over pp-pair.