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Introduction - Short range correlations in nuclei - 
questions and summary of E850 result

Theoretical expectations for SRC related properties of 
nuclear wave function/spectral function, decay function

Theoretical analysis of E850 (p,2p), (p,2pn) data

Other SRC related hard phenomena: (e,e’) at x> 1, fast 
backward particle production

Summary and outlook
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Old and persistent question: Why nuclei do not collapse into 
a system of size of a nucleon/ quark soup?

Traditional answer:  Short-range 
repulsion between  nucleons - repulsive core

S=1, T=0
S=1, T=1

S=0, T=1
S=0, T=0V(r)[MeV]

r[fm]

Most important 
configurations are singlet 

even and triplet even
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Strong repulsion at r< rc~0.4 fm !!!

Does it makes sense to speak in this situation about nucleons 
since                                  rN =

〈
r2
pe.m.

〉1/2
≈ 0.8 fm and rc ! 2rN ?

Quark distribution in the nucleon is  ρN(r)= exp(-μr), μ=0.8 GeV 

2ρN(rc/2) =ρN(0)⇒ rc =.35 fm

Short-range NN 
correlations (SRC) have 
densities comparable to 
the density in the center of 
a nucleon - drops of cold 
dense  nuclear matter
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Microscopic 
nuclear structure

& study of cold dense nuclear 
matter - complementary to 
studies of hot dense matter

Quark vs hadronic degrees 
of freedom in nuclei

Origin of intermediate and 
short range nucleon-

nucleon
 forces- quark vs meson 

exchanges

M
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Meson Exchange                                    Quark interchange
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Dynamics of  neutron star 
formation and structure

SRC

Events generators for heavy ion 
collisions - fluctuations in 

central collisions
Baym, Blattel and F &S 93

still not implemented
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Short-range correlations in nuclei - for years referred as an elusive though 
important feature of the nuclear wave structure.

 For our purposes medium range D-wave correlations are included in this definition - 
which is a physical/practical one - removal of one  nucleon  of the correlation leads to a 
release of the second one.  

Two nucleon short-range correlation.V(r)

!k1

!k2

!k1 + !k2 ≈ 0
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To resolve short-range structure of nuclei on the level of nucleon/hadronic 
constituents one needs processes which transfer to the nucleon 
constituents both energy and momentum larger than the scale of the 
NN short range correlations q0 ≥ 1GeV, !q ≥ 1 GeV

⇒ Need to treat the scattering processes in the relativistic domain.  There is 
a price to  pay:  relativistic (light-cone) treatment of the nucleus - however 
in broad kinematic range a smooth connection with nonrelativistic 
description of nuclei.

  Will discuss this later  in the talk.
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Corollary: Properties of nuclei seen by low energy probes 
described well using notion of quasiparticles - 
SRC effects are hidden in parameters of these 
quasiparticle.



Textbook 
picture of 

nuclei: p p
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Nucleons occupy 
the lowest levels 
given by the shell 

model

removal of a nucleon 

s-level

p-level

residual  nucleus in ground or excited 
state of the shell model Hamiltonian

What happens if a nucleon is removed from the nucleus?
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Analysis of PRL in press

PRL 04

BNL E850 data
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removal of a proton with 
momentum > 250 MeV/c 

 ~90% probability of emission of 
neutron with similar but opposite  

momentum

p

p
p

p n n

nn

Jlab preliminary:  
~10% probability 

of proton emission
+

at energy and momentum 
transfer ≥ 3 GeV
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Abstract: We analyze recent data from high-momentum-transfer (p, pp) and (p, ppn) reactions
on Carbon. For this analysis, the two-nucleon short-range correlation (NN-SRC) model for backward
nucleon emission is extended to include the motion of the NN-pair in the mean field. The model is
found to describe major characteristics of the data. Our analysis demonstrates that the removal of a
proton from the nucleus with initial momentum 275−550 MeV/c is 92+8

−18% of the time accompanied
by the emission of a correlated neutron that carries momentum roughly equal and opposite to the
initial proton momentum. Within the NN-SRC dominance assumption the data indicate that the
probabilities of pp or nn SRCs in the nucleus are at least a factor of six smaller than that of pn
SRCs. Our result is the first estimate of the isospin structure of NN-SRCs in nuclei, and may have
important implication for modeling the equation of state of asymmetric nuclear matter.

PACS numbers: 21.60.-n, 24.10.-i, 25.40.Ep

Studies of short-range nucleon correlations (SRCs)
in nuclei are important for understanding the short-
distance and large-momentum properties of nuclear
ground state wave functions. The relevant distances in
two-nucleon (NN)-SRCs are expected to be comparable
to that in neutron stars corresponding to 4-10 times the
central density of nuclei [1]. Thus SRC studies are essen-
tial in understanding the structure of cold dense nuclear
matter. In this context the isospin content of SRCs (i.e.
pn vs. pp and nn pairs) is important for understanding
the structure of nuclear matter made of either protons or
neutrons. Studies of SRCs also give the best hope of un-
derstanding the nature of the short-range NN repulsion.

SRCs in nuclei have been actively investigated for
over three decades (see e.g.[2]). However, experimen-
tal studies of the microscopic structure of SRCs were
largely restricted due to moderate momentum-transfer
kinematics in which it is difficult to resolve SRCs. Re-
cently, several experiments [3, 4, 5, 6, 7] made noticeable
progress in understanding dynamical aspects of SRCs.
For Q2 > 1 GeV2, Refs [4, 5] observed Bjorken xB scal-
ing for ratios of inclusive (e, e′) cross sections of nuclei
A to the 3He nucleus when xB ≥ 1.4. This confirms
the earlier observation of scaling for nucleus-to-deuteron
cross section ratios[8, 9], and indicates directly that the
electrons probe high-momentum bound nucleons coming
from local sources in nuclei (i.e. SRCs) with properties
generally independent of the non-correlated residual nu-
cleus.

Based on the NN-SRC picture, which is expected to
dominate the internal momentum range of ∼ 250 −
600 MeV/c, one predicts a strong directional (back-
to-back) correlation between the struck nucleon and
its spectator in the SRC. Experiments[3, 6, 7] mea-
sured triple-coincidence events for the 3He(e, e′pp)X and
12C(p, ppn)X reactions, and clearly demonstrated the ex-
istence of such directional correlations. They also re-

vealed a noticeable momentum distribution of the center
of mass (c.m.) of the NN-SRCs.

In this work we extend the NN-SRC model used in
the analyses of A(p, pp)X data[10], to incorporate the
effects of the c.m. motion of SRCs. This allows us to
estimate the probability for correlated neutron emission
following removal of a fast proton from the nucleus in
(p, ppn) reactions. Based on this model we extract from
the data an upper limit to the relative probabilities of pp
and nn vs pn SRCs in 12C.

The measurements of 12C(p, ppn)X reactions[6, 7]
were performed with the EVA spectrometer at the AGS
accelerator at Brookhaven National Laboratory [11, 12].
EVA consists of a 0.8 T superconducting solenoid, 3.3 m
long and 2 m in diameter. The 5.9 − 9.0 GeV/c pro-
ton beam was incident along the central axis. Coinci-
dent pairs of high transverse-momentum protons were de-
tected with four concentric cylinders of straw tube cham-
bers. The experimental kinematics are discussed in more
details later. Neutrons were detected in coincidence with
the quasi-elastic knockout of protons from 12C. The large
momentum transfers −t ≥ 6 GeV 2 in these processes
greatly improve the resolving power of the probe and
validate the instantaneous approximation for description
of the removal of fast bound proton in the pp → pp sub-
process. For each (p, pp) event, the momentum of the
struck proton !p2 before the reaction was reconstructed
and compared (event by event) with the measured coin-
cident neutron momentum !pn. Due to the ∼ s−10 depen-
dence of the underlying hard pp → pp cross section, the
scattering takes place preferentially off a bound proton
with large |p2| in the direction of the beam (minimiz-
ing s)[13], and hence should lead to a significant rate of
emission of backward correlated nucleons due to scatter-
ing off NN-SRCs. Data confirming these characteristics
of A(p, ppn)X reactions are shown in Fig. 1 for 12C. The
data show no directional correlation for neutrons with

~100 % correlation! & much stronger dominance of pn correlations than 
according to naive SU(4) symmetry estimate:n/p ~2
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Effect was predicted in 

based on our previous studies of the short-range correlations effects in 
hard high energy phenomena
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Nonrelativistic approximation (A=many nucleon system described by the 
Schrodinger equation) expectations for  SRC
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8.3.2. Properties of the spectral function at large nucleon momenta

In order to foresee the pattern of y-scaling violation and the range of applicability of the scaling laws derived
in section 8 8.2, and to explain what numerical calculations are needed now it is necessary to analyse the general
properties of PA(k,E) at large k. (Remember that at present no calculations of PA(k,E) exist for large k and A > 3,
due to the lack of an effective procedure to calculate the N > 2 nucleon wave function for the continuum.) The
straightforward generalization of this analysis will also be of use in the discussion of the properties of the light-cone
spectral function in section 8 8.4.

For potentials singular for r → 0 the dominant contribution to nA(k) at large k is evidently given by the two-nucleon
correlations, i.e., by configurations where the momentum of the fast nucleon is balanced by one nucleon (see fig. 8.6),
i.e.

nA(k) ∼
k→∞

ψ2
2N(k) ∼ ψ2

D(k). (8.33)

Here ψ2N(k) (ψD(k)) is the high-momentum component of the two-nucleon (deuteron) wave function. In the current
calculations of nA(k) for different nuclei (3He, 4He, 16O) eq. (8.33) is approximately satisfied for k ! (0.3−0.4) GeV/c.
In principle the high-momentum behaviour of ψ2

2N(k) depends on the quantum numbers of the two-nucleon system;
spin, isospin, orbital momentum, and it could be different from ψ2

D(k).
Provided that the internucleon potential V (k) is local and

V (k)
∣∣
k→∞∼ k−n, (8.34)

with n > 1, the behaviour of nA(k) for k → ∞ is controlled by the Born diagram of fig. 8.7 and therefore [466, 467]

nA(k)
∣∣
k→∞∼ V 2(k)

k4
. (8.35)

It follows from the above discussion (eqs. 8.34 and 8.35) and the relation between nA(k) and PA(k,E) (eq. 8.26)
that at large k the dominant contribution to

∫
PA(k,E)dE arises from the region of large E:

E(k) + ER(k) ∼ k2/2m. (8.36)

Note that on average the interaction between the remaining nucleon of the two-nucleon correlation and the rest of
the residual nucleus tends to reduce E(k) but by a small amount (% k2/2m for large k). Equation (8.36) reasonably
agrees with the trend observed in a numerical calculation of P3He(k,E) [468].

An immediate consequence of eqs. (8.36) and (8.27) – which in fact follows from the kinematical analysis of section
8 8.2 8.2.1 – is that the states with E(k) satisfying eq. (8.36) do not give a contribution to the cross section of
reactions (8.1) and (8.2) for x > 2. Consequently, for large negative y such that x(y,Q2 → ∞) < 2, the right-hand
side of eq. (8.34) should considerably increase with Q2 until Emax in eq. (8.31) reaches the value given by eq. (8.36)
(i.e., until x(y,Q2) becomes smaller than 2; for y = −0.4 GeV/c and A & 1 this corresponds to Q2 > 2 GeV2).
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General considerations -  asymptotic of the wave function is determined by 
the singularity of the potential

For the single nucleon density matrix

➠

nA(k) =
∫

d3kiψ
2
A(ki)δ(k − k1)δ(

A∑

1

ki)

nA(k)|k→∞ = a2(A)ψ2
D(k)

k>kF?
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n(k) for 2H, 4He 16O, nuclear matter

Pieper et al 92

Consistent with  a fast onset of the asymptotic behavior above the 
Fermi momentum 

a2(n.m.) ~ 5÷6
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Deuteron wave function

CD  Bonn

v18 Argonne 

Large differences between in nD(p) for p>0.4 GeV/c  - absolute value and 
relative importance of S and D waves between currently popular models for 
though they fit equally well pn  phase shifts. Traditional nuclear physics probes 
are not adequate to discriminate between these models.

D-wave dominates in a large momentum range above 300 MeV/c.
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Deuteron: Manifestation of Correlations

MS = 0
1√
2
(
∣∣↑↓

〉
+

∣∣↓↑
〉
)

MS = ±1∣∣↑↑
〉
,

∣∣↓↓
〉

z ! spin-projected two-body
density ρ(2)

1,MS
("r)

! exact deuteron solution
for Argonne V18 potential

two-body density fully
suppressed at small particle

distances |"r|

central correlations

angular distribution
depends strongly on relative

spin orientation

tensor correlations

9

Strong dependence of deuteron space density on spin state of 
nucleons for small distances/large momenta 

Tensor correlations - couple the relative spacial / momentum orientation of 
to nucleons with their spin orientation.  Predominantly I=0,S=1  - pn pairs

Cannot be described by a single or superposition of few Slater 
determinants. Only recently implemented in many body calculations.

⇐

Tensor (D-wave) SRC should be very important in nA(k)
14



Nucleon Momentum Distributions
Other Observables
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Neff et al 03M. ALVIOLI, C. CIOFI DEGLI ATTI, AND H. MORITA PHYSICAL REVIEW C 72, 054310 (2005)

FIG. 11. The momentum distributions of 16O corresponding to
harmonic oscillator (top) and Woods-Saxon (bottom) wave functions,
giving the best density shown in Fig. 8. The thin solid curves include
only the central correlation function, whereas the thick solid curves
include all of them. Our results are compared with the results of
Ref. [7] (stars), obtained with the same correlation functions. The
results of Ref. [5] obtained within the variational Monte Carlo
approach using the AV 14 interaction are also shown by full squares.
The value of the kinetic energy obtained by integrating n(k) are
〈T 〉 = 297.87 MeV (central, HO), 〈T 〉 = 476.55 MeV (full, HO);
〈T 〉 = 306.99 MeV (central, WS), and 〈T 〉 = 494.48 MeV (full,
WS). In this and the following figures, the normalization of n(k) is
4 π

∫
n(k)k2dk = 1.

For the TBD matrix one obtains

ρSM
2 (r1, r2) = 1

2

∑

αβ

[ ϕ&
α(x1) ϕ&

β(x2) ϕα(x1) ϕβ(x2)

−ϕ&
α(x1) ϕ&

β(x2) ϕβ(x1) ϕα(x2)]

= 1
2

4 [4 ρo(r1) ρo(r2) − ρo(r1, r2) ρo(r2, r1)],

(45)

where ρo(r i) = ρo(r i , r i).
When OBMD matrix (21) is evaluated with correlated wave

functions (6) at first order of the η expansion, the following

FIG. 12. The same as in Fig. 11, but for 40Ca and correlation
functions from Fig. 4 and mean-field wave functions giving the best
charge density of Fig. 9. The value of the kinetic energy obtained
by integrating n(k) are 〈T 〉 = 782.87 MeV (central, HO), 〈T 〉 =
1178.45 MeV (full, HO); 〈T 〉 = 836.24 MeV (central, WS), and
〈T 〉 = 1245.21 MeV (full, WS).

expression is obtained:

ρ(r1, r ′
1) = ρSM(r1, r ′

1) + ρH (r1, r ′
1) + ρS(r1, r ′

1), (46)

FIG. 13. The effect of the various correlation functions on the
momentum distribution of 16O. f1 approximation, only central corre-
lation; f3 approximation, f (2) = f (3) = f (5) = 0; f6 approximation,
full correlation set, n = 1, . . . , 6. Calculations were performed with
correlation functions from Fig. 3 and HO wave functions.
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nA(k) for large k are 
quite different for 

different potentials, 
but a2 values are 

rather close

Calculations confirm dominance of tensor forces, but relative contribution of 
central forces varies from 

  
10 to 20 %

important number for interpretation of E850 pn rates, will use later
←
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Can one check whether indeed the tail is due to SRCs?

Consider distribution over the residual energies, ER, for A-1 nucleon system 
after a  nucleon with momentum k was instantaneously removed -  

PA(k, Er), nA(k) =
∫

dERPA(k, Er)

nuclear spectral function

for 2N SRC: 〈ER(k)〉 = k2/2mN
FS81-88

Confirmed by numerical calculations
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k=1.5 fm-1

k=2.2 fm-1

k=3.0 fm-1

k=3.5 fm-1

Points  are numerical calculation of the 
spectral functions of 3He and nuclear 
matter - curves two nucleon 
approximation from CSFS 91

Numerical calculations in NR quantum mechanics confirm dominance of two 
nucleon correlations in the spectral functions of nuclei at k> 300 MeV/c - could 
be fitted by a motion of a pair in a mean field   (Ciofi, Simula,Frankfurt,  MS - 
91).  However  numerical calculations ignored three nucleon correlations - 3p3h 

excitations. Relativistic effects maybe important rather early as the 
recoil modeling does involve k2/mN2 effects.
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In addition to 2N correlations higher order correlations
120

FIG. 8.8:

FIG. 8.9:

This phenomenon was observed numerically in the behaviour of P3He(k,E) and F3He(y,Q2) calculated using realistic
two-nucleon potentials [462].

To illustrate that nucleon configurations are important at x > 2 − 2.5 and large Q2 (i.e. large k) let us consider
the case of a three-nucleon system. It follows from the kinematical analysis of section 8 8.2 8.2.1 that in the case of
γ∗ scattering from a three-nucleon system at x > 2 and sufficiently large Q2 the momenta of both spectator nucleons
should be large. Thus, similar to the above analysis of nA(k) we can use as a guide for the behaviour of P3(k,E) at
large k the perturbation expansion in V (k).

The first obvious contribution is due to configurations in the ground state wave functions of the nucleus where the
momenta of all three nucleons are large. The leading diagrams for the ground state wave function of the nucleus for
such configurations are presented in fig. 8.8. Their contribution is proportional to (e.g. for fig. 8.8b)

PA(k,E)
∣∣
E<const., k→∞∼

(
V (k/2)
(k/2)2

)4

∼ n2
A(k/2). (8.37)

A comparable contribution to PA(k,E) is due to the overlap integral between the configuration of two nucleons in
the initial wave function with momenta p1 ∼ 0, −k and the final state wave function of the two-nucleon system with
momenta k1 ≈ k2 (see fig. 8.9). The final answer has the same form as in eq. (8.37). [We use here eqs. (8.33) and
(8.35) to estimate ψNN(k/2).]

The diagram in fig. 8.8 is typical for three-nucleon correlations, i.e., for configurations in the wave function of the
nucleus where three nucleons are at small relative distances. The contribution of diagrams like that in fig. 8.9 to
PA(k,E) in the kinematic region discussed is determined by configurations in the nuclear wave function where nucleons
3 and 2 belong to a two-nucleon correlation and thus are close to each other. Since the contribution of diagrams like
that in fig. 8.9 is proportional to

∫
ψ3(k,−k−p1, p1)d3p1, the relative coordinate between the two-nucleon correlation

and the spectator nucleon (1), r32,1 = (r3 + r2)/2 − r1, is also small. Thus, we conclude that for x > 2 − 2.5 and
large Q2 the cross section of the (e, e′) reaction from a three-nucleon system seems to be determined by the term in
P3(k,E) arising from the configuration of three nucleons when all internucleon distances are smaller than average.
The k dependence of this contribution at large k is qualitatively different from that of nA(k).

Digression. Suggestions for future calculations of PA(k,E). Realistic two-nucleon potentials correspond to a rather
complicated behaviour of V (k) at large k; so it would be quite instructive to compare numerical calculations of
P3(k,E) and nA=3, 4,...(k) with the above analysis. These calculations will be of much use for the applications of
light-cone quantum mechanics to high-energy processes as well. For convenience of practitioners of such calculations
we summarise here the quantities of interest.

(1) nA(k) at k > 0.3− 0.4 GeV/c for realistic two-body NN potentials, possibly with account of three-body forces.
(2) Check of the validity of the two-nucleon approximation eq. (8.33) by studying how large a nucleon momentum

k is balanced in ψA.
(3) Analysis of the range of applicability of eq. (8.37).
(4) Study of the relative importance of the contributions to P3(k,E) of terms like the diagrams in figs. 8.8 and 8.9,
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(1) nA(k) at k > 0.3− 0.4 GeV/c for realistic two-body NN potentials, possibly with account of three-body forces.
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k is balanced in ψA.
(3) Analysis of the range of applicability of eq. (8.37).
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PA(k, ER(k))|k>kF
=

A∑

j=2

Pj(k, ER(k))

A new quantity to provide even cleaner test of the structure of SRCs- nuclear 
decay function (FS 77-88) - probability to emit a nucleon after removal 
of a fast nucleon. For 2N SRC  can model decay function as decay of a 
NN pair moving in mean field (like for PA)                 Piasetzky et al 06

Studies of the spectral and decay function of 3He reveal both two 
nucleon and three nucleon correlations - Sargsian et al 2004
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The EVA spectrometer and the neutron counters:



Very good resolution in E − pz = (m2
N + p2

t )/(E + pz)

LC variables:

p1incident proton

interaction proton 
from the target

p2

➠ excellent resolution in α = α1 + α2 − αinc.nucl.



Relativistic 
projectile

t1, z1 t2, z2

t1 − z1 = t2 − z2

⇒ High energy process develops along the light cone. 

Similar to the perturbative QCD the amplitudes of the processes 
are expressed through the wave functions on the light cone. Note: 
in general no benefit for using LC for low energy processes.

22

However for low momentum component in nuclei and for 2N SRC 
correspondence with nonrelativistic wave functions is unambiguous and  
rather simple            FS76



High energy processes are dominated by  interactions near light cone- 
hence their cross sections are simply expressed through light cone wave 

functions. 

80

FIG. 6.1: Prediction of eq. (6.2) for F (N)
2C (x ≥ 1, Q2) for several nuclear wave functions.

arise from some kind of superdense configurations either consisting of few nearby nucleons with large momenta or a
more complicated multiquark configuration. Consequently, the dependence of F2A(x,Q2) for x > 1 on the average
nuclear density 〈ρ〉 should be more pronounced F2A(x,Q2)

∣∣
x>1

∝ 〈ρ〉n, n > 1, see below] than for the kinematical
region of the EMC effect (x ∼ 0.3−0.7), where the small deviation of F2A/F2N from unity is proportional to 〈ρ〉. Thus,
it may provide important information on the equation of state at large densities. Evidently, by measuring F2A(x,Q2)
at x > 1 one can demonstrate the presence of correlations, but cannot determine their quark-gluon structure. For
this purpose a comparison of F2A(x,Q2) with the data on near-threshold (e, e′) reactions and related processes is
necessary. Note also that knowledge of F2A(x,Q2) at x > 1 is necessary for the accurate extraction of ΛQCD from
the measurements on nuclear targets on the basis of the evolution equation. It is easy to demonstrate [321] that the
existing procedure, like, e.g., in ref. [322], where it is assumed that F2A(x,Q2) → 0 for x → 1, underestimates ΛQCD

(Λtrue
QCD − ΛQCD may be as 20 − 30 MeV cf. ref. [323]).
In the pre EMC effect era the value of F2A(x,Q2) at x > 1 has been predicted in ref. [324–326] on the basis of

the few-nucleon correlation model (FNCM) for the single-nucleon light-cone density matrix ρN
A(α, pt) (see summary

in Appendix B). The presence of a large tail of superfast quarks was suggested for deuterons [327]] and nuclei [328]
by assuming that for fast backward pion production58

GA/π
h (xF, pt) ≡

dσ(h + A → π + X)
(dxF/xF) d2pt

∝ F2A(xF, Q2). (6.1)

The calculation of ref. [324–326] neglects possible nonnucleon degrees of freedom and uses the convolution equation
whose derivation was briefly discussed in section 5 5.1 (for a detailed discussion see ref. [320]):

F2A(x,Q2) =
∑

N=p,n

∫
F2N(x/α, Q2)ρN

A(α, kt)
dα

α
d2kt. (6.2)

Since ρN
A(α, kt) at α > 1 rapidly decreases with α (∼ exp−7α), the prediction of eq. (6.2) for the shape of the

x-distribution is rather insensitive to uncertainties in the value of F2N(x,Q2) at x > 0.8 (cf. eq. (5.15) in ref. [320]).
We want to draw attention to the fact that practically the same shape of F2A(x,Q2) is expected in models where the

58 The phenomenological observation that for x ! 0.8, G
p/π+

h (x) ∝ u(x), G
p/π−

h (x) ∝ d(x), was first made in ref. [329]. At x > 0.8, where

the triple-Regge limit contribution dominates, these relations underestimate G
N/π
h (x), e.g. G

p/π+

h (x) ∝ (1− x)2 for x > 0.8 [330]. Note
also that with increasing number of quarks in the system the difference between the behaviour of the pion spectrum for xF → A and
the quark distribution for x → A is expected to become more and more pronounced, e.g. for the deuteron perturbative QCD predicts

[320] G
D/π
h (xF) ∝ (2 − xF)5 for xF → 2, while F2D(x) ∝ (2 − x)10 for x → 2.
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ρp
A(α, k⊥) =

∫
ψ2(α1 . . .αA, k1⊥ . . . kA⊥)

A∏

i=1

dαi

αi
d2ki⊥δ

(
1−

∑
αi

A

)

× δ

( A∑

i=1

ki⊥

) Z∑

i=1

αiδ(α− αi)δ(ki⊥ − k⊥). (2.31)

Here ψ is the light cone nucleus WF, the solution of Weinberg equation (2.29), which is normalized a usually for
bound state:

∫
ψ2(α1 . . .αA, k1⊥ . . . kA⊥)

A∏

i=1

dαi

αi
d2ki⊥δ

(
1−

∑
αi

A

)
δ(

∑
ki⊥) = 1. (2.32)

It is easy to check that ρN
A(α, k⊥) as defined in eq. (2.31) satisfies two important sum rules:

A∫

0

ρN
A(α, k⊥)

dα

α
d2k⊥ = A (2.33)

A∫

0

αρN
A(α, k⊥)

dα

α
d2k⊥ =

A∫

0

ρN
A(α, k⊥)

dα

α
d2k⊥

∑
αi

A
= A. (2.34)

These sum rules can be derived in a somewhat independent way. Eq. (2.33) represents the sum rule for the baryon
charge conservation. It follows directly from the condition that the matrix element of the baryon current at zero
momentum transfer is equal 〈A|jB

0 |A〉/pA|pA→∞ = A. Eq. (2.34) represents the sum rule for the momentum con-
servation. To obtain this sum rule we can use the fact that the matrix element of the energy-momentum tensor
Tµλ(〈A|Tµλ|A〉/p2

A|pA→∞) at zero momentum transfer does not depend on the target. This property of Tµλ is a
consequence of the universality of gravitation.

Comment. To check the consistency of the developed approach one can use the celebrated Adler, Dashen, Gell-
Mann, Fubini sum rules [149, 150] and momentum conservation sum rule [151] valid for an arbitrary target in any
renormalizable quantum field theory (QCD) [152, 153]. The application of these sum rules together with eqs. (2.14)
for the nucleus structure functions leads to eqs. (2.33), (2.34) correspondingly. Note however that both of these sum
rules are not fulfilled in the approaches based on the Bethe-Salpeter WF with the off-mass-shell interacting nucleon
(see the discussion in Appendix A).

2.4.3. Connection with non-relativistic theory of the nucleus

To obtain the usual Schrödinger equation from the Weinberg type eq. (2.29) the approximation

αi

%1− k3i/m, (2.35)

{For authors: Shouldn’t the sign be just % ? } should be used (cf. eq. (2.16)). In this approximation
ρN
A(α, k⊥) is simply related to the single nucleon density matrix n(k):

n(k) =
∫

ψ̃2
A(k1 . . . kA)

∏

j=1

d3kjδ




A∑

j=1

kj




A∑

i=1

δ(k − ki)
A

. (2.36)

Here ψ̃2
A = ψ2

A/mA−2 and therefore
∫

n(k)d3k = A. From the comparison of eqs. (2.35), (2.36) and eq. (2.30) we
have

ρN
A(α, k⊥) = m n(k), k =

√
m2(1− α)2 + k2

⊥. (2.37)

An equivalent though more complicated procedure is to consider IMF diagrams for the nuclear WF and to verify that
the angular condition for an A-nucleon system has the same form as for free nucleon system in the approximation
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Example

Single 
nucleon light 
cone density 

matrix
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where s’ is invariant energy of the h’N system

Cross section of large angle pp scattering is ∝ s-10

⇒ Strong enhancement of the scattering off forward 
moving (α <0.8) nucleons which are likely to 

belong to SRC
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and all were shown on a logarithmic scale to emphasize their

shapes. The data are compared to the calculations in Sec. V.

V. COMPARISON OF THE CALCULATIONS WITH THE

DATA

A. The longitudinal „!… distributions
As was mentioned in Sec. III the calculations are imple-

mented through a Monte Carlo code that allows incorpora-

tion of the theoretical calculations with the multidimensional

kinematic cuts applied in the experiment. The following cuts

have been included in the calculations: !1" The angular and #
acceptances are constrained for the same ranges as presented

in Sec. IV for the data. !2" 60°!$c.m.!120° !for all target
positions". The calculations include all the described nuclear
effects !EMC, ISI/FSI, and CT".
Figure 13 shows the measured longitudinal # distributions

at 5.9 GeV/c and 7.5 GeV/c together with the calculations.

In the calculation we used the two-nucleon correlation model

for the high-momentum component of the nuclear wave

function, discussed in Sec. II. For the parameter a2(
12C)

which defines the strength of the SRC in the nuclear spectral

function %Eq. !9"& we used the value a2'5 obtained from the
analysis of high Q2 and large Bjorken x A(e ,e!)X data Ref.
%15&.
The calculations agree well with the data, (2"0.8 for

5.9 GeV/c and (2"2.0 for 7.5 GeV/c .
The next question we ask is whether the data allow us to

understand the ingredients contributing to the strength of the

# distribution at lower # values.
First, we determine whether the high-momentum-transfer

elastic pp scattering off the bound nucleon still follows the

s#10 energy dependence. In Fig. 14 we compare the calcula-

tions using s-independent ‘‘pp cross sections’’ !triangle
points" and the ‘‘real’’ pp cross sections parametrized ac-
cording to Eq. !10" !solid points". If there were no scaling for
hard pp scattering in the nuclei, the #-distribution would

peak around #"1, as shown by the calculations with no ‘‘s
weighting’’ !triangles". The data clearly show a shift to lower
#, which confirms the strong s dependence of the quasielas-
tic process.

Next we address the question of whether the strength seen

at #!1 comes from SRC in the nucleus. Figure 15 shows

two calculated # distributions for the incoming proton mo-

mentum of 5.9 GeV/c . One distribution is calculated with

the harmonic oscillator wave function only %i.e., a2"0, in
Eq. !9"& !triangle points". The second distribution is calcu-
lated with the SRC contribution to the high-momentum tail

of the nuclear wave function, described by a2"5 !solid
points". These two nuclear wave functions were referred to

FIG. 13. A comparison between calculated # distributions !!"
and the experimental data !"" at 5.9 GeV/c !a" and 7.5 GeV/c !b".

FIG. 14. Calculated longitudinal # distributions with !!" and
without ()) s weighting compared to the measured data !"", at
5.9 GeV/c !a" and 7.5 GeV/c !b".

FIG. 15. Longitudinal # distributions for 5.9 GeV/c !", data;
), calculations with a2"0; !, calculations with a2"5.0).
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024601-11
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for the high-momentum component of the nuclear wave
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Next we address the question of whether the strength seen

at #!1 comes from SRC in the nucleus. Figure 15 shows
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of the nuclear wave function, described by a2"5 !solid
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This prediction agrees well with a detailed analysis of the 
EVA data by I.Yaron, E.Piasetzky, M.Sargsian and F&S  2002 

within 2N SRC model including fsi effects, etc
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Directional correlation

p
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Pn>220 MeV/c

Pn<220 MeV/c

The  EVA/BNL collaboration 

(p,2pn)

(p,2p) data do find high momentum component 
- is it mostly due to 2N SRC?



Probability to emit a neutron in (p,2p):

Triple rate- (p,ppn)

  Double rate (p,2p) corrected for detector efficiency 

This is a lower limit on the coincidence rate since no estimate was made of 
the correction due to the angular acceptance of the neutron detector 
(requires a theoretical model for neutron production).

=

For  Pp>PF,  Pn>PF
( 49 ± 13 ) %

For  Pp<PF,  Pn>PF

0

A.  Tang  et al  Phys.  Rev.  Lett. 90 ,042301 (2003) :

“ Therefore we conclude that 2N-SRC must be a major source of high-momentum 
nucleons in nuclei.”
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New analysis (Piasetzky et al 06):
● Develop a model for the decay function based on 2N SRC - similar to 
the model  for the spectral function:   convolution of (deuteron wave 
function)2 and c.m. of NN pair

2

2

2
rel

2
rel  )(P  ) (P σψρρ

CMP

DCMCMsrcnp eAaPD
−

== )()(

σ is very similar to one calculated by  Ciofi PRC 44(1991)7 in 2N SRC model 
and used to model spectral function 

● A stricter cut on the nucleon momenta: pmin=275 MeV

F = 43+11
−7 %

● Introduced a small correction for absorption been larger for (p,
2pn) than (p,2p) (correction is small since scattering off the edge 
by virtue of large absorption in (p,2p))

The errors are dominated by the statistics of the triple coincidence measurement.

The  measured longitudinal  CM   momentum of  the  correlated  pair is:
σ = 143 ± 17 MeV/c. (PRL 90(2003)042301)
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Define the probability of finding a np-SRC pair:
 

Pnp/X+np

X includes pp pairs, 3N SRC, scattering off  mean field

29

np-SRC dominance:

Increase of  Pnp/X+np    due to Fermi motion of the pair - typical trigger bias effect - selecting a 
fast nucleon triggers on the pairs moving in the same direction and hence having recoil nucleon with 
smaller momentum which has a larger chance to be missed.

First experimental
information on Pnp/X+np 



What is a naive expectation for Pnp/X+np?
Wigner SU(4) symmetry - probabilities of pp, pn, nn pairs are related as :

Ppp:Ppn:Pnn=1: 4:1 
In coincidence  rate pp pairs enter with a factor of 2

Pnp/X+np=2/3

However tensor correlations  are strongly enhanced according to nonrel. 
calculations of n(k).  Scalar ones contribute fraction λ~ 10-20% to n(k) for 
discussed momentum range. Assuming that tensor correlations are predominantly 
pn correlations (likely but not proven), and scalar SRC are isotriplet

➔➠ Data indicate Enhancement 
of pn SRC

Ppp/pp+np=
2
3

λ

1 + λ
= .06÷ .11

Studies of pp/pn yields will allow to discriminate between different models of nuclei/ NN 
interaction at high nucleon densities.
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The pp/pn ratio is likely to depend on the momentum of the struck 
nucleon. For example for 3He for a pn/pp pair with the third nucleon at 
rest. Fermi motion of the pair smears the momentum dependence of the 
ratio (M.Sargsian)
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ΣΣ E850 provided the first direct observation of 2N SRC in nuclei

Established strong dominance of pn SRC correlations

Large pn/pp qualitatively consistent with dominance of tensor 
forces in the high momentum component
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A triple coincidence measurement  of  the  
(e, e’pn)  and  (e, e’pp) reactions

Jlab / Hall A EXP 01-015
Large energy/momentum 
transfer ~ 1GeV is provided 
by electron instead of proton
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Preliminary result for Ppp/pp+Xp= 8±2%
Confirms dominance of pn correlations

Direct measurement of R=σ(e,e’pp)/σ(e,e’ pn) finds R << 1

Proton with momentum 600> p> 300 MeV/c

belongs to a pn correlation with probability  94%≥Ppn ≥74%
belongs to a pp correlation with probability  8%≥Ppp ≥6%

31>”# of pn pairs”/”# of pp pairs” >18.5

Future detailed comparisons of (p,2pn) and (e,e’pn) data - 
important test of universality of the decay function, understanding 
of interaction mechanism

Compare to SU(4) expectation of  4
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Previous less direct evidences for SRC in nuclei

The simplest reaction to check dominance of 2N, 3N SRC 
and to measure absolute probability of SRC is A(e,e’) at x>1

Define x=Q2/2q0mN

x=1 is exact  kinematic limit for all Q2 for the scattering 
off a free nucleon

x=2 (x=3) is exact  kinematic limit for all Q2 for the 
scattering off a A=2(A=3) system (up to <1% correction due 
to nuclear binding

W 2
= Q2

+ 2q0MA + M2

A ≥ M2

A

=⇒ Q2
+ 2q0MA ≥ 0

=⇒ x ≤ MA/mN
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will depend only on the ratio aj(A)/aj(A′). This ‘scal-
ing’ of the ratio will be strong evidence for the dominance
of scattering from a j-nucleon SRC. Note that motion of
the SRC will change the value of the ratio, but not the
scaling itself [7, 8].

Final state interactions (FSI) also can affect the inclu-
sive cross section and must be taken into account . In
SRC studies, FSI consists of two components: interac-
tion of the struck nucleon (i) with other nucleons in the
j-nucleon SRC and (ii) with nucleons in the A−j residual
nucleus. Due to the smaller distances and smaller relative
momenta of nucleons in the SRC, the first component of
FSI dominates [9, 21]. This means that FSI are localized
mainly within SRCs, hence the FSI can modify σ(j) but
not aj(A) (ratios) in the decomposition of Eq. (1)

Since the probabilities of j-nucleon SRC are expected
to drop rapidly with j ( since the nucleus is a dilute
bound system of nucleons) one expects the cross section
ratios of heavy and light nuclei for j < xB < j + 1 to
equal A′

A · aj(A)
aj(A′) . Moreover one expects that the relative

probabilities of j-nucleon SRC should grow with A (for
A ≥ 12) as [4]

aj(A) ∝ 1
A

∫
d3rρj

A(r), (2)

where ρA(r) is the nuclear density. Eq. 2 predicts a faster
increase with A of higher relative correlations, leading to
an expectation of steps in the ratio of σ(A)

σ(A′) for heavy and
light nuclei. Observation of such steps (ie: scaling) would
be a crucial test of the dominance of SRC in inclusive
electron scattering. It would demonstrate the presence
of 3-nucleon SRC and confirm the previous observation
of 2-nucleon SRC.

In particular, for 1.4 < xB < 2 and Q2 > 1.4
(GeV/c)2 one expects [6, 9] that the ratio R(A, 3He) =

3σA(Q2,xB)
Aσ3He(Q

2,xB) of inclusive electron scattering from nucleus
A and 3He is independent of Q2 and xB (ie: it scales).
This scale factor is related to the relative probability of
2-nucleon SRC those nuclei. In our previous work [10] we
directly measured these ratios for the first time and es-
tablished that they indeed scale, confirming findings [9]
which reported scaling based on the comparison of the
data for A ≥ 3 [11–13] and A = 2 [14] obtained in some-
what different kinematic conditions. In this work, we
repeat our previous measurement with higher statistics.

Moreover we can use the ratio R(A, 3He) to search
for the even more elusive 3-nucleon SRC: correlations
which originate from both short-range NN interactions
and three-nucleon forces. As 3-nucleon SRC are very
low-probability, we need to suppress 2-nucleon SRC by
choosing xB > 2 so that ν $ k2/2mN . This analysis was
designed to probe for 3-nucleon correlations by looking
for scaling in the region 2 ≤ xB ≤ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 4He and solid 12C targets. The

2002 measurements used 4.471 GeV electrons incident on
a solid 56Fe target and 4.7 GeV electrons incident on a
liquid 3He target. The 12C and 56Fe data were taken
with an empty liquid-target cell.

Scattered electrons were detected in the CLAS spec-
trometer [15]. The lead-scintillator electromagnetic
calorimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 µ target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of non-uniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM,
to determine the electron acceptance correction fac-
tors, taking into account “bad” or “dead” hardware
channels in various components of CLAS. The mea-
sured acceptance-corrected, normalized inclusive electron
yields on 3He, 4He, 12C and 56Fe at 1 < xB < 2 agree
with Sargsian’s radiated cross sections [16] that were
tuned on SLAC data [17] and described reasonably well
the Jefferson Lab Hall C [18] data.

We calculated the radiative correction factors for xB <
2 using Sargsian’s cross sections [19] and the formalism of
Mo and Tsai [20]. These factors are almost independent
of xB for 1 < xB < 2 for all nuclei used. Since there are
no theoretical cross section calculations for xB > 2, we
used the 1 < xB < 2 correction factors for 1 < xB < 3.

We construct the ratios of inclusive cross sections as a
function of Q2 and xB , with corrections for CLAS accep-
tance, and elementary electron-nucleon cross sections:

r(A, 3He) =
A(2σep + σen)

3(Zσep + Nσen)
3Y(A)

AY(3He)
CA

rad (3)

where Z and N are the number of protons and neutrons
in nucleus A, σeN is the electron-nucleon cross section,
Y is the normalized yield in a given (Q2,xB) bin [32] and
CA

rad is the ratio of the radiative correction factors for A
and 3He (CA

radA = 0.95 and 0.92 12C and 56Fe respec-
tively). In our Q2 range, the elementary cross section
correction factor A(2σep+σen)

3(Zσep+Nσen) is 1.14 ± 0.02 for C and
4He and 1.18 ± 0.02 for Fe. Fig. 1 shows the resulting
ratios integrated over Q2 > 1.4 GeV2.

These cross section ratios a) scale the first time for
1.5 < xB < 2, which indicates that 2-nucleon SRCs dom-
inate in this region (see Ref. [10]), b) increase with xB

for 2 < xB < 2.25, which can be explained by scattering
off nucleons involved in moving 2-nucleon SRCs, and c)
scale a second time at 2.25 ≤ xB ≤ 2.8, which indicates
that 3-nucleon SRCs dominate in this region.

Assuming that the scaling regions indicate the kine-
matical domain where the corresponding SRCs dominate,
the ratio of the per-nucleon SRC probabilities in nucleus
A relative to 3He, a2(A/3He) and a3(A/3He), are just
the values of the ratio r in the appropriate scaling region.
a2(A/3He) is evaluated at 1.5 < xB < 2 and a3(A/3He)

2
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The ratios of inclusive electron scattering cross sections of 4He, 12C and 56Fe to 3He have been
measured at 1 < xB < 3 for the first time. At Q2 > 1.4 GeV2, the ratios exhibit two separate
plateaus, at 1.5 < xB < 2 and at 2.2 < xB . This pattern is predicted by scattering from 2- and
3-nucleon short-range nucleon correlations (SRC). Relative to A = 3, the per-nucleon probabilities
of 3-nucleon SRC are 2.3, 3.2, and 4.6 times larger for A = 4, 12 and 56, which is a faster increase
with A than for 2-nucleon SRC. The increase of the probability of 2- and 3-nucleon correlations
from A = 12 to A = 56 is consistent with the second and third powers, respectively, of the nuclear
density. The absolute per-nucleon probabilities of 2-nucleon SRC range from 0.15 for 4He to 0.25
for 56Fe, while the probabilities of 3-nucleon SRC are about 30 times smaller.

PACS numbers: PACS : 13.60.Le, 13.40.Gp, 14.20.Gk

Understanding short-range correlations (SRC) in nu-
clei has been one of the persistent though rather elusive
goals of nuclear physics for decades. The structure of
the nucleon-nucleon interaction and calculations of nu-
clear wave functions using realistic nucleon-nucleon in-
teractions suggest a substantial probability, ∼ 25%, for
a nucleon in a heavy nucleus to have a momentum above
the Fermi momentum, kF (for A ≥ 4, kF ≈ 240 MeV/c) .
The dominant mechanism for generating high momenta
in the wave function is the two nucleon interaction at dis-
tances less than the average internucleon distance, cor-
responding to nuclear densities several times higher than
the average nuclear density. It involves both tensor forces
and short-range repulsive forces, which share two impor-
tant features, locality and large strength (much larger
than the mean field interaction). The short-range corre-
lations produced by these forces result in the universal
shape of the nuclear wave function for all nuclei for mo-
mentum k > kF [1, 2]. For a review and references, see
Ref. [3].

A characteristic feature of this dynamics is that the
momentum k of a high-momentum nucleon is balanced,
not by the rest of the nucleus, but by the other nucle-
ons in the correlation. Therefore, for a 2-nucleon SRC,
the removal of a nucleon with large momentum, k, is
associated with a large excitation energy ∼ k2/2mN cor-
responding to the kinetic energy of the second nucleon.
The relatively large energy scale (≥ 100 MeV) involved
in the interaction of the nucleons in the correlation makes
it very difficult to resolve correlations in intermediate

energy processes. Though some experimental evidence
for the presence of SRC is available from the analysis
of high energy hadron- and photon-nucleus interactions
(see Ref. [4, 5] and references therein), it is not definitive.
Hence measurements using high energy electrons seemed
a natural candidate to move forward.

The simplest of such processes is inclusive electron
scattering, A(e, e′), at four-momentum transfer Q2 ≥ 1.5
GeV2 and xB = Q2/2mNν > 1 where ν is the energy
transfer. In this reaction we can strongly suppress scat-
tering off the mean field nucleons by requiring xB ≥ 1.3
and we can resolve SRC by transferring energies and mo-
menta much larger than the SRC scale.

Ignoring corrections due to the motion of the SRC in
the mean field of the rest of the nucleus, we can decom-
pose the nuclear cross section at high nucleon momen-
tum into pieces due to electrons scattering from 2-, 3-
and more-nucleon SRC [4, 6]:

σ(A) =
∑

j=2

A
aj(A)

j
σ(j) (1)

where σ(A) and σ(j) are the cross sections of electron-
nucleus and electron-j-nucleon-correlation interactions
respectively (and both depend on xB and Q2), and aj(A)
is the ratio of the probabilities for a given nucleon to be-
long to correlation j in nucleus A and to belong to a nu-
cleus consisting of j nucleons. In the region of (xB , Q2)
where scattering from one type of SRC (eg: 2-nucleon)
dominates, the ratio of inclusive cross sections from two
different nuclei will be independent of xB and Q2 and
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FIG. 2.9: A typical configuration for the j-nucleon correlation.

In relativistic theory the answer is more complicated. It seems fruitful for the theoretical analysis of hard phenomena
to define formally the notion of j-nucleon correlation. Look at a subsystem of j nucleons in the ground state having
invariant mass ! jmN, where nucleons obtain large relative momenta due to hard short-range interactions between
all j nucleons. Typical example of the three-nucleon correlation is shown in fig. 2.8. Before a hard interaction the j
nucleons are in the average configuration (αi ∼ αj ∼ 1), j-nucleon correlation contribute to ρN

A(α, k⊥) in the region
α < j only due to momentum conservation. In the non-relativistic Schrödinger equation this kinematic decomposition
of j-nucleon correlations is not evident. Therefore one cannot relate simply n(k) to ρN

A(α, k⊥) for α " 2.
Though at α→ A A-nucleon correlation should dominate ρN

A(α, k⊥), in the region 1 < α# A relative contributions
of different configurations are determined by the competition of two factors: the small probability aj to find a
correlation with large j and the enhancement of higher correlations due to a slower decrease of their contribution
to ρN

A(α, k⊥) at large α (see eq. (2.43)). Therefore it seems natural to expect that at least in the region of not too
large α # 3 (which is probed until now) few-nucleon correlations (FNC) dominate. Thus, the nucleon density matrix
ρN
A(α, k⊥) can be effectively expanded over the contribution of j-nucleon correlations ρj(α, k⊥):

1
A

ρN
A(α, k⊥) =

A∑

j=2

ajρj(α, k⊥). (2.38)

More accurate treatment is required to account for the c.m. motion of the j-nucleon configuration in the mean field
of the nucleus. It is expected that this effect should lead to small corrections except near the edge of the j-nucleon
correlation. This is because the scale of the repulsive potential is considerably larger than that for the long-range
potential.

The aj ’s in eq. (2.38) can be estimated on the basis of the non-relativistic Schrödinger equation for nuclear WF
since they are determined by the mean internucleon distances. The well known fact that the nucleon density in the
center of the nucleus is larger than near the surface leads to a certain dependence of aj on the atomic number. This
dependence can be estimated in the gas approximation where15 for j # A

aj ∼ (1/A)
∫

[ρA(r)]jd3r. (2.39)

Here ρA(r) is the nucleon density in the coordinate space normalized according to
∫

ρA(r)d3r = A. The calculation
using the conventional fits of ρA(r), obtained in electron and proton scattering data [158, 159] leads to a rather similar
A dependence of aj , which can be roughly approximated as

a2 ∼ A0.15; a3 ∼ A0.22; a4 ∼ A0.27 (2.40)

in the range A = 12− 207. Thus ρN
A(α, k⊥) should be a practically universal function of α, k⊥ in a wide α, k⊥ range.

In momentum space ρj(α, k⊥) corresponds to the contribution of j-nucleon configuration, where the large momentum
of the fast nucleon is balanced by the other (j − 1) nucleons of this configuration (see fig. 2.9). The momentum
dependence of ρ2 is expected to be similar to that of the deuteron, since the short distance behaviour is independent
of the nucleus structure. (In principle some difference could arise from the presence of pp, pn pairs in spin singlet
states and different orbital momenta of nucleons.) The calculation of n4He using the Reid potential is in agreement
with n(k) ∼ ψ2

D(k) [118].
To estimate ρj≥3(α, k⊥ = 0) at large α we assume that a fast nucleon with α→ j collects the large momentum as

a result of j − 1 hard two-body collisions with other nucleons. A typical diagram for the three-nucleon correlation is
shown in fig. 2.8. The black blob in fig. 2.8 corresponds to the off-energy-shell two-nucleon amplitude (solution of

15 We thank Prof. V.A. Khodel for the explanation, how these formulae can be obtained within the Fermi liquid theory. Similar expression
for a2 was discussed by Erikssons [157]. This estimate is rather rough, since gas approximation is not good if large hard core effects are
present.

for A> 12

Qualitative idea - to absorb a large Q at x>j at least j nucleons should come 
close together.  For each configuration wave function is determined by local 
properties and hence universal. In the region where scattering of j nucleons is 
allowed, scattering off j+1 is a small correction.
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It is convenient to normalize σj(x,Q2) so that

σj(x,Q2) = σe(B=j)(x,Q2)/j for x > j − 1. (8.9)

Thus, aj(A) is the ratio of the probabilities for a given nucleon to belong to correlation j in nucleus A and to a nucleus
consisting of j nucleons. It follows from eq. (8.7) that

σj(x,Q2) = 0 for x > j. (8.10)

Evidently, typical internucleon distances rc in the correlation {j} are considerably smaller than the average internu-
cleon distances in nuclei, rNN ∼ 1.7 fm. Thus, the probability of correlation j should rapidly decrease with j roughly
as (rc/rNN)3(j−1). If we use as a guide our analysis of kinematically forbidden (kf) nucleon and pion production in the
high-energy reactions p+A → p(π)+X in terms of the few-nucleon correlation model (see summary in section 6 6.4),
rc ∼ 1 fm and (rc/rNN)3 ∼ 0.2. Since the probability of a j-nucleon correlation rapidly decreases with j one should
expect that correlations with j = [x] + 1 would dominate in the cross section. Consequently the structure functions
F1,2(x,Q2) of different nuclei should be proportional in the regions j − 1 < x < j with Q2-independent coefficients
[449]

σeA(x,Q2)/σeC(x,Q2)
∣∣
j−1<x<j

= (A/C)aj(A)/aj(C). (8.11)

In the transition region x ∼ j the ratio on the left-hand side of eq. (8.11) should somewhat increase with increasing
x (for A > C) since aj+1(A)/aj+1(C) > aj(A)/aj(C) due to the increase of the average nuclear density with A. The
size of the transition region is difficult to estimate since it depends on the difference of the excitation energies and
momentum distributions of the spectator systems, etc.

Let us first consider the region of j = 2 correlations (1 < x < 2). For simplicity we shall assume that the wave
functions of j = 2 correlations with different (iso)spin and charge are proportional (cf. refs. [451, 452]). In this case
the x-dependences of the contributions of these correlations to σ2(x,Q2) should be similar. Thus, for nuclei with
Z $= N we can rewrite eq. (8.11) as

σeA(x,Q2)/σeD(x,Q2) = Zap
2(A)γ(Q2) + Nan

2(A)[1 − γ(Q2)], (8.12)

where ap(n)
2 is the probability for a proton (neutron) to belong to correlation j = 2, as compared to that in the

deuteron. If the correlation consists of nucleons only,

γ = σep(Q2)/[σep(Q2) + σen(Q2)], (8.13)

where σeN is the cross section of elastic eN scattering. Experimentally γ % 0.7 for Q2 ! 2 GeV2. In the quark cluster
model [450]

γ = (2e2
u + e2

d)/(3e2
u + 3e2

d) % 0.6, (8.14)

where eu (ed) is the electric charge of the u (d) quark.
At present there exists only a limited set of data on σe 3He for 1 < x < 2 and sufficiently large Q2 [437–439] which

can be compared with similar data on deuterium [432–436].99 Using the compilation of the data for σe 3He and σeD of
refs. [432–439] and accounting for the small difference of Q2 in the two cases on the basis of eq. (8.55), we find that
for x ∼ 1.5 and 2.5 ! Q2 ! 1 GeV2 the ratio F2 3He(x,Q2)/F2D(x,Q2) is practically constant and

ap
2(3He) % 1.7. (8.15)

It follows from eqs. (8.12)-(8.15) that the value of ap
2(3He) derived is practically insensitive to the value of an

2(3He),
especially if one assumes that an

2 − ap
2 for 3He (this is consistent with the calculations [451, 452]).

Very recently S. Rock kindly provided us with the Al/D ratios extracted from the analysis of the target container
events in the E133 SLAC experiment. A sample of these data at Q2 % 2.5 GeV2, for which the errors are the smallest,
is presented in fig. 8.2. The data are consistent with eq. (8.11) in the x, Q2 range where the average internal momenta
of the struck nucleons exceed 0.3 GeV/c [cf. eqs. (8.60) and (8.56)]. The analysis of the data using eq. (8.11) leads
to a2(Al) = 5 ± 1, which is in reasonable agreement with our estimates [449], see the next subsection.

99 The situation will change in the near future when the analysis of the data obtained at SLAC for a wide range of nuclei and over a rather
large interval of Q2 will be completed. First data on σ(e − Fe)/σ(e −4 He) are discussed in section 8 8.2 8.2.4.

FSI is present in the interaction with j -nucleons, but not with the 
rest of the system as they are far away, while j nucleons have a small 
invariant mass in the final state. However it is also practically 
universal (NN interaction is practically the same for I=0,1 except 
very close to the threshold).

Scaling of the ratios of (e,e’) cross sections
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Scientists believe that the crushing forces
in the core of neutron stars squeeze nucle-
ons so tightly that they may blur together.
Recently, an experiment by Kim Egiyan and
colleagues in Hall B at the US Department
of Energy’s Jefferson Lab caught a glimpse
of this extreme environment in ordinary
matter here on Earth. Using the CEBAF
Large Acceptance Spectrometer (CLAS)
during the E2 run, the team measured
ratios of the cross-sections for electrons
scattering with large momentum transfer
off medium, and light nuclei in the kine-
matic region that is forbidden for low-
momentum scattering. Steps in the value
of this ratio appear to be the first direct
observation of the short-range correlations
(SRCs) of two and three nucleons in nuclei,
with local densities comparable to those in
the cores of neutron stars.

SRCs are intimately connected to the
fundamental issue of why nuclei are dilute
bound systems of nucleons. The long-range attraction between nucle-
ons would lead to a collapse of a heavy nucleus into an object the
size of a hadron if there were no short-range repulsion. Including a
repulsive interaction at distances where nucleons come close
together, ≤0.7 fm, leads to a reasonable prediction of the present
description of the low-energy properties of nuclei, such as binding
energy and saturation of nuclear densities. The price is the prediction
of significant SRCs in nuclei.

For many decades, directly observing SRCs was considered an
important, though elusive, task of nuclear physics; the advent of
high-energy electron–nucleus scattering appears to have changed
all this. The reason is similar to the situation encountered in particle
physics: though the quark structure of hadrons was conjectured in
the mid-1960s, it took deep inelastic scattering experiments at SLAC
and elsewhere in the mid-1970s to prove directly the presence of
quarks. Similarly, to resolve SRCs, one needs to transfer to the
nucleus energy and momentum ≥1 GeV, which is much larger than
the characteristic energies/momenta involved in the short-distance
nucleon–nucleon interaction. At these higher momentum transfers,
one can test two fundamental features of SRCs: first, that the shape
of the high-momentum component (>300 MeV/c) of the wave func-
tion is independent of the nuclear environment, and second, the
balancing of a high-momentum nucleon by, predominantly, just one
nucleon and not by the nucleus as a whole.

An extra trick required is to select kinematics where scattering off

low-momentum nucleons is strongly sup-
pressed. This is pretty straightforward at
high energies. First, one needs to select
kinematics sufficiently far from the regions
allowed for scattering off a free nucleon,
i.e. x = Q2/2q0mN < 1, and for the scatter-
ing off two nucleons with overall small
momentum in the nucleus, x < 2. (Here Q2

is the square of the four momenta trans-
ferred to the nucleus, and q0 is the energy
transferred to the nucleus.) In addition,
one needs to restrict Q2 to values of less
than a few giga-electron-volts squared; in
this case, nucleons can be treated as par-
tons with structure, since the nucleon
remains intact in the final state due to final
phase-volume restrictions.

If the virtual photon scatters off a two-
nucleon SRC at x > 1, the process goes as
follows in the target rest frame. First, the
photon is absorbed by a nucleon in the
SRC with momentum opposite to that of

the photon; this nucleon is turned around and two nucleons then fly
out of the nucleus in the forward direction (figure 1). The inclusive
nature of the process ensures that the final-state interaction with
the rest of the nucleus does not modify the cross-section. Accord-
ingly, in the region where scattering off two-nucleon SRCs domi-
nates (which for Q2≥1.4 GeV2 corresponds to x > 1.5), one predicts
that the ratio of the cross-section for scattering off a nucleus to that
off a deuteron should exhibit scaling, namely it should be constant
independent of x and Q2 (Frankfurt and Strikman 1981). In the
1980s, data were collected at SLAC for x > 1. However, they were in
somewhat different kinematic regions for the lightest and heavier
nuclei. Only in 1993 did the sustained efforts of Donal Day and col-
laborators to interpolate these data to the same kinematics lead to
the first evidence for scaling, but the accuracy was not very high.

The E2 run of the CLAS detector at Jefferson Lab was the first exper-
iment to take data on 3He and several heavier nuclei, up to iron, with
identical kinematics, and the collaboration reported their first find-
ings in 2003 (Egiyan et al. 2003). Using the 4.5 GeV continuous
electron beam available at the lab’s Continuous Electron Beam
Accelerator Facility (CEBAF), they found the expected scaling behav-
iour for the cross-section ratios at 1.5 ≤ x ≤ 2 with high precision.

The next step was to look for the even more elusive SRC of three
nucleons. It is practically impossible to observe such correlations in
intermediate energy processes. However, at high Q2, it is straightfor-
ward to suppress scattering off both slow nucleons and two-nucleon

NUCLEAR PHYSICS
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Close nucleon encounters
Jefferson Lab may have directly observed short-range nucleic correlations, with densities

similar to those at the heart of a neutron star. Mark Strikman explains.

Fig. 2. Scattering of a virtual photon off a
three-nucleon correlation, x > 2, before (left)
and after (right) absorption of the photon.

Fig. 1. Scattering of a virtual photon off a two-
nucleon correlation, x > 1.5, before (left) and
after (right) absorption of the photon.

!!

Scattering off  a two-nucleon correlation, x>1.5
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W for γ* scattering off two nucleon system is well below the 
threshold for production of Δ-isobar. Hence inelastic processes 
eN→eX are strongly suppressed. For same reason scattering off 
6q configurations (even if they are present in nuclei) does  not 

contribute in this kinematics
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New Jlab data 
from Hall B. 

Q2 > 1.5 GeV2

Fe/C ratios for x~1.75, 
x~2.5 agree within 
experimental errors with 
our prediction - density 
based estimate:

a2 = (A1/A2)
0.15

a3 = (A1/A2)
0.22

The best evidence for presence of 3N SRC. One probes here  interaction 
at internucleon distances <1.2 fm corresponding to local matter densities 
≥5ρ0  which is comparable to those in the cores of neutron stars!!!  
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FSI of struck nucleon with slow nucleons  at x> 1.3 

The struck nucleon has 
virtuality

where p=pint+q

If  |pint|    is  small,  

is  large. Hence  it is not legitimate to apply semiclassical 
approximation for the calculation of the Green function. 

Statements in the literature that FSI with low momentum nucleon is 
large and strongly enhances the cross section in the discussed limit 
(O.Benhar et al) are due to neglect of these effects.
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Distances for which FSI of a struck nucleon with momentum less than the 
Fermi momentum  can contribute to the inclusive cross section 

Switch to old fashioned non-covariant  formalism where energy is not 
conserved and momentum is conserved to determine what at what 
distances, r,  fsi can contribute 

where v is the struck nucleon velocity v=p/E,  
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Only fsi close to mass shell when momentum of the struck 
nucleon is close to one for the scattering off a correlation. At 
very large Q - light-cone fraction  of  the struck nucleon 
should be close to x (similar to the parton model situation) - 
only for these nucleons fsi can contribute to the total cross 
section, though even this fsi is suppressed.
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History of study of the scaling ratios.

Prediction  FS 80☺
First evidence from 3He/D - FS81

Al/D - provided by S.Rock , curves by Misak , 88

Finally extracted  data from SLAC NA3 experiment  
together with Donal Day and Misak Sargsian  93

Evidence for x> 2 scaling for 4He /3He,  88

A/3He, 2>x>1,  - Jlab  2004

A/3He, 3>x>2,  - Jlab  2005
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W − MD ≤ 50 MeV

Masses of NN system produced in the process are small - 
strong suppression of isobar, 6q degrees of freedom.
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Assuming in the spirit of the dominance of the two nucleon correlations in the 
spectral function that the mean value of excitation energy corresponds to the 
scattering off the 2N SRC pair at rest we can determine mean value of the light 
cone fraction at which scattering happens

FS88
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FIG. 1: Weighted cross section ratios of (a) 4He, (b) 12C and
(c) 56Fe to 3He as a function of xB for Q2 > 1.4 GeV2. The
horizontal dashed lines indicate the 2-nucleon and 3-nucleon
scaling regions which have been used to calculate the per-
nucleon probabilities for 2- and 3-nucleon SRCs in nucleus A
relative to 3He.

is evaluated at 2.25 < xB < 2.8 corresponding to the
dashed lines in Fig. 1. The chances for each nucleon to
be involved in a 2-nucleon SRC in 4He, 12C and 56Fe are
1.96, 2.51 and 3.00 times higher than in 3He (see Ta-
ble I). The chances for each nucleon to be involved in
a 3-nucleon SRC are, respectively, 2.3, 3.2 and 4.6 times
higher than in 3He.

The systematic uncertainty in the relative per-nucleon
SRC probabilities are discussed in Ref. [10]. For the
4He/3He ratio, all uncertainties except those of the beam
current and target density cancel, giving a total system-
atic uncertainty of 0.7% . For the solid-target to 3He
ratios, only the electron detection efficiency cancels, giv-
ing a total systematic uncertainty of 6%.

To obtain the absolute values of the per-nucleon prob-
abilities of SRCs, a2N (A) and a3N (A), from the mea-
sured ratios, a2(A/3He) = a2N (A)

a2N (3He) and a3(A/3He) =
a3N (A)

a3N (3He) , we need to know the absolute per-nucleon
SRC probabilities for 3He, a2N (3He) and a3N (3He). The
probability of 2-nucleon SRC in 3He is the product of
the probability of 2-nucleon SRC in deuterium and the
relative probability of 2-nucleon SRC in 3He and d,
a2(3He/d). We define the probability of NN SRC in deu-
terium as the probability that a nucleon in deuterium has

a momentum p > 275 MeV/c since that is the minimum
recoil momentum corresponding to the onset of scaling at
Q2 = 1.4 GeV2 and xB = 1.5. Note that this experiment
is the first to measure the momentum onset at which 2-
nucleon SRC dominate. This momentum distribution in-
tegral gives 0.041±0.008 [21] where the uncertainty is due
to the uncertainty in the momentum onset of 2-nucleon
SRC. The second factor of 1.97±0.095 [10] is the average
of the experimental (1.7±0.3 [9]) and theoretical (2.0±0.1
[16, 22]) of a2(3He/d) . Thus, a2N (3He) = 0.08 ± 0.016.

TABLE I: a2(A/3He) and a3(A/3He) are the per-nucleon
probabilities of 2- and 3-nucleon SRC in nucleus A relative
to 3He. a2N (A) and a3N (A) are the absolute per-nucleon
probabilities of 2- and 3-nucleon SRC in nucleus A (in %).
Errors shown are statistical (first) and systematic.

a2(A/3He) a2N (A)(%) a3(A/3He) a3N (A)(%)
3He 1 8.0±0.0±1.6 1 0.18±0.00±0.06
4He 1.96±0.01± 0.03 15.6±0.1±3.2 2.33±0.12±0.04 0.42±0.02±0.14
12C 2.51±0.01± 0.15 20.0±0.1±4.4 3.18±0.14±0.19 0.56±0.03±0.21
56Fe 3.00±0.01± 0.18 24.0±0.1±5.3 4.63±0.19±0.27 0.83±0.03±0.27

Thus, the absolute probabilities for 2-nucleon SRC are
0.156, 0.20 and 0.24 for 4He, 12C and 56F respectively
(see also Table I). In other words, at any moment, in
56Fe, 12C, 4He and 3He, respectively, 6–7, 1.0, 1/3 and
1/8 of 2-nucleon SRCs can be found.

Similarly, to obtain the absolute probability of 3-
nucleon SRC we need the probability that the three nu-
cleons in 3He are in a 3-nucleon SRC. The start of the
second scaling region at Q2 = 1.4 GeV2 and xB = 2.25
corresponds to pmin ≈ 500 MeV/c. In addition, since
this momentum must be balanced by the momenta of
the other two nucleons, we require that p1 ≥ 500 MeV/c
and p2, p3 ≥ 250 MeV/c. This integral over the Bochum
group’s [24] 3He wave function is 0.07% using the CD
Bonn Potential [25] without 3-nucleon forces (3NF),
0.12% using CDBonn with the Tucson-Melbourne (TM)
3NF [27], 0.23% using the Urbana potential [26] with TM
3NF and 0.24% using the the Urbanna potential with
Urbanna-IX 3NF [28]. (Clearly, absolute A(e, e′) cross
sections at xB > 2 are needed to constrain these poten-
tials.) We will use the average value of these estimates
including 3NF: a3N(3He) = 0.18 ± 0.06%.

Using this value we calculate the absolute values of
a3N (A) shown in the fourth column of Table I. The per-
nucleon probabilities of 3-nucleon SRC in all nuclei are
smaller than the 2-nucleon SRC probabilities by more
than one order of magnitude.

We compared the 2-nucleon SRC probabilities to var-
ious models. The SRC model predicts [6] the relative
probabilities a2(4He/3He) = 2.03 and a2(12C/3He) =
2.53, as well as the A-dependences for A≥ 12 (see Eq.
2), which implies that a2(56/3He)/a2(12/3He) = 1.26.
These are remarkably close to the experimental values of
1.96 ± 0.01 ± 0.03, 2.51 ± 0.01 ± 0.15, and 1.20 ± 0.02
respectively. (Note that most of the systematic errors

Day, L.Frankfurt,  
Sargsian, MS, 93

K.Egiyan, et al 2005

Significant 
uncertainties in 
absolute scale

Amazingly good agreement between two analyses for a2 (A)
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Compare also to the analysis of EVA data on (p,2p) - a2(C) ~ 5
Yaron et al 02



We started studies of structure and ways to probe short range correlations - 
SRC in A>2 nuclei  back in 77 when no electron data  were available. We 
suggested that phenomenon of production of fast backward (FB)  nucleons 
and mesons*)  is due to the interaction with SRC

*) We wanted to name them backfires but were afraid because of 
censorship problems.
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FIG. 6.1: Production of a fast backward nucleon in the W ∗ scattering from the two-nucleon correlation spectator mechanism.

function ρ̃N
A(α, k⊥,M2

Rec). One can in particular investigate the increase with x of the average number of fast forward
nucleons which balance the momentum of struck nucleon. However the cross section of this reaction is rather low and
the final state interaction between forward going nucleons could be essential.

Therefore it seems much more feasible to use as a trigger the presence of a fast nucleon (pN > 0.3 GeV/c) in
the backward (relative to γ∗, W ∗) hemisphere. This selection enhances the contribution of short range correlations,
because such protons cannot be produced in a collision of a free nucleon or in the nucleus evaporation. (In fact the
data on such reaction were accumulated as byproduct on the DST of all big neutrino bubble chambers for a long time.
First analysis of such data was undertaken recently by Fermilab-ITEP-IHEP-Michigan collaboration in FNAL [22, 23]
and SCAT collaboration in Serpukhov [24].) An evident advantage of using a leptonic probe (instead of hadronic one)
is that the lepton provides a rather direct information about the struck nucleon momentum. At the same time the
study of the final state gives information about the structure of correlation. (Therefore in a certain sense reaction
(6.1) is more close to low energy eA → e′ + p + p + X reactions discussed e.g. in [203, 210] than to eA → e′ + p + X
reactions.)

A natural mechanism for reaction (6.1) is the following: γ∗, W ∗ strikes one of the nucleons of the correlated system,
which has a forward momentum in the nucleus rest frame releasing the backward going nucleon from the correlation
(see fig. 6.1). Before starting a formal derivation let us consider what one should expect if reaction (6.1) is dominated
by the scattering off the pair correlation. In this case large α of the backward nucleon40 is balanced by α′ ≈ 2− α of
the struck nucleon. Consequently the average light cone momentum carried by the quarks of the balancing nucleon is
2−α times smaller than for the average nucleon with α ∼ 1. Therefore the mean x for events with backward nucleon
should be smaller than in the average case:

〈x〉α = (2− x)〈x〉. (6.2)

The decrease of 〈x〉α was first predicted in [31] and it is observed now in two experiments [22–24].

6.1. The basic formulae

To describe the reaction (6.1) quantitatively it is necessary to introduce the production function
ρN1N2
A (α1, k1⊥,α2, k2⊥). By definition ρN1N2

A (α1, k1⊥, α2, k2⊥)/ρN2
A (α2, k2⊥) is the probability for a nucleon N1 to

be produced if a nucleon N2 is instantaneously removed from the nucleus. In principle ρN1N2
A can be calculated by

solving the many-body Weinberg type equation for the nuclear WF and decomposing the WF of the recoiling system
over the free particle states (nucleons, nucleus fragments). This procedure is analogous to that used for the calculation
of the nuclear spectral function.

It is important that the removal of a nucleon from the nucleus in the reaction (6.1) can well be considered as
instantaneous because the energy transfer to the target nucleon in νN scattering is large at any x. Thus, the spectator
contribution to the cross section of the reaction (6.1) is given by eq. (6.3) (cf. equations for the % + D → %′ + p + X
reaction in section 3 3.3) which is really a particular case of the sudden approximation:

dσν(ν̃)+A→µ∓+p+X

dx dy (dα/α) d2k⊥
=
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F3
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α1
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)]
. (6.3)

40 In the nucleus lab. frame α = ( m2 + p2 − (pq)/|q|)/mN, where p is the lab. frame nucleon momentum. Large α > 1 corresponds to
backward going nucleon in the nucleus rest frame.
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FIG. 7.1: Production of fast backward spectators in hA collision.

In the case of nucleon production, we impose also the condition pN > 0.3 GeV/c, to avoid any significant contribution
of nucleon evaporation. To simplify the presentation, we shall use, for a while the two-nucleon (pair) correlation
approximation for the nuclear WF (see section 2 2.4).

At large incident energy, the average energy transfer to each of the ν inelasticly interacting nucleons is of the
order 0.5 GeV (the same as in the elementary hN inelastic interaction). Similar to the deuteron case this energy is
sufficient to destroy all pair correlations associated with any of ν nucleons, i.e. the incident hadron h going through
the nucleus knocks out nucleons moving forward (in the nucleus rest frame) releasing backward moving nucleons of
the pair correlations (see fig. 7.1). Similarly to the case of deuteron stripping it is natural to call this process a
spectator mechanism [69, 70]. In the approximation of the pair correlation matrix the probability to find a nucleon
with momentum pN(α, p⊥), correlated with a given nucleon is equal to (1/A)ρN

A(α, p⊥). (Cf. eq. (2.38). Recall that
ρN
A(α, p⊥) is the single nucleon density of the nucleus in the momentum space.) Therefore using eq. (7.3) we obtain

[106–110]42

GA/N
h (α, p⊥) =

A∑

n=1

1
A

ρN
A(α, p⊥)nσn = σhN

in ρN
A(α, p⊥) (7.5)

since the nucleon can be emitted in each of the n collisions.
Eq. (7.5) is quite similar to the impulse approximation. This is so because we neglected in the derivation that the

spectator could have had the same impact parameter as the projectile and, thus, would lose its α due to inelastic
interactions with the incoming hadron. Taking into account this possibility, we are lead, similarly, to the deuteron
case (section 2 2.5), to the Glauber screening factor κh in eq. (7.5)

GA/N
h (α, p⊥) = κhAσhN

in ρN
A(α, p⊥). (7.6)

The inclusion of j-nucleon correlations with j > 2 may modify eq. (7.6). In this case, κh will depend on α, as the
efficiencies of breaking 2- and 3-nucleon correlations are somewhat different (cf. eq. (7.10)). Consequently, in a wide
region, GA/N

h (α, p⊥) is proportional to ρN
A(α, p⊥) and therefore measurement of GA/N

h provides a direct information
about the nuclear WF.

We explained in section 2 2.5 that α, p⊥ dependence of ρN
A varies slowly with A. Thus, it follows from eq. (7.6)

that GA/N
h (α, p⊥) should universally depend on A, α, p⊥ for different projectiles. In particular the following universal

relationship is valid

GA1/N
h1

(α, p⊥)/GA1/N
h2

(α, p⊥) = GA2/N
h1

(α, p⊥)/GA2/N
h2

(α, p⊥). (7.7)

One should not be confused by the resemblance of the form (7.5) with the impulse approximation. It reflects merely
the inclusive nature of the reaction (7.4): not one but several target nucleons participate in the collision and are
knocked forward in each hA collision. To illustrate this point, we calculate GA/(N1+N2)

h – inclusive cross section for
production of two FB nucleons which is equal zero in the impulse approximation, provided only scattering from pair

42 G
b/c
a (x, p⊥) ≡ x dσa+b→c+X/dx d2p⊥ is the inclusive cross section of the reaction a + b→ c + X.
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dσh+A→N+X

dαd2pt

α

= κhAσhN
in ρN

A (α, pt)

where  factor             accounts for local screening effects κh

G
A/N
h (α, pt) ≡
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Plenty of data were described using few nucleon SRC approximation with 
3N, 4N correlations dominating in certain kinematic ranges. Strength of 2N 
correlations is similar to the one found in (e,e’),(p,2p)

Observations of (p,2pn) &(e,e’) at x>1 confirm the origin of 
SRC as the dominant source of the fast backward nucleons

310 L.L. Frankfurt and MI. Strikman, High-energy phenomena, short-range nuclear structure and (lCD
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Figs. 8.4, 8.5. Comparison of the FNC model with the 400GeV data [18].

(see figs. 8.4, 8.5). (The data [17,18] indicate some small increase of the ratio R(,PN, Ta, C) and also

R(,pN,Ta,6Li) in the region a  2.2 though in the region 1.2<a <2.2 the ratio is constant within
experimental accuracy.)

At small nucleon momenta (PN — 0.4 0eV/c) G~’~rather weakly depends on the emission angle 0,

though with increase of PN the spectrum becomes strongly anisotropic (figs. 8.4, 8.5).

To compare the data obtained using different targets and projectile it is convenient to fit G~(pN)in
the form

G~(pN)= Ca exp{— T/T
0(0)} Ca exp{—B(0)p

2}

which reasonably describes the data (especially exp(—T/T
0) fit) up to PN — 1 0eV/c (as usually T is

kinetic energy of the FB nucleon).

Comparison of the data [21, 15, 16] indicates that the slope parameter B(0) does not depend on A,
on the projectile (y, ir, p and even i, 1) and its energy with accuracy <10% (see, e.g. fig. 8.6). B(0) does

not change also if events with fixed number of FB nucleons (2, 3, 4) are selected [181,182].

There are some indications of irregularities in the momentum shape of G~: a bump was observed

in n, ir + C—* p+ X reactions at PN = 0.4 GeV/c (p0 = 7GeV/c, p,,. = 4GeV/c) and in p + D—~p + X

reaction at PN = 0.35 0eV [184] (EN = 1 0eV); in D(p) + Pb— p + X collisions a minimum was observed
at 1500 (170°)[185] in the angular dependence of G~’~(pN)at PN = 0.5 0eV/c.

Comparison of few nucleon 
SRC approximation with pA 

data at Epinc=400 GeV
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Summary

Recent experiments confirmed expectations of large 
practically universal SRC in nuclei - 25% probability for two 
nucleon SRC in heavy enough nuclei with dominant 
contribution due to pn correlations.

First extensive evidence  for presence of 3N short range 
correlations in nuclei

Dominance of nucleonic degrees of freedom in SRC

51



The recent experiments confirmed merits of high momentum transfer probes for 
study of SRC.  Further studies are necessary, preferably both leptonic and hadronic:

Studies of forward - backward correlations for a range of light nuclei 3He/4He(e,e’)
pp/pn at Jlab at Q2=2 ÷4 GeV2.  A-dependence of the pp/pn ratio, its dependence on 
momentum of hit nucleon. Looking for effects of 3N correlations in A(e,e’ p +2 
backward nucleons). Reminder: for the neutron star dynamics mostly isotriplet nn, 
nnn,..   SRC are relevant.

Tagged structure functions:  e +2H→ e + “backward nucleon + X 

e+A →e +forward p + Backward isobars, N*’s  +X,...

Calculation of the nuclear LC wave functions, spectral functions and 
decay functions  for A>2 
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Use of the hadronic facilities - J-PARC, GSI, FNAL (?)



Two supplementary slides.
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Fig. 7. Missing energy integral of the nucleon spectral function in nuclear matter (see eq. (4.20)). The 

solid and dashed lines represent P(k, E) integrated up to infinity and P(k < k,, E) integrated up to 

100 MeV, respectively. The dotted lines marked with open diamonds and squares refer to P(k > k,, E) 

integrated up to 100 and 300 MeV. 

quantity n,~(k) given by 

I 

E 

n,(k) = dE P(k, E) . (4.20) 
-e(b) 

For instance, at k = 3 fin-’ , the integral of the spectral function up to E = 200 MeV 

misses -50% of the momentum distribution. 

5. Conclusions 

A perturbative theory based on a complete set of correlated orthonormal states 

to calculate the nucleon spectral function in nuclear matter has been described. 

Actual calculations have been performed for the Urbana v14+ TN1 model *I) of 

nuclear matter, including up to 2hlp OCB intermediate states. The resulting P( k, E) 

is better separated into two parts: (i) the single-particle strength Plh( k, E), obtained 

if only the one-hole OCB Ik) intermediate state is included; (ii) the background 

contribution Pa( k, E), associated with multiparticle emission processes. 

The integral over E of P,,,( k, E) yields the quasi-particle strength Z(k) [refs. 31332)], 

which has been recently extracted from the (e, e’p) cross sections measured at 

NIKHEF4). The analysis performed in ref. 32), based on the spectral function 

presented in this paper, shows a satisfactory agreement with the experimental data 

in *‘*Pb [ref. 33)] as far as Z(k) is concerned. 

Experimental measurements of the background contribution P,(k, E) can more 

directly be obtained by coincidence (e, e’p) experiments performed in kinematical 

conditions corresponding to recoil momenta k larger than the Fermi momentum 

and covering a wide range of missing energy. However, these conditions are very 

E< 100 MeV

n(k) for nuclear matter with a cut
 on the  excitation energy, E

E< 300 MeV
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Fig. 3. Spectral function of nuclear matter at saturation density (full line) for k / k  F = 0.75. The dashed 

and the dash-dotted lines correspond to Ps.p.(k, E)  and Pcor(k, E), respectively. 
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FIG. 8.3: (a) Ratio of the structure functions for scattering off 4He and 3He at the fixed value x = 2.5 as a function of Q2

(data from ref. [437–439]). (b) Comparison of the structure functions of 4He and 3He at Q2 = 1.8 GeV2. (c) Comparison of
the cross sections of e-Fe and e-4He scattering reported by D. Day (NE-2 SLAC) at PANIC 1987 (Kyoto).

Evidence for scaling  of 4He/3He ratios at x> 2 from FS88 analysis of the 
SLAC data
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ratio is practically constant, ! 3, over the whole Q2 range measured in ref. [437–439], while the structure functions
strongly decrease with Q2 at fixed x [F2 4He(2.5, 0.8)/F2 4He(2.5, 2.5) ≈ 100]. Besides, we have checked that the x
dependences of F2 4He(x,Q2) and F2 3He(x,Q2) at the same Q2 are also rather close (fig. 8.3b) (the errors are larger in
this case). The value of this ratio can be estimated assuming that the nucleon component dominates in the correlation.
Indeed, since the radii of 3He and 4He are rather close, the probabilities (per nucleon) of “ppn” and “nnp” correlations
in 4He and “ppn” correlations in 3He should differ by the combinatoric factor ≈ 2 at most. Therefore [449],

σe 4He(x,Q2)
σe 3He(x,Q2)

∣∣∣∣
2<x<3

! 2
σ(e“ppn”) + σ(e“pnn”)

σ(e“ppn”)
= 2 + 2

σ(e“pnn”)
σ(e“ppn”)

! 3. (8.22)

In the last step we accounted for the dominance of elastic electron scattering from protons over that from neutrons.
(ii) Theoretically very little is known about the A-dependence of a3(A). For A > 12 one can use the estimate

a3 ∼
∫

ρA3(r)d3r, which leads to

a3(A) ! (A/12)0.22a3(12). (8.23)

Thus, the ratio a3(A)/a2(A) should weakly increase with A for A ≥ 12.
(iii) The ratios of the cross sections may be sensitive to the cluster properties of some nuclei with A < 12. In

particular, in the 4He + D cluster model of 6Li (cf. the discussion in ref. [449], pp. 289, 290)

σe 6Li(x,Q2) = σe 4He(x,Q2) + 1.5σeD(x,Q2) for x > 1, Q2 > 2 GeV2. (8.24)

(iv) It is worth noting that, although the nuclear density in the centre of 4He is the largest of all nuclei, the average
density of 4He is considerably smaller than for A ≥ 12. As a result we expect that the ratio

RA/4He(x,Q2) = (4/A)σeA(x,Q2)/σe 4He(x,Q2) > 1 for x > 1, A > 12.

An oversimplified estimate based on the discussion in section 8 8.2 8.2.3 leads to

RFe/4He(x ∼ 1.5, Q2 ! 2 GeV2) ! 1.3 − 1.5,

and even to a larger number at x > 2.
Note added. After this report was completed D. Day presented at PANIC (Kyoto 1987) the first results of the

new SLAC experiment for the ratio σ(e-Fe)/σ(e −4 He) (fig. 8.3c). The data are in reasonable agreement with our
expectations discussed above: (i) there is a depletion at x ∼ 1, (ii) a step between xmin(Q2) where correlations become
important (see section 8 8.3 8.3.2) and x ∼ 2 [449]: a2(Fe)/a2(4He) ∼ 1.5, (iii) indication of some additional increase
(second step?) at x > 2 (remember that no such step is expected (ref. [449] and section 6) for the case of deep
inelastic scattering).101

In conclusion, we have demonstrated that the scaling relations (which are consistent with the first SLAC data)
enable one to determine the relative magnitude of few-nucleon correlations in different nuclei from the measurement
of the A-dependence of the high-Q2 (e, e′) reaction. However, these relations can tell us little about the quark-gluon
structure of the correlations. For this purpose the absolute magnitude of the cross section should be analysed, and
certain correlation measurements (to be discussed in sections 8 8.5 and 8 8.6) are needed.

8.3. High-Q2 (e, e′) reactions and the conventional theory of nuclei

Above, we considered relations between the cross sections of high-Q2 (e, e′) reactions from different nuclei. To
calculate the absolute values of the cross sections we need more detailed information about the wave function of
the nucleus. So we will consider in this section the basic features of reactions (8.1) and (8.2) in the nonrelativistic
approach for the wave function of the nucleus. The relativistic effects due to nucleon recoil, transformation NN̄ pairs
and effects due to the quark-gluon structure of nucleons will be considered in the following subsections.

101 The steps for such ratios were discussed also by Vary (1984), who, however, predicted these steps for all Q2.
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