

PVDIS Collaboration Meeting Jefferson Lab, January 6, 2012

Finite- Q^2 Corrections to Parity-Violating DIS

Wally Melnitchouk (JLab) / Alberto Accardi (Hampton U.) PVDIS as a tool to measure flavor (p target) and isospin (d target) dependence of nucleon PDFs

I most analyses assume leading-twist dominance

- $\rightarrow Q^2 \rightarrow \infty$
- \rightarrow experiments at finite kinematics $(Q^2 \sim 5 10 \text{ GeV}^2)$
- \rightarrow how large are finite- Q^2 corrections?

PVDIS asymmetry in terms of structure functions

$$A_{\rm PV} = -\left(\frac{G_F Q^2}{2\sqrt{2}\pi\alpha}\right) \left[g_A^e Y_1 \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + \frac{g_V^2}{2} Y_3 \frac{F_3^{\gamma Z}}{F_3^{\gamma}}\right]$$

$$g_A^e = -\frac{1}{2}$$
, $g_V^e = -\frac{1}{2} + 2\sin^2\theta_W$

 \rightarrow $Y_{1,3}$ parameterize dependence on $y = \nu/E$

$$Y_{1} = \frac{1 + (1 - y)^{2} - y^{2}[1 + \rho^{2} - 2\rho^{2}/(R^{\gamma Z} + 1)]/2}{1 + (1 - y)^{2} - y^{2}[1 + \rho^{2} - 2\rho^{2}/(R^{\gamma} + 1)]/2} \left(\frac{1 + R^{\gamma Z}}{1 + R^{\gamma}}\right)$$
$$Y_{3} = \frac{1 + (1 - y)^{2}}{1 + (1 - y)^{2} - y^{2}[1 + \rho^{2} - 2\rho^{2}/(R^{\gamma} + 1)]/2} \left(\frac{\rho^{2}}{1 + R^{\gamma}}\right)$$

with

• At large Q^2 and W, structure functions given by PDFs

→ electromagnetic (at LO)

$$F_1^{\gamma}(x) = \frac{1}{2} \sum_q e_q^2(q(x) + \bar{q}(x)),$$

$$F_2^{\gamma}(x) = 2x F_1^{\gamma}(x),$$

 $\rightarrow \gamma Z$ interference (at LO)

$$\begin{split} F_1^{\gamma Z}(x) &= \sum_q e_q g_V^q(q(x) + \bar{q}(x)), \\ F_2^{\gamma Z}(x) &= 2x F_1^{\gamma Z}(x), \\ F_3^{\gamma Z}(x) &= 2 \sum_q e_q g_A^q(q(x) - \bar{q}(x)). \end{split}$$

At low Q^2 or W, structure functions more complicated

For <u>proton</u> target, direct measure of large-x d/u ratio

→ exploratory study of possible effects: Hobbs & WM (2008)

 \rightarrow sensitivity to ΔR^{γ}

• uncertainty due to R^{γ} smaller than d/u differences at large x

 \rightarrow sensitivity to $\Delta R^{\gamma Z}$ – what if $R^{\gamma Z}$ differs from R^{γ} by 10%? 20%?

Hobbs, WM, PRD 77 (2008) 114023

→ potentially significant if $R^{\gamma Z} \not\approx R^{\gamma}$ → $R^{\gamma Z}$ needs further investigation!

■ For <u>deuteron</u> (isoscalar) target

→ at LO, in valence region (no sea quarks or gluons), and assuming <u>no charge symmetry violation</u>, PV asymmetry independent of hadronic structure

$$A_{\rm PV}^{d} \approx -\left(\frac{G_F Q^2}{2\sqrt{2}\pi\alpha}\right) \frac{6}{5} \left[g_A^e (2g_V^u - g_V^d) + Y_3 g_V^e (2g_A^u - g_A^d)\right]$$

*
$$g_V^u = -1/2 + (4/3) \sin^2 \theta_W$$
, $g_A^u = 1/2$
 $g_V^d = 1/2 - (2/3) \sin^2 \theta_W$, $g_A^d = -1/2$

* PDG definitions

For <u>deuteron</u> (isoscalar) target

→ PV asymmetry sensitive also to CSV (valence approximation)

$$(2g_{V,A}^u - g_{V,A}^d) \rightarrow (2g_{V,A}^u - g_{V,A}^d)(1 + \Delta_{V,A})$$

where fractional CSV correction is

$$\Delta_{V,A} = \left(-\frac{3}{10} + \frac{2g_{V,A}^u + g_{V,A}^d}{2(2g_{V,A}^u - g_{V,A}^d)} \right) \left(\frac{\delta u - \delta d}{u + d} \right)$$

with CSV PDFs defined by $\ \delta u = u^p - d^n \ , \quad \delta d = d^p - u^n$

■ For <u>deuteron</u> (isoscalar) target

-> PV asymmetry sensitive also to CSV (valence approximation)

* MRST, EPJC **39** (2005) 155

* MRST, EPJC **35** (2004) 325

■ For <u>deuteron</u> (isoscalar) target

 \rightarrow if CSV ~ 0.5%, optimal value $x \sim 0.6$; (larger CSV could be visible also at higher x)

What could break $R^{\gamma Z} = R^{\gamma}$?

- higher order pQCD corrections
 - → $R^{\gamma(\gamma Z)} = 0$ at leading order (perturbatively); at NLO different γ/Z couplings induce $R^{\gamma} \neq R^{\gamma Z}$
 - I target mass corrections ("kinematical" $1/Q^2$ corrections)
 - → since TMCs for F_L and F_T are different, differences in ratios will be different with vs. without TMC
 - → TMCs *not* unique, depend on treatment of struck parton (off-shell?, collinear?, ...)
- dynamical higher twist
 - $\rightarrow \Lambda^2/Q^2$ corrections from multi-parton correlations
 - nuclear effects in deuteron

- NLO analysis uses CJ (CTEQ-JLab) PDFs Accardi et al., PRD 84, 014008 (2011)
 - → dedicated global PDF analysis of p and d data focusing on large-x region (includes low-W and low-Q² data)
 (→ reduced PDF uncertainty at large x)
 - \rightarrow includes subleading $1/Q^2$ effects (TMCs & higher twists)
 - → corrects for nuclear effects in d, including dependence on wave function and nucleon off-shell corrections (→ "max nuclear" and "min nuclear" PDF sets)

pQCD and target mass corrections for <u>proton</u>

→ up to ~ 4% TMC and NLO effects cf. R^{γ} (up to ~ 2% at $Q^2 = 10 \text{ GeV}^2$)

* $R^{\gamma,\gamma Z}$ generated perturbatively (no nonperturbative contributions)

pQCD and target mass corrections for <u>proton</u>

→ asymmetry enhanced by ~ 3-4% at $x \sim 0.7$ (by ~ 1% at $Q^2 = 10 \text{ GeV}^2$)

pQCD and target mass corrections for <u>deuteron</u>

 \rightarrow difference between R^{γ} and $R^{\gamma Z}$ is negligible at large x

→ dip at low x due to <u>gluons</u> at NLO

pQCD and target mass corrections for <u>deuteron</u>

→ significant nuclear effect in $R^{\gamma Z}$ ratio, reduced with inclusion of TMCs

pQCD, target mass, and CSV corrections for <u>deuteron</u>

→ valence approximation accurate only for $x \gtrsim 0.6$ → effect < 1% in valence region, but ~ 2% at $x \sim 0.2$

uncertainty arising from TMCs is negligible

Relevance of PVDIS asymmetries for *Qweak* experiment

• Left-right polarization asymmetry in $\vec{e} \ p \rightarrow e \ p$ scattering

Born (tree) level

new combination of electroweak form factors, from which <u>strange form factors</u> extracted

Two-boson exchange corrections

 \rightarrow at low Q^2 dominant correction is from γZ exchange

In <u>forward</u> limit $A_{\rm PV}$ measures weak charge of proton Q_W^p

$$A_{\rm PV} \rightarrow \frac{G_F Q_W^p}{4\sqrt{2}\pi\alpha} t$$

 $Q_W^p = 1 - 4\sin^2\theta_W$ at tree level

forward limit

$$t = (k - k')^2 \rightarrow 0$$

$$s = (k + p)^2$$

$$= M(M + 2E)$$

Compute using <u>forward dispersion relations</u> with phenomenological (DIS structure function!) input

e.g. vector part of γZ box

$$\Re e \bigsqcup_{\gamma Z}^{V}(E) = \frac{2E}{\pi} \int_0^\infty dE' \frac{1}{E'^2 - E^2} \ \Im m \bigsqcup_{\gamma Z}^{V}(E')$$

Imaginary part given in terms of $F_{1,2}^{\gamma Z}$ structure functions

$$\Im m \prod_{\gamma Z}^{V} (E) = \frac{\alpha}{(s - M^2)^2} \int_{W_{\pi}^2}^{s} dW^2 \int_{0}^{Q_{\max}^2} \frac{dQ^2}{1 + Q^2 / M_Z^2} \times \left(F_1^{\gamma Z} + F_2^{\gamma Z} \frac{s \left(Q_{\max}^2 - Q^2\right)}{Q^2 (W^2 - M^2 + Q^2)} \right)$$

- Structure function inputs
 - \bigstar <u>DIS</u> part dominated by leading twist PDFs at small x
 - ★ <u>resonance</u> part from transition form factors
 - ★ <u>elastic</u> part given by elastic e.w. form factors

Imaginary part given in terms of $F_{1,2}^{\gamma Z}$ structure functions

$$\Im m \prod_{\gamma Z}^{V} (E) = \frac{\alpha}{(s - M^2)^2} \int_{W_{\pi}^2}^{s} dW^2 \int_{0}^{Q_{\max}^2} \frac{dQ^2}{1 + Q^2 / M_Z^2} \times \left(F_1^{\gamma Z} + F_2^{\gamma Z} \frac{s \left(Q_{\max}^2 - Q^2\right)}{Q^2 (W^2 - M^2 + Q^2)} \right)$$

- Structure function inputs
 - \bigstar <u>DIS</u> part dominated by leading twist PDFs at small x

Vector h correction

- Total $\Box_{\gamma Z}^{V}$ correction: $\Re e \Box_{\gamma Z}^{V} = 0.0047^{+0.0011}_{-0.0004}$ Sibirtsev et al., PRD 82 (2010) 013011
 - → similar correction from Rislow & Carlson (2011)
- Recent work of Gorchtein, Horowitz & Ramsey-Musolf PRC 84 (2011) 015502 gives $\Re e \square_{\gamma Z}^{V} = 0.0054 \pm 0.0020$ with twice the uncertainty!
 - \rightarrow would derail interpretation of *Qweak*
 - \rightarrow direct measurement of $F_{1,2,3}^{\gamma Z}$ <u>critical</u> !

Total γZ correction

$$Q_W^p = 0.0713(8) \rightarrow 0.0765^{+0.0014}_{-0.0009}$$

► significant shift in central value, errors within projected experimental uncertainty $\Delta Q_W^p = \pm 0.003$

Summary

- **PVDIS to access CSV** (deuteron) or d/u ratio (proton)
 - → subleading effects at low Q^2 from pQCD (NLO), TMC are under control
 - \rightarrow higher twists more challenging (especially for *p*)

- Data on PVDIS asymmetry at low W directly constrains structure function input for γZ correction to Qweak measurement of proton weak charge
 - \rightarrow may be most important constraint on Q_W^p theoretical uncertainty

additional slides

higher twist corrections for <u>deuteron</u>

→ relevant four-quark operators identified

Bjorken, PRD **18** (1978) 3239 Wolfenstein, NPB **146** (1978) 477

 \rightarrow matrix elements computed in MIT bag model

Castorina, Mulders, PRD 31 (1985) 2760

 $\rightarrow x$ dependence determined from moments

Mantry, Ramsey-Musolf, Sacco PRC 82 (2010) 065205

higher twist corrections for <u>deuteron</u>

- \rightarrow HT terms \ll MRST2004 bounds on CSV (2-3%)
- \rightarrow may be comparable if CSV ~ MRSTQED estimate (~ 0.5%)

higher twists for <u>proton</u> more complicated