Simple Estimation of Single Pion Production Parity Violation Asymmetry

Xin Qian Caltech

Introduction

- Two Contributions needs to be considered:
 - -Gamma-Z interferences term:
 - e- + N \rightarrow Z + gamma \rightarrow e- + Pi + X
 - -W- exchange:
 - e- + N \rightarrow W- \rightarrow v + X + Pi-
- Kinematics considered:
 - Negative Pions at 12.9 degrees @ 3.66GeV

Neutral Current

- The Asymmetry for PVDIS electron is about 100 ppm * Q² ~ Q²/Mz²
- So one also expected that for the single pion production, the asymmetry is about Q²/Mz²
- Then the central question is to calculate the average Q² for the eletro-pion production.

For Electro-Pion Production

 One can use equivalent photon flux

$$\frac{d\sigma}{d\Omega_e dP_e} = \Gamma \sigma(\gamma N)$$

$$\Gamma \sim \frac{\alpha}{2\pi^2} \frac{E_e}{E_e} \frac{v}{Q^2}$$

The average Q2 can be obtained as

$$\langle Q^2 \rangle = \frac{\int Q^2 \Gamma d\Omega_e dP_e}{\int \Gamma d\Omega_e dP_e}$$

 Here, we assume the same photon-N scattering total cross section.

Simulation

- Uniform sample electron momentum and solid angle.
- Make sure the kinematics permit a pion to reach the desired kinematics:
 - 12.9 degrees @ 3.66 GeV
- Weighted by Gamma Flux and calculate average Q2.
 - Obtained <Q2> ~ 0.264 ~ 32 ppm
 - Assuming a 120 pm in PVDIS electron for Q2 @ 1
 GeV^2.

Charge Current Part

 We know the neutrino charge exchange total cross section 0.7 Ebeam (GeV) * 10e-38 (cm^2/GeV) = 4.2 * 10e-14 barn @ 6 GeV

For Electro-Pion Cross Section

$$\frac{d\sigma}{d\Omega_e dP_e} = \Gamma \sigma(\gamma N)$$

$$\Gamma \sim \frac{\alpha}{2\pi^2} \frac{E_e^{'}}{E_e} \frac{v}{Q^2}$$

Total gamma-N
 Pion production
 total cross section
 is about 0.9e-4
 barn.

Based on the same simulation

• We can calculate the expected virtual photon flux $<\Gamma> = \frac{\int \Gamma d\Omega_e dP_e}{\int d\Omega_e dP_e}$

- Total flux is 4.67e-5 * 6. * 4. * 3.1415926
 - After multiply solid angle = 3.5e-3

Combine all the numbers together

$$A = \frac{N_{CC}}{2N_{eN}} \sim \frac{2 \cdot \sigma_{CC}^{v}}{2 < \Gamma > 4\pi E_{e}\sigma_{N}}$$

- A_PVDIS = 2 * 4.2e-14 / 0.9e-4 / 3.5e-3 / 2. ~ 0.13 ppm
 - Here the first 2 takes into account that 2 interaction for neutrino can happen in both proton and neutron. And photon production probably dominated by neutron.
 - Here the last two is taken into account the factor that sum of two states in the denominator of the asymmetry.
 - We did not take into account the possible effect from phase space, but the estimation is probably good to order magnitude estimation.

Summary

- Based on this simple estimation:
 - We conclude that the contribution from charge exchange is about 0.1 % level of PVDIS electron asymmetry. (probably also negligible after taking into account amplitude).
 - 0.15 ppm vs. 120 ppm.
 - We conclude that the contribution from neutral current exchange is about 27% of PVDIS electron
 1 GeV2
 - 32 ppm vs. 120 ppm.