MeAsurement of F_2^n/F_2^p , d/u RAtios and A=3EMC Effect in Deep Inelastic Electron Scattering Off the Tritium and Helium MirrOr Nuclei

JLab Experiment E12-10-103 - Update

Makis Petratos

for the JLab MARATHON Collaboration

Tritium Collaboration Meeting JLab, March 2013 Deep Inelastic Scattering and Quark Parton Model

• DIS cross section - Nucleon structure functions F_1 and F_2 :

$$\frac{d\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E^2 \sin^4\left(\frac{\theta}{2}\right)} \left[\frac{F_2(v,Q^2)}{v} \cos^2\left(\frac{\theta}{2}\right) + \frac{2F_1(v,Q^2)}{M} \sin^2\left(\frac{\theta}{2}\right)}{M} \right]$$
$$R = \frac{\sigma_L}{\sigma_T} = \frac{F_2 M}{F_1 v} \left(1 + \frac{v^2}{Q^2}\right) - 1$$
$$V = E - E'$$
$$Q^2 = 4EE' \sin^2\left(\frac{\theta}{2}\right)$$

• QPM interpretation in terms of quark momentum probability distributions $q_i(x)$ (large Q^2 and v, fixed x):

$$F_1(x) = \frac{1}{2} \sum_{i} e_i^2 q_i(x) \qquad F_2(x) = x \sum_{i} e_i^2 q_i(x)$$

• Bjorken *x*: fraction of nucleon momentum carried by struck quark: $x = Q^2 / 2Mv$

SLAC 1968-1972 Friedman, Kendall, Taylor Nobel 1991

 F_2^n/F_2^p extracted from *p* and *d* DIS using a Fermi-smearing model and a non-relativistic *N-N* potential

- Data in disagreement with *SU(6)* prediction: 2/3=0.67!
- High momentum quarks in *p(n)* are *u(d)* valence quarks

There are no high momentum strange quarks in *p* and *n*

Sea quarks dominate at small x

Data consistent with di-quark model by Feynman and others

F_2^n/F_2^n , d/u Ratios and A_1 Limits for $x \rightarrow l$

	F ₂ ⁿ / F ₂ ^p	d/u	A ₁ ⁿ	A 1 ^{<i>p</i>}
SU(6)	2/3	1/2	0	5/9
Diquark/Feynman	1/4	0	1	1
Quark Model/Isgur	1/4	0	1	1
Perturbative QCD	3/7	1/5	1	1
Quark Counting Rules	3/7	1/5	1	1

 A_1 : Asymmetry measured with polarized electrons and nucleons. Equal in QPM to probability that the quark spins are aligned with the nucleon spin.

 A_1^{p}, A_1^{n} : Extensive experimental programs at CERN, SLAC, DESY and JLab (6 GeV and 12 GeV Programs)

Structure Function Ratio Problem !

• Convolution model:

Fermi motion and binding, covariant deuteron wave function, off-shell effects :

 $F_2^d(x,Q^2) = \int dy \rho(y) [F_2^p(x/y,Q^2) + F_2^n(x/y,Q^2)]$

[Melnitchouk and Thomas (1996)]

Nuclear density model:

EMC effect for deuteron scales with nuclear density:

$$rac{F_2^d}{F_2^p + F_2^n} = 1 + rac{
ho_d}{
ho_A -
ho_d} \left[rac{F_2^A}{F_2^d} - 1
ight]$$

[Frankfurt and Strikman (1988)]

The three analysis methods indicate tremendous uncertainties in high-*x* behavior of F_2^n/F_2^p and d/u ratios ... d/u essentially unknown at large *x*!

EMC Effect

- Nuclear F_2 structure function per nucleon is different than that of deuterium: large Bjorken x and nuclear mass A dependence.
- Quark distribution functions modified in the nuclear medium.
- Possible explanations include:
 - Binding effects beyond nucleon Fermi motion
 - Enhancement of pion field with increasing A
 - Influence of possible multi-quark clusters
 - Change in the quark confinement scale in nuclei
- No universally accepted theory for the effect explanation.
- A=3 data will be pivotal for understanding the EMC effect.
- Theorists: Ratio of EMC effect for ³H and ³He is the best quantity for quantitative check of the theory, free of most uncertainties.

A Dependence EMC Effect

SLAC E-139, 1984 J. Gomez et al.

Nucleon momentum probability distributions in nuclei different from those in deuterium. Effect increases with mass number *A*.

EMC Effect for A=3 Mirror Nuclei

Х

Nucleon F_2 Ratio Extraction from ³He/³H

• Just perform DIS from ³He and ³H. Binding of nucleons in the two nuclei is of same nature. Differences between bound and free nucleons in the two nuclei is calculable, summarized, for their ratio, by some parameter R^* (W. Melnitchouk *et al.*).

- If $R = \sigma_L / \sigma_T$ is the same for ³He and ³H, measured DIS cross section ratio must be equal to the F_2 structure function ratio as calculated using R^* : $\frac{\sigma^{^{3}He}}{\sigma^{^{3}H}} = \frac{F_2^{^{3}He}}{F_2^{^{3}H}} = R^* \frac{2F_2^{p} + F_2^{n}}{F_2^{p} + 2F_2^{n}}$
- Determine nucleon F_2 ratio using A=3 DIS cross section data and $R^*(\approx 1)$ from theory:

$$\frac{F_2^n}{F_2^p} = \frac{2R^* - F_2^{^3He} / F_2^{^3H}}{2F_2^{^3He} / F_2^{^3H} - R^*}$$

Experimental Plan and Requirements

- ³He/³H DIS measurements approved to run in Hall A:
 - Beam Energy: 11.0 GeV Beam Current: 25 μA
 - Small angles (15° 23°): Left HRS system
 - Large angles (4 settings: 42°, 47°, 52°, 57°): BigBite system
 - ~700 hours for d/u measurement (@ 100% efficiency)
- Desirable to check that the ratio $R=\sigma_L/\sigma_T$ is the same for ³He and ³H: Rosenbluth separation of DIS cross section. Need dedicated 3.3, 4.4, 5.5, 6.6, 7.7, 8.8 GeV energies.
 - Wide angular range (13° 68°): Left HRS system
 - ~300 hours for $R = \sigma_L / \sigma_T$ measurement (@ 100% efficiency)
- Need target system with helium/tritium/deuterium/hydrogen high pressure cells: 25 cm long, 1.25 cm diameter, 14 atm (³H), 30 atm (¹H, ²H, ³He). Must collimate cell end caps.
- (See presentations by R. Holt, D. Meekins, P. Solvignon).

The BigBite Spectrometer – Special Issues

- 40-50 msr solid angle, ~1.0% momentum resolution
- Successfully employed in previous Hall A experiments
 - Drift Chamber set and Scintillator (trigger) Hodoscope package
 - Pb-glass Calorimeter and Gas Threshold Cerenkov Detector
- BUT need to IMPROVE Cerenkov Detector: i) ~double radiator length (from 40 to 70 cm) and ii) recoat all mirrors and Winston cones, <u>or</u> REUSE mirrors and phototubes to build a new one that focuses light towards one side only, away from the beam. Cerenkov Sum signal must be part of the trigger.
- (See N. Sparveris/M. Paolone, Temple U. presentation)
- To minimize background through dipole (dominant source): install lead collimator in front of dipole magnet?
- To develop reliable Monte Carlo model: set up TOSCA model and cross check it with basic magnetic measurements?

BB System – Special Issues (Continued)

- What is the level of the current understanding of the magnet optical properties? A cross section measurement needs better understanding than an asymmetry measurement!
- Proposal assumed that the target to spectrometer distance will change with every angular setting (will be getting closer to target with increasing angle). Plan for a survey mechanism.

The Left HRS System – Special Issues

- Is this spectrometer well understood at the level of a precision Rosenbluth measurement of $R=\sigma_L/\sigma_T$? Do we need a new sieve slit calibration at several central momenta?
- Are any Left HRS detector changes/upgrades planned for the 12 GeV Program? Would the existing detector package be fine? What does the so far accumulated experience tell us?

EMC Effect for A=3 Mirror Nuclei

Hall A data on ³H, ³He will be of similar precision to Hall C data

$R = \sigma_L / \sigma_T$ Measurements

³He/³H JLab data will be of better precision than SLAC data [wider angular range!]

F_2^n/F_2^p Ratio and EMC Effect are Elementary Undergraduate Nuclear-Particle Textbook Physics!

Summary - Issues

- E12-10-103 experiment on DIS from ³He and ³H in will provide:
 - The world's highest-*x* measurements of F_2^n/F_2^p and d/u ratios
 - Crucial unique EMC effect data for both A=3 systems
 - Important input to light-nuclei structure theory, and to nucleon structure function parametrizations
- Must resolve the issue of BigBite Cerenkov detector
- Must plan on required BigBite movements and surveys
- Make sure Left HRS is ready for the challenge of DIS data
- Start looking into (wo)manpower issues. Collaboration to grow after tentative scheduling of experiment.
- Are we ready to attract PhD dissertation students?
- Tritium target remains the most crucial project of experiment.
- Many thanks to Roy Holt and Dave Meekins!