Measuring the Neutron and $^{3}\mathrm{He}$ Spin Structure at Low Q^{2}

Vincent Sulkosky

Jefferson Lab

XVI International Workshop on Deep-Inelastic Scattering and Related Subjects 8 April 2008 University College London

Inclusive Cross Sections

Unpolarized cross sections

$$\frac{d^2\sigma}{dE'd\Omega} = \sigma_{\text{Mott}} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right]$$

Polarized cross sections

$$\Delta \sigma_{\parallel} = \frac{d^2 \sigma^{\downarrow\uparrow}}{dE' d\Omega} - \frac{d^2 \sigma^{\uparrow\uparrow}}{dE' d\Omega} = K \left[\left(E + E' \cos \theta \right) g_1(x, Q^2) - \left(\frac{Q^2}{\nu} \right) g_2(x, Q^2) \right]$$
$$\Delta \sigma_{\perp} = \frac{d^2 \sigma^{\downarrow\Rightarrow}}{dE' d\Omega} - \frac{d^2 \sigma^{\uparrow\Rightarrow}}{dE' d\Omega} = KE' \sin \theta \left[g_1(x, Q^2) + \frac{2E}{\nu} g_2(x, Q^2) \right]$$
$$K = \frac{4\alpha^2}{M\nu Q^2} \frac{E'}{E}$$

↓, ↑ are for electron spin ↑, ⇒ are for target spin direction F_1 , F_2 , g_1 , g_2 : structure functions

Gerasimov-Drell-Hearn (GDH) Sum Rule ($Q^2 = 0$)

$$I_{\rm GDH} = \int_{\nu_{\rm th}}^{\infty} \frac{\sigma_{\frac{1}{2}}(\nu) - \sigma_{\frac{3}{2}}(\nu)}{\nu} d\nu = -2\pi^2 \alpha (\frac{\kappa}{M})^2$$

• Circularly polarized photons incident on a longitudinally polarized spin- $\frac{1}{2}$ target.

Gerasimov-Drell-Hearn (GDH) Sum Rule ($Q^2 = 0$)

$$I_{\rm GDH} = \int_{\nu_{\rm th}}^{\infty} \frac{\sigma_{\frac{1}{2}}(\nu) - \sigma_{\frac{3}{2}}(\nu)}{\nu} d\nu = -2\pi^2 \alpha (\frac{\kappa}{M})^2$$

• $\sigma_{\frac{1}{2}}(\sigma_{\frac{3}{2}})$ photoabsorption cross section with photon helicity parallel (anti-parallel) to the target spin.

$$\int_{h = -1}^{4} S = -\frac{1}{2} \sigma_{3/2}$$

$$\int_{h = +1}^{4} S = -\frac{1}{2} \sigma_{1/2}$$

Gerasimov-Drell-Hearn (GDH) Sum Rule ($Q^2 = 0$)

$$I_{\rm GDH} = \int_{\nu_{\rm th}}^{\infty} \frac{\sigma_{\frac{1}{2}}(\nu) - \sigma_{\frac{3}{2}}(\nu)}{\nu} d\nu = -2\pi^2 \alpha (\frac{\kappa}{M})^2$$

- Circularly polarized photons incident on a longitudinally polarized spin- $\frac{1}{2}$ target.
- $\sigma_{\frac{1}{2}}(\sigma_{\frac{3}{2}})$ photoabsorption cross section with photon helicity parallel (anti-parallel) to the target spin.
- The sum rule is related to the target's mass M and anomalous part of the magnetic moment κ .

The sum rule is valid for any target with definite spin-S.

	M[GeV]	Spin	κ	$I_{ m GDH}[\mu \ {\sf b}]$
Proton	0.938	$\frac{1}{2}$	1.79	-204.8
Neutron	0.940	$\frac{1}{2}$	-1.91	-233.2
Deuteron	1.876	1	-0.14	-0.65
Helium-3	2.809	$\frac{1}{2}$	-8.38	-498.0

- Proton sum rule was verified to ~ 10%, Mainz and Bonn:
 J. Ahrens *et al.*, PRL **87**, (2001) 022003, H. Dutz *et al.*, PRL **91**, (2003) 192001.
- Measurements for the neutron are in progress:

H. Dutz et al., PRL 94, (2005) 162001, J. Ahrens et al., PRL 97, (2006) 202303.

Generalized GDH Integral ($Q^2 > 0$)

$$I(Q^{2}) = \int_{\nu_{\rm th}}^{\infty} \left[\sigma_{\frac{1}{2}}(\nu, Q^{2}) - \sigma_{\frac{3}{2}}(\nu, Q^{2}) \right] \frac{d\nu}{\nu}$$
$$\sigma_{1/2} - \sigma_{3/2} = \frac{8\pi^{2}\alpha}{MK} \left[g_{1}(\nu, Q^{2}) - \left(\frac{Q^{2}}{\nu^{2}}\right) g_{2}(\nu, Q^{2}) \right]$$

- Replace photoproduction cross sections with the corresponding electroproduction cross sections.
- The integral is related to the Compton scattering amplitudes: $S_1(Q^2)$ and $S_2(Q^2)$.

$$S_1(Q^2) = \frac{8}{Q^2} \int_0^1 g_1(x, Q^2) dx = \frac{8}{Q^2} \Gamma_1(Q^2)$$

X.-D. Ji and J. Osborne, J. Phys. G27, 127 (2001)

At $Q^2 = 0$, the GDH sum rule is recovered.

First moment of g_1 and g_2

$$\Gamma_1 = \int_0^1 g_1(x, Q^2) dx$$

$$\Gamma_2 = \int_0^1 g_2(x, Q^2) dx$$

- Γ_1 is closely related to generalized GDH integral as $Q^2 \rightarrow 0$.
- \bullet g_2 is suppressed at very low Q^2 .

Bjorken Sum Rule ($Q^2 \rightarrow \infty$)

- \blacksquare $g_{\rm A}$ is the nucleon axial charge.
- The sum rule has been confirmed to 10%.

$$\Gamma_1^{\rm p} - \Gamma_1^{\rm n} = \frac{g_{\rm A}}{6}$$

J.D. Bjorken, Phys. Rev. 148, 1467 (1966)

Importance of the Generalized GDH Sum Rule

- Constrained at the two ends of the Q^2 spectrum by known sum rules.
- S_1 and S_2 are calculable at any Q^2 .
- Compare theoretical predictions to experimental measurements over the entire Q^2 range.
- Provides a bridge from the non-perturbative region to the perturbative region of QCD.

Hall A GDH Results

Neutron

Helium-3

Experiment E97-110

Precise measurement of generalized GDH integral at low Q², 0.02 to 0.3 GeV²

Experimental Setup

³He as an Effective Polarized Neutron Target

 $P_{\rm n}$ = 86% and $P_{\rm p}$ = -2.8% J.L. Friar *et al.*, PRC 42, (1990) 2310

Extraction of Neutron Results

$$\Gamma_1^{\mathrm{n}}(Q^2) = \frac{1}{P_{\mathrm{n}}} \left[\Gamma_1^{^3\mathrm{He}}(Q^2) - 2P_{\mathrm{p}}\Gamma_1^{\mathrm{p}}(Q^2) \right]$$

C. Ciofi degli Atti & S. Scopetta, PLB 404, (1997) 223

Polarized ³He System

- Both longitudinal and transverse configurations.
- Two independent polarimetries: NMR and EPR.

³He Spin Structure Functions

The GDH Integrand: σ_{TT}

Γ_1^n : First Moment of g_1

Expected Neutron Results

Summary and Conclusion

Generalized GDH:

- The GDH integral is an important tool that can be used to study nucleon spin structure over the full Q^2 range.
- E97-110 provides precision data for the generalized GDH integral at low Q², 0.02 to 0.3 GeV²
- Preliminary results of the ³He structure functions and the neutron moments are available.
- Work on systematics are in progress.
- Expect final neutron results in a few months.
- These data allow us to check χ PT at very low Q^2 .

The E97-110 Collaboration

S. Abrahamyan, K. Aniol, D. Armstrong, T. Averett, S. Bailey, P. Bertin, W. Boeglin, F. Butaru, A. Camsonne, G.D. Cates, G. Chang, J.P. Chen, Seonho Choi, E. Chudakov, L. Coman, J. Cornejo, B. Craver, F. Cusanno, R. De Leo, C.W. de Jager, A. Deur, K.E. Ellen, R. Feuerbach, M. Finn, S. Frullani, K. Fuoti, H. Gao, F. Garibaldi, O. Gayou, R. Gilman, A. Glamazdin, C. Glashausser, J. Gomez, O. Hansen, D. Hayes, B. Hersman, D. W. Higinbotham, T. Holmstrom, T.B. Humensky, C. Hyde-Wright, H. Ibrahim, M. Iodice, X. Jiang, L. Kaufman, A. Kelleher, W. Kim, A. Kolarkar, N. Kolb, W. Korsch, K. Kramer, G. Kumbartzki, L. Lagamba, G. Laveissiere, J. LeRose, D. Lhuillier, R. Lindgren, N. Liyanage, B. Ma, D. Margaziotis, P. Markowitz, K. McCormick, Z.E. Meziani, R. Michaels, B. Moffit, P. Monaghan, S. Nanda, J. Niedziela, M. Niskin, K. Paschke, M. Potokar, A. Puckett, V. Punjabi, Y. Qiang, R. Ransome, B. Reitz, R. Roche, A. Saha, A. Shabetai, J. Singh, S. Sirca, K. Slifer, R. Snyder, P. Solvignon, R. Stringer, R. Subedi, V. Sulkosky, W.A. Tobias, P. Ulmer, G. Urciuoli, A. Vacheret, E. Voutier, K. Wang, L. Wan, B. Wojtsekhowski, S. Woo, H. Yao, J. Yuan, X. Zheng, L. Zhu

and the Jefferson Lab Hall A Collaboration

Extra Slides

Analysis Procedure

Kinematic Coverage and Interpolation

Six evenly spaced points 0.04-0.24 GeV² with steps of 0.04 GeV².

Constant Q^2 Interpolation and Integral Extraction

Procedure:

- First interpolate to constant W for each energy.
- Second interpolation with respect to Q^2 .
- Integrals formed from W = 1073 GeV to 2000 GeV.
- Solution We could use our own data above W = 2000 GeV.
- DIS contribution included up to $W = \sqrt{1000}$ using Thomas and Bianchi parameterization.
- Neutron extraction performed using calculation from Scopetta and Ciofi degli Atti paper for $Q^2 >= 0.1 \text{ GeV}^2$.
- Q² < 0.1 GeV² use effective polarization technique (difference \sim 5–10%).

Systematic Uncertainties

Source	Systematic Uncertainty				
Angle	6 °	9 °	3.775 GeV, 9°		
Target density		2.0%			
Acceptance/Effects	5.0%	5.0%	15.0%		
VDC efficiency	3.0%	2.5%	2.5%		
Charge		1.0%			
PID Detector and Cut effs.	< 1.0%				
$\delta\sigma_{ m raw}$	6.4%	6.2%	15.5%		
Nitrogen dilution	0.2–0.5%				
$\delta\sigma_{ m exp}$	6.5%	6.3%	15.5%		
Beam Polarization		3.5%			
Target Polarization	7.5%				
Radiative Corrections	5–10% in Δ region				
Total on $\Delta\sigma$	11.6–14.5%	11.5–14.4%	18.3–20.2%		

Spin Polarizabilities

M. Amarian et al., PRL 93, 152301 (2004)

Inclusive Electron Scattering

Energy transfer: $\nu = E - E^{'}$

4-momentum transfer squared: $\vec{q} = \vec{k} - \vec{k'}$ $Q^2 = -q^2 = 4EE' \sin^2 \frac{\theta}{2}$

Invariant Mass: $W^2 = M^2 + 2M\nu - Q^2$

e = (E, k) $q = (v, \bar{q})$ $p = (M, \bar{0})$ W

To detectors

 $e' = (E', \vec{k'})$

Bjorken variable:

$$x = \frac{Q^2}{2M\nu}$$

Chiral Symmetry

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4g^2} G^{\alpha}_{\mu\nu} G^{\mu\nu}_{\alpha} + \bar{q} i \gamma^{\mu} D_{\mu} q - \bar{q} \mathcal{M} q$$
$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_0 + \mathcal{L}_{sb}$$

- Consider the limit where the light quark masses vanish.
- For massless fermions, chirality (handedness) is identical to a particle's helicity.
- Extra symmetry to the Lagrangian and obtain left and right handed quark fields.

$$q_{L,R} = \frac{1}{2}(1 \mp \gamma_5)q \,,$$

Based on fundamental physical arguments

- Lorentz and gauge invariance: low energy theorem, Phys. Rev. 96, 1428 (1954).
- Unitarity of the S-matrix: optical theorem.
- Causality: dispersion relations for forward compton scattering.

³*He Elastic Asymmetry*

- Monte Carlo prediction: 1.390%
- Preliminary data analysis: (1.403 \pm 0.044)% (stat. only) $\chi^2/N_{
 m dof}$ = 1.08.
- Four target and beam configurations
- For seven out of the twelve beam energies, elastic data were acquired.

Cross Section Differences

Cross Section Differences

Jefferson Lab

The GDH Integrand: σ_{TT}

The GDH Integrand: σ_{TT}

Preliminary Target Polarization

Spin Exchange Optical Pumping

³He nucleus is polarized via spin-exchange with optically pumped Rb atoms.

