HAPPEX Source Configuration Plan

Lisa Kaufman

February 13, 2004

HAPPEX Collaboration Meeting, Feb 13, 2004 - p.1

Summary of Laser Room and Injector Studies

Laser Room Studies

Birefringence gradients and steering from Pockels cells are significant sources of position differences

Injector Beam Studies

- Steering and vacuum window effects are small
- Cathode gradients are small
- Phase gradients of Pockels cell are large
- IA cell induces position differences $\leq 0.5 \text{ nm/ppm}$

Results depend on quality of optics and their alignment!

Laser Table Optics

- IA system
- Insertable half-wave plate (IHWP)
- CP Pockels cell
- Rotatable half-wave plate (RHWP)
- Vacuum window
- Cathode

Intensity Attenuator (IA) System

IA Alignment

- Careful alignment of IA system is necessary in order to reduce position differences induced when correcting A_Q
- Dynamic range of IA system is determined with IA waveplate angle
- Study of IA induced position differences and IA alignment will be done in laser room

Circular Polarizer (CP) Pockels Cell

Injector studies' RHWP scans imply that PC birefringence gradients are large compared to vacuum window gradients and PC steering

- Injector studies also suggest that cathode gradients are small compared to PC gradients
- Using Arwen ⇒ position differences from PC birefringence gradients are half as large as those from PC steering

CP Pockels Cell Alignment

- Align PC using isogyre and crossed polarizers to insure good alignment along optic axis (pitch and yaw)
- Use spinning linear polarizer (SLP) to set roll and quarter-wave voltages such that $DoLP \le 2.5 \% \implies DoCP \ge 99.97 \%$
- Iterative x and y translation scans in order to find geometric center of cell in order to reduce position differences due to steering
- Measure birefringence gradient around center of PC

Imaging Lens(es)

- Imaging reduces the effective lever arm from the PC to the cathode reducing PC steering effects
- Install lens(es) such that:
 - Spotsize on cathode $\sim 450 \,\mu m$
 - Small beamspot through vacuum window
 - All lenses must be placed within first
 60 cm after PC

Injector Beam Tests

- BCM and BPM pedestal calibration
- Transmission through injector
- IA calibration
- RHWP setpoints for both IHWP states

BCM and BPM Pedestal Calibration

Current calibration

- Take data at several different beam currents
- Measure beam current using EPICS readback of Faraday cup #2

Intercept of linear fit for current > 4 μA determines effective pedestal for monitor

Transmission through Injector

Helicity-correlated A_Q for PZT X and Y scans

Transmission through the injector needs to be high such that helicity-correlated parameters are not affected!

IA Calibration

- Measure A_Q as a function of IA voltage
- Measure position differences induced by IA system
- Tune IA slope with rotation of waveplate

Criteria for RHWP Setpoints

- Small A_Q in each IHWP state
- Small but not negligible PITA slope
- Small position differences in each IHWP state
- Small average position differences after IHWP cancellation

Choosing RHWP Setpoints

- PITA scan to measure proportionality between PITA slope and outer A_Q peak separation
- RHWP scans for each IHWP state
- Determine PITA slope at each RHWP angle
- RHWP scans for each IHWP state zeroing A_Q at every angle
- After choosing RHWP setpoints:
 - Verify PITA slope small
 - ♦ Set PC voltages to zero A_Q
 - Verify position difference sensitivity

How long will it take?

Laser Table Optics Setup

- 2 shifts during maintenance period
- procedures practiced in laser room

Injector Beam Tests

- test plan to be written and submitted
- 2 shifts of beam studies expected
- source setup results from April beam studies available as HAPPEX tech note

Polarized Source Group - Thank you!