
Some basic test of shashlyk material

Shandong University Ye Tian

Test of Coefficient of Friction

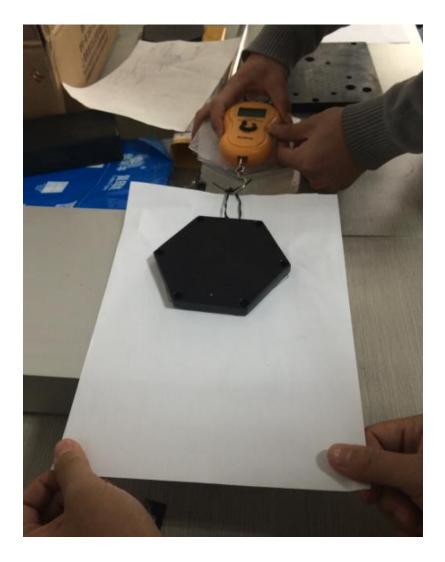
Test method

Keep the upper weight move as paper which means the friction just caused by one surface, and draw the paper with constant speed. The LSB of spring scales is just 10g.

	Pressure(kg)	Tension(kg)	Coefficient of friction	Note	
Paper/Scintilla tor	0.77	0.17	0.221	Friction will cause electrostatic adherence, make	
	1.15	0.25	0.218		
	1.54	0.32/0.33	0.214	results larger. Just use several initial measurements.	
Paper/Lead	0.77	0.25	0.325		
	1.15	0.38	0.330		
	1.54	0.52	0.338		
Tyvek/Scintilla tor	0.77	0.08/0.09	0.104/0.107	Electrostatic adherence phenomenon isn't obvious.	
	1.15	0.14/0.15	0.122/0.130		
	1.54	0.18/0.19	0.117/0.123		
Tyvek/Lead	0.77	0.08	0.104		
	1.15	0.11/0.12	0.096/0.104		
	1.54	0.16/0.17	0.104/0.110		

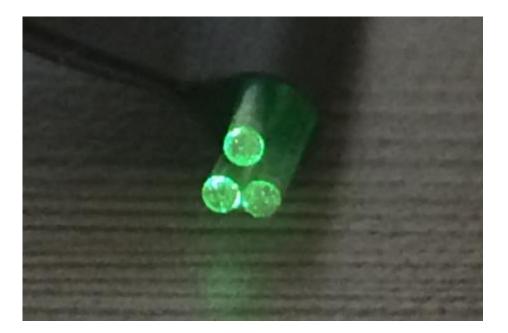
Some uncertainty influence:

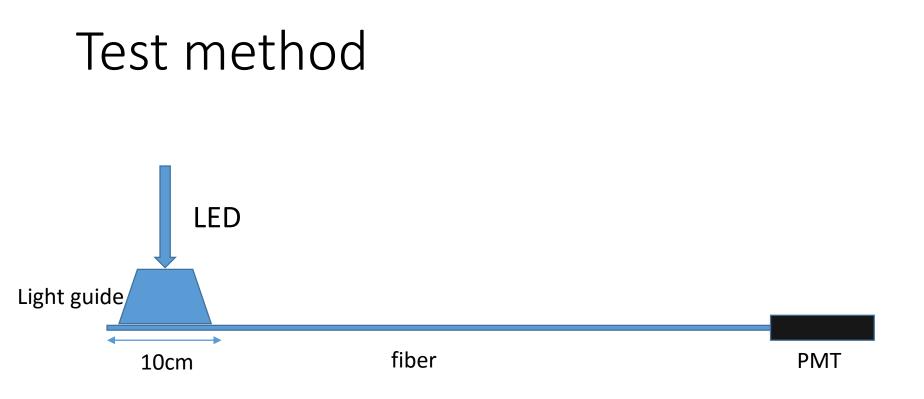
1. Electrostatic adherence caused by friction will make coefficient of friction larger.


2. Lead is easily rubbed off, so fractionate with lead will make paper/Tyvek surface smooth.

Other test method and result

More precise method by keeping the upper weight rest, and moving the paper to get tension drawn on weight. It will make experiment easier because constant speed is unnecessary.


Material	Coefficient of friction
Paper/Scintilla tor	0.21
Paper/Lead	0.344
Tyvek/Scintilla tor	0.1256
Tyvek/Lead	0.1324


Coefficient of friction between paper and scintillator(lead) is same, but the Tyvek is higher.

Reflection Property of Plated Fiber

- The plated fiber is gotten from a company in Yantai, Shandong Province.
- One end of each fiber is plated by silver.
- We only own three plated fiber with light leak slightly which is obviously from picture, and easily shed.

The length of fiber is about 60cm. The Voltage of PMT is 1500V, about 2*10^6 gain.

Test Results

The different of two charts is the voltage of LED. No. 4 fiber is reference fiber without plating.

No.	FWHM(full width at half maximum)(ns)	Amplitude(mV)	Charge(pC)	Compared to No. 4
4	20.2	56	12.7	
	20.3	54	12.6	
1	20.5	104	24.2	1.92
2	20.7	92	21.5	1.706
3	20.6	96	22.5	1.786
3(other end)		7-8	2	0.159
No.	FWHM(full width at half maximum)(ns)	Amplitude(mV)	Charge(pC)	Compared to No. 4
No. 4		Amplitude(mV) 113	Charge(pC) 27.8	
	half maximum)(ns)			
	half maximum)(ns) 22	113	27.8	
4	half maximum)(ns) 22 22	113 112	27.8 27.6	4
4	half maximum)(ns) 22 22 22 22	113 112 214	27.8 27.6 52.6	4 1.900

Thickness test of owned material

• 600 pieces 0.5mm lead plate

Thickness: most 0.51+-0.005mm, but some could reach0.52-0.53mm

20 pieces 1.5mm scintillator
 Thickness: 1.50+-0.02mm

The surface of all scintillator is not flat.

• The hole position is rather good.

