ECAL Updates

- ECAL energy calibration
- The dependence of ECAL energy resolution on the beam polar angle for different pre-lead width (OX₀, 0.5X₀, 1X₀, 1.5X₀, 1.83X₀, and 2.0X₀)
- 3-D PID cuts (π⁻ rejection) for different pre-lead width on the SIDIS configuration

2 GeV e- beam, $\theta = 0^{\circ}$, and vertex (-39.116, -120.984,10)cm Energy Calibration

a=4.287761; b=5.1145

2 GeV e- beam, $\theta = 35^{\circ}$, and vertex (-39.116, -120.984,10)cm Energy Calibration

a=4.287761; b=5.1145

Two Different Calibration Methods Comparison

PVDIS Energy Resolution Study

No field e⁻ beam: all angles: θ_e = [22°,35°], and ϕ = [-180°, 180°], vertex=(0,0,10 cm), and vertex_spread=(0.21,20).

EC calibrated energy(shower+preshower) / E_toal

ECAL Energy Resolution Dependence Table

e⁻ beam nofield	Epolar angle (o)	1GeV σE/E (σ/μ)%	2GeV σE/E(σ/μ)%	5GeV σE/E (σ/μ) %
1748 modules prelead+Al 2 X ₀	0	5.87±0.046	3.74±0.028	2.19±0.017
	10 _{26% w}	orse5.96±0.046	3.77±0.030	2.24±0.017
	20	6.11±0.048	3.85±0.03	2.25±0.017
	35	7.38±0.058	4.70±0.039	2.56±0.019
1748 modules no prelead (PVDIS) No angle dependence for shower	0	3.98±0.029	2.91±0.021	1.94±0.022
	10	4.00±0.029	2.90±0.025	1.95±0.021
	20	3.98±0.029	2.87±0.021	1.93±0.015
	35	4.03±0.029	2.89±0.020	1.92±0.014

ECAL Energy Resolution Dependence Table

e⁻ beam nofield	Epolar angle (o)	1GeV σE/E (σ/μ)%	2GeV σE/E(σ/μ)%	5GeV σE/E (σ/μ) %
1748 modules prelead 1.5X ₀	0	4.83±0.036	3.21±0.024	1.99±0.015
	10	4.88±0.038	3.29±0.024	2.03±0.015
	20	5.09±0.038	3.33±0.024	2.04±0.016
	35	5.84±0.044	3.74±0.028	2.16±0.016
1748 modules prelead 1.0 X ₀	0	4.33±0.031	3.03±0.023	1.92±0.015
	10	4.34±0.032	3.05±0.023	1.928±0.015
	20	4.43±0.033	3.03±0.023	1.93±0.014
	35	4.68±0.036	3.19±0.024	1.96±0.014

ECAL Energy Resolution Dependence Table

e⁻ beam nofield	Epolar angle (o)	1GeV σE/E (σ/μ)%	2GeV σE/E(σ/μ)%	5GeV σE/E (σ/μ) %
1748 modules prelead 0.5X ₀	0	4.09±0.030	2.94±0.024	1.93±0.015
	10	4.15±0.031	2.95±0.023	1.94±0.022
	20	4.15±0.031	2.94±0.022	1.94±0.022
	35	4.29±0.031	3.00±0.022	1.95±0.015

e⁻ beam nofield	Epolar angle (0)	1GeV σE/E (σ/μ)%	2GeV σE/E(σ/μ)%	5GeV σE/E (σ/μ) %
SOLID	0	5.40±0.040	3.56±0.027	2.13±0.016
GEMC 1.83X ₀	10	5.48±0.041	3.58±0.028	2.17±0.017
	20	5.77±0.44	3.72±0.028	2.18±0.017
	35	6.77±0.053	4.36±0.035	2.39±0.018

Preshower(20mm Scin+10.274mm Pb+15mm Scin)+18X₀ shashlyk(0.24mm+0.5mm Pb+1.5mm Scin)+Al?

The Dependence of Prelead Width on ECAL Energy Resolution

EC calibrated energy(shower+preshower) / E_toal

The Dependence of Prelead Width on ECAL Energy Resolution

EC calibrated energy(shower+preshower) / E_toal

0-11 GeV e- beam, θe [7.5°,14.85°] Energy Calibration SIDIS Prelead: 2.0X0 configuration

0-11 GeV e- beam, θe [7.5°,14.85°] Energy Calibration SIDIS Prelead: 2.0X0 Configuration

PcDR Jin's Plots

PcDR Jin's Plots

0-11 GeV e- beam, θe [7.5°, 14.85°] Calibrated E/P Cuts

0-11 GeV e- beam, θe [7.5°,14.85°] Calibrated Preshower E Cuts

x beam 1.83X0 $\frac{1}{10^{-1}} = \frac{1}{10^{-1}} = \frac{1}{10^{-1}}$

x' beam 0X0 Preshower vs. p Entries 646000 Mean y 0.01072 RMS x 2.856 RMS y 0.02095 To⁻ beam 0X₀ 0⁴⁰⁰ π⁻ beam 0X₀

0-11 GeV e- beam, θe [7.5°, 14.85°] Calibrated E/P Cuts E/p>μ-3σ

6.091

0.382

2.857

150

6.089

2.857

160

6.091

2.856

160

0-11 GeV e- beam, θe [7.5°,14.85°] Calibrated Preshower E Cuts

π beam 0.5X0

0-11 GeV e- beam, $\theta e [7.5^\circ, 14.85^\circ]$ E/p> μ -3 σ + preshower E cuts

Summary and Outlook

- Without the pre-lead, the ECAL energy resolution is independent of the beam polar angle.
- With the pre-lead, the ECAL energy resolution is worse for the large polar angle, which is more pronounced for increasing the pre-lead width especially at low energy region (1 GeV).
- In order to maximize the π^- rejection, the off-line 3-D PID cuts show that the pre-lead width >1.5X₀ could get better e^-/π^- separation.

Any comments and suggestions?

Backup

0-11 GeV e- beam, θe [7.5°, 14.85°] Energy Calibration SIDIS

0-11 GeV π - beam, θe [7.5°, 14.85°] Energy Calibration SIDIS

2 GeV π - beam, $\theta = 35^{\circ}$, and vertex (-39.116, -120.984,10)cm Energy Calibration

2 GeV π - beam, $\theta = 35^{\circ}$, and vertex (-39.116, -120.984,10)cm Energy Distribution

Nine momentum bin Total Calibrated E/p Fit

The sampling factor is slightly dependent on the energy, here the factor used to do the following calibration is got from over all energy [0, 11] GeV simulation.

e⁻ beam: $E_e = [0, 11]$ GeV, $\theta_e = [22^{\circ}, 35^{\circ}]$, and $\phi = [-180^{\circ}, 180^{\circ}]$

Preshower Energy Calibration Old Method a=5.353; E0=30.7641

The coefficients EO and a of linear correction for given value of absorber thickness in the first approximation are not dependent on the energy

EC calibrated energy(shower+preshower) / E_toal

Energy Leak comparison ہ2000 ente 1800 Edep_total_over_E_gen Entries 9996 0.9879 Mean RMS 0.008419 1600 1400 vertex(0,0,10)cm 1200 1000 800 vertex(-39.116,-120.984,10)cm 600 400 No field 35° 200 0 0.9 0.92 0.94 0.96 0.98 Edep_total/E_gen