Optics Status Update

Chao Gu

- Last meeting:
 - Offset between 2 sets of straight-through optics data
 - 1st order matrix elements
- Differences between these 2 sets:
 - No LHe X_{beam}~5.0mm Y_{beam}~1.5mm
 - With LHe X_{beam}~-2.0mm Y_{beam}~0.5mm

Matrix Calibration

• Only use 1st order matrix elements to optimize

$$\theta_{tg} = T_{0000} + T_{1000} \times + T_{0100} \theta + T_{0010} y + T_{0001} \phi$$

$$\phi_{tg} = P_{0000} + P_{1000} \times + P_{0100} \theta + P_{0010} y + P_{0001} \phi$$

	T ₀₀₀₀	T1000	T0100	T ₀₀₁₀	T ₀₀₀₁
No LHe	I.171E-03	2.563E-02	-2.673E+00	-7.826E-02	6.595E-02
With LHe	8.548E-04	2.503E-02	-2.694E+00	-1.234E-01	1.502E-01
	P0000	P1000	P0100	P0010	P0001
No LHe	P ₀₀₀₀ -1.146E-02	P ₁₀₀₀ 7.419E-03	P ₀₁₀₀ -1.473E-01	P ₀₀₁₀ -8.411E-01	P ₀₀₀₁ 6.151E-01

- After calibration by using only the 1st order matrix elements
- Sieve pattern is not aligned to its ideal position very well

Matrix Calibration

• Put 2nd order matrix elements into optimize

$$\begin{aligned} \theta_{tg} &= T_{0000} \\ &+ T_{1000} \times + T_{0100} \theta + T_{0010} y + T_{0001} \phi \\ &+ T_{2000} \times^2 + T_{1100} \times \theta + T_{0200} \theta^2 \\ &+ T_{0020} y^2 + T_{0011} y \phi + T_{0002} \phi^2 \\ &+ T_{1010} \times y + T_{1001} \times \phi + T_{0110} \theta y + T_{0101} \theta \phi \end{aligned}$$

	T ₀₀₀₀	T1000	T0100	T ₀₀₁₀	T ₀₀₀₁
No LHe	I.726E-03	2.603E-02	-2.814E+00	-3.663E-02	6.747E-02
With LHe	I.024E-03	2.560E-02	-2.804E+00	-7.711E-02	1.558E-01
	P0000	P1000	P0100	P0010	P0001
No LHe	P ₀₀₀₀ -1.013E-02	P ₁₀₀₀ 2.170E-03	P ₀₁₀₀ -2.008E-02	P ₀₀₁₀ -8.482E-01	P ₀₀₀₁ 6.873E-01

calibration using up to 2nd order matrix elements (with LHe setting)

Matrix Calibration

lacksquare

considered in the

calculation

Ζ Sieve hole • The offset on sieve plane is almost equal to the Transport Coords difference of beam position A possible reason of this X < offset: Hall Coords BPM x is not properly **BPM** x

- Assume BPM is the reason:
 - Optimizer program did not treat BPM properly
 - BPM value we used does not represent the real beam position
- Optimizer program can be test with simulation:
 - generate 2 sets of data with different beam position settings
 - put those data into the calibration program and check if there is still a large offset

- Simulation condition:
 - Normal optics setting
 - Ebeam = 2.254GeV, dp = 0%
 - Set 1: beam position (0,0)
 - Set 2: beam position (5mm,0)

Use the same database to plot data set 2

calibration using up to 2nd order matrix elements (data set 1)

Slightly distorted because of high order effect

- Simulation looks normal
- Compare focus plane plots for No/ With LHe settings:
 - BPM tell us there is a ~7mm difference between 2 settings
 - geometry relations suggests there should be an 8mrad difference between the real phi angle
 - we could expect a $\phi_{\text{fp}} \sim 1.0 \ \phi_{\text{tg}} \sim 6\text{mrad}$ difference on focus plane

The difference is about 2mrad on focus plane

- TODO:
 - Combine the y_{tg} calibration result