A Measurement of the Proton Spin Structure Function g_2 at low Q^2

Chao Gu University of Virginia

On Behalf of the Jefferson Lab Hall A E08-027 Collaboration

DNP2015, Oct 2015

Inelastic scattering

• Inclusive polarized cross section:

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_{\text{Mott}} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} + \gamma g_1(x, Q^2) + \delta g_2(x, Q^2) \right]$$

2 addition Structure Function which related to the spin distribution

Bjorken x

Motivation

- Measure the proton structure function g_2 in the low Q^2 region (0.02–0.2GeV²) for the first time
 - Extract the generalized longitudinal-transverse spin polarizability δ_{LT} as a test of Chiral Perturbation Theory (XPT) calculations
 - Test the Burkhardt-Cottingham (BC) Sum Rule
 - Crucial inputs for hydrogen hyperfine splitting and proton charge radius measurements

Generalized Longitudinal-Transverse Polarizability

- Can be calculated via Chiral Perturbation Theory:
 - Difficult to include the nucleon resonance contributions, especially the Δ resonance
 - δ_{LT} is insensitive to the Δ resonance

$$\gamma_0(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 [g_1 - \frac{4M^2}{Q^2} x^2 g_2] dx$$
$$\delta_{LT}(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 [g_1 + g_2] dx$$

- Neutron Data shows a large deviation from the XPT calculations
- No proton data yet

Neutron Data for γ_0 and δ_{LT}

δ_{LT} puzzle

More neutron δ_{LT} data from JLAB E97-110:

There is still large discrepancy with Neutron δ_{LT}

Plots courtesy of V. Sulkosky

BC Sum Rule

$$\int_0^1 g_2(x,Q^2) \mathrm{d}x = 0$$

- Violation suggested for proton at large Q²
- But found satisfied for the neutron
- Mostly unmeasured for proton
- To experiment test BC sum rule, one need to combine measured g₂ data with some low x model and elastic contribution

How to get g_2

$$\begin{aligned} \Delta \sigma_{\perp} &= -e \rightarrow \oint - e - e - \oint \\ &= \frac{d^2 \sigma^{\uparrow \Rightarrow}}{d\Omega dE'} - \frac{d^2 \sigma^{\downarrow \Rightarrow}}{d\Omega dE'} \\ &= \frac{4\alpha^2 E'^2}{M\nu Q^2 E} \sin \theta [g_1 + \frac{2E}{\nu} g_2] \end{aligned}$$

g2^p experiment will measure this, combing the EG4 g1^p data to get g2^p at low Q²

Jefferson Lab

g2p experiment ran in Jefferson Lab Hall A from Feb 29th to May 18th, 2012

Hall A

Thomas Jefferson National Accelerator Facility

Experiment Setup

Jefferson Lab Hall A

Kinematics Coverage

Analysis Status

- Completed:
 - Detector calibrations/efficiencies
 - VDC t_0 calibration
 - Deadtime calculation
 - HRS Optics
 - Field measurement analysis
 - Simulation package
 - Optics reconstruction
 - Beam information
 - Helicity decoding
 - BCM calibrations

- In Progress:
 - Dilution and packing fraction analysis
 - Acceptance study
 - Polarized and unpolarized radiative corrections
 - Asymmetry analysis
- To Do:
 - Unpolarized/polarized cross sections
 - Determination of g_2 /moments
- BPM calibrations/Raster size calibration (paper accepted by Nucl. Instrum. Meth.)
- Target polarizations (Nucl. Instrum. Meth. A738(2014)54)

Preliminary Results

• Fully radiated MAID 2007 (solid curve) asymmetries:

Plots courtesy of T. Badman

- Unpolarized/polarized elastic tail
- Mo/Tsai for unpolarized radiative correction
- Akushevich/Ilyichev/Shumeiko for polarized radiative correction

Conclusion

- The g2p experiment ran in spring 2012 and took data covering 0.02 < Q2 < 0.20 GeV2
- Will provide an accurate measurement of g_2 in low Q^2 region for the first time
 - Extract the fundamental quantities δ_{LT} to provide a test of χPT calculations
 - Test the Burkhardt-Cottingham (BC) Sum Rule
- New instruments are demonstrated working well during the experiment
- Data analysis is currently underway

g2p Collaboration

Spokespeople

Alexander Camsonne J.P. Chen Don Crabb Karl Slifer

Post Docs

Kalyan Allada Vince Sulkosky Jixie Zhang

Graduate Students

Toby Badman Melissa Cummings Chao Gu Min Huang Jie Liu Pengjia Zhu Ryan Zielinski

Thanks