

Min Huang Duke University, TUNL g2p collaboration meeting November 14, 2014

Overview

- Completed work
 - Analyzer database file
 - Organized and generated the correct file
 - Wiki page describes how the information was obtained
 - Thanks to Chao and Ryan for their contributions
 - HRS optics
 - LHRS/RHRS straight through optics
 - LHRS 1.7 GeV, 2.5T transverse, worst septum optics
 - They have been updated by Chao later with latest bpm information and corrections
 - Central scattering angle measurement
- Ongoing work
 - Acceptance

Central Scattering Angle Measurement

- Central scattering angle is defined as the angle between the line connecting target center and sieve center and the ideal beam line
- Reference for scattering angle analysis
 - optics angle calibration
- Two methods to measure this angle
 - Survey
 - Pointing

Survey

Uncertainties from survey measurements and target location

Quantity	Uncertainty
Sieve x, y	0.5mm
Sieve z	1mm
Target z	1.5mm

Results

Arm	Survey values (rad)
LHRS	0.1007 ± 0.0007
RHRS	0.1009 ± 0.0007

Pointing

Elastic scattering off a target of mass M

$$E' = \frac{E - E_{loss}}{1 + \frac{E - E_{loss}}{M}(1 - \cos \theta)} - E'_{loss}$$

Use the difference in E' between two nuclei

$$\Delta E' = E'_1 - E'_2 = \frac{E - E_{1loss}}{1 + \frac{E - E_{1loss}}{M1} (1 - \cos \theta)} - \frac{E - E_{2loss}}{1 + \frac{E - E_{2loss}}{M2} (1 - \cos \theta)} - (E'_{1loss} - E'_{2loss})$$

Carbon foil in LHe and CH₂ targets were used in g2p

Pointing

Quantity	Uncertainty
Sieve x, y	0.5mm
Sieve z	1mm
Target z	1.5mm
Beam x _b	1.5mm
Beam θ_{b}	1.5mr

- θ obtained from the pointing calculation
- To convert θ to θ_0 , the uncertainty is involved with (θ - θ_0) is 2.4mr
- Already larger than survey uncertainty (0.7mr)
- Does not work here
- Survey provides more accurate results
- <u>Tech note</u> for details

Acceptance

Unpolarized cross section

 $\frac{d\sigma^{raw}}{d\Omega dE'} = \frac{N \cdot ps \cdot RC}{Q/q \cdot N_{tg} LT \cdot \epsilon_{det}} \frac{Acc}{\Delta \Omega \Delta E'}$

Use Monte-Carlo simulation to study Acc

 $\frac{Acc}{\Delta\Omega\Delta E'} = \frac{1}{\Delta\Omega^{MC}\Delta E'^{MC}} \frac{N_{simu}^{MC}}{N_{acc}^{MC}}$

Method

- Generate transport functions to describe trajectories (Snake)
 - Forward/backward between target and focal plane
 - Forward to multiple end-planes along the trajectories to define apertures
- Transport functions compiled into simulation package (g2psim)

Transport Functions

Septum	Production data	Transport function package
484816 good	2.3GeV, 2.5T, p0=2.228GeV	Ready to use
403216 bad	2.3GeV, 2.5T, all other p0 settings	No straight-thru data to compare, will work on it later
400016 very bad	3.4GeV, 5T 2.3GeV, 5T 1.7GeV, 2.5T 1.2GeV, 2.5T	Ready to use

8

Corrections to Transport Functions

- Goal: match focal plane data
- Method: divide transport functions into two parts
 - Target -> virtual plane + virtual pane -> focal plane
 - Septum is new, while HRS is standard
 - Apertures in HRS will still be valid

Virtual Plane Fit

Focal Plane Comparison

Acceptance

Distribution comparisons at target plane

Straight through optics run

Apply corrected transport functions

1.706 GeV, 2.5T, transverse, dilution run, empty target

M. Huang, g2p Collaboration Meeting

November 15, 2014

Plan for Graduation

Short term plan

- Acceptance (1-2 months ?)
 - Update with energy loss model (when completed)
 - Update with new transport functions
 - Repeat the correction procedures for worse septum situations
 - Go through other settings
- Long term plan
 - Analysis of thesis topic
- Plan to graduate in May, 2015