A Measurement of the $g_2\,{\rm Spin}$ Structure Function at Low Q^2

Toby Badman The University of New Hampshire APS 2016 Salt Lake City, Utah

Inclusive Electron Scattering

Inclusive unpolarized cross section:

 $\frac{d^2\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{v} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2\left(\frac{\theta}{2}\right) \right]$

P=(M,0)

$$Q^{2} = -q^{2} = 4EE'\sin^{2}\left(\frac{\theta}{2}\right)$$
$$W^{2} = M^{2} + 2Mv - Q^{2}$$
$$x = \frac{Q^{2}}{2Mv}$$

Inclusive polarized cross section differences:

$$\frac{d^2\sigma}{d\Omega dE'}(\uparrow \uparrow -\downarrow \uparrow) = \frac{4\alpha^2}{MQ^2 v} \frac{E'}{E} \left[(E + E'\cos\theta) g_1(x, Q^2) - \frac{Q^2}{v} g_2(x, Q^2) \right]$$
$$\frac{d^2\sigma}{d\Omega dE'}(\uparrow \Rightarrow -\downarrow \Rightarrow) = \frac{4\alpha^2 \sin\theta}{MQ^2 v^2} \frac{E'^2}{E} \left[v g_1(x, Q^2) - 2E g_2(x, Q^2) \right]$$

Experimental Technique

Motivation

- Very little data exists for the proton g_2 structure function.
- Measurements at Jefferson Lab:
 - RSS $(1 < Q^2 < 2 \text{ GeV}^2)$ published
 - SANE $(2 < Q^2 < 6 \text{ GeV}^2)$ analysis
 - g2p $(0.02 < Q^2 < 0.2 \text{ GeV}^2)$ analysis
- A low Q^2 measurement will be a useful tool for testing the validity of χ PT and the moments of g_2 .

The B.C. Sum Rule

- 0^{th} moment of g_2 : $\Gamma_2 = \int_0^1 g_2(x, Q^2) dx = 0$
- Existing data:

Brown: SLAC E155x Red: Hall C RSS Black: Hall A E94-010 Green: Hall A E97-110 Blue: Hall A E01-012

• G2p hopes to fill in low Q² region for the proton.

Spin Polarizabilities

•
$$\gamma_o = \frac{16\alpha M^2}{Q^6} \int_0^{x_o} x^2 \left[g_1(x, Q^2) - \frac{4M^2}{Q^2} x^2 g_2(x, Q^2) \right] dx$$

•
$$\delta_{LT} = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 [g_1(x, Q^2) + g_2(x, Q^2)] dx$$

- Generalized spin polarizabilities γ_o and δ_{LT} are benchmark tests of χ PT.
- Some disagreement with neutron polarizabilities.
- No proton data yet!

Experimental Setup

Monitor

Local Dump

Chamber

Septum magnet for ٠ small scattering angles

Kinematic Coverage

Model estimated kinematic coverage

Dilution and Packing Fraction

- The physics asymmetry first requires the calculation of two target quantities:
 - The length ratio of material in the target cup, called the *packing fraction*.

$$Pf = \left(\frac{Y_p}{Y_E} - 1\right) \left(\frac{\chi_N \sigma_N + \chi_H \sigma_H}{\chi_{He} \sigma_{He}}\right)^{-1}$$

 The fractional composition of proton material in the target, called the *dilution factor*.

$$f = 1 - \frac{Y_{BG}}{Y_P}$$

• The asymmetry is then calculated as:

$$A_{phy} = \frac{1}{fP_{b}P_{t}} \frac{Y_{+} - Y_{-}}{Y_{+} + Y_{-}}$$

Radiative Corrections

• Preliminary polarized radiative correction:

 $R = A_{unrad} - A_{rad}$

- $A_{(un)rad}$ is generated from MAID.
- Polarized radiative correction study is still underway, results will be updated when complete.

Physics Asymmetry

Preliminary systematics:

Target Polarization	2%
Inelastic XS Model	10%
Packing Fraction	45%
MAID	40%
Radiative correction	10%

Unpolarized Cross Section

- Acceptance correction study is still underway.
- An acceptance cut is chosen such that the theta/phi distribution is flat within the cut region.
- Proton XS is calculated as: $\frac{d\sigma}{d\Omega dE} = \frac{eM_{NH3}}{A\rho_{NH3}Z_{NH3}} fY_{NH3}$

Preliminary systematics:

Unpolarized XS model	10%
Packing Fraction	45%
Unpolarized XS model (dilution)	10%

2.254GeV 5T Transverse Acceptance

Cross Section Differences

Proton Spin Structure Functions

Preliminary systematics:

Unpolarized XS model	10%
MAID	40%
Target polarization	3%
Acceptance	25%

Summary

- A measurement of the proton spin structure function g₂ at low Q² is an important component in the testing of a number of effective theories of QCD.
- The g2p experiment, which measured g_2 in a Q^2 region of 0.02 0.2GeV², successfully ran at Jefferson Lab during the spring of 2012 and analysis is still ongoing.
- Preliminary methods for determining the acceptance and radiative effects give promising results for the spin structure at a Q^2 of 0.1GeV^2 .
- Current efforts are focused on improving these methods and reducing systematics.
- More results to come shortly!

Thank You!

G2p Analysis Team:

<u>Students</u> Toby Badman Melissa Cummings Chao Gu Min Huang Jie Liu Pengjia Zhu Ryan Zielinski <u>Spokespeople</u> Alexandre Camsonne JP Chen Don Crabb Karl Slifer

<u>Post Docs</u> Kalyan Allada Elena Long James Maxwell Vince Sulkosky Jixie Zhang