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Introduction

In the investigation of the structure of the nucleon, the question about the origin of the

nucleon spin is still not completely solved. The contribution of the spin of the partons,

the constituents of the nucleon, is given by the helicity distribution. This distribution is the

difference of the numbers of partons with their spins aligned and antialigned with the

nucleon spin in a frame in which the nucleon has a very large momentum (infinite mo-

mentum frame) and the direction of its spin is longitudinal to its momentum. In the naïve

quark parton model the partons are identified with the quarks and their spins add up to

yield the total nucleon spin. However, measurements at the CERN and SLAC laboratories

yielded helicity distributions of all quarks of less than 30 % (see
[

Ant00
]

and references

therein). In quantum chromodynamics the interaction of quarks is described by the ex-

change of gluons, the gauge bosons of the strong interaction. These gluons dress the

quarks in the nucleon with a sea of virtual quark–antiquark pairs and gluons. Besides the

spin of the gluons, also the orbital angular momenta of quarks and gluons can contribute

to the nucleon spin in addition to the spin of the quarks. To date, indirect and direct mea-

surements of the gluon helicity distribution gave only vague information about its size and

a direct measurement of the orbital angular momenta is not possible so far.

Not only the helicity distribution but also a transverse spin of the constituents can re-

veal information about the structure of the nucleon. In contrast to the helicity distribution,

the transversity distribution is defined for a nucleon spin transverse to its direction of mo-

tion. As in the case of a longitudinal nucleon spin, the transversity distribution is the differ-

ence of the numbers of partons with their spins aligned and antialigned to the nucleon

spin. The helicity and transversity distributions seem to be similar but their interpretation is

valid only in the infinite momentum frame in which the direction of the nucleon momen-

tum breaks rotational symmetry. In addition, helicity conservation forbids contributions

from the gluon to the transversity distribution in the nucleon.

Besides the helicity and the transversity distribution functions, six other quark distri-

bution functions exist for each quark flavour in leading twist. However, only the unpo-

larised distribution function—the quark number density in the nucleon—and the helicity

and transversity distributions do not vanish when they are integrated over the intrinsic

transverse quark momenta. These three distributions are the fundamental degrees of

freedom of the quarks inside the nucleon and are of equal relevance. The transversity

distribution function was first mentioned already in 1979
[

Ral79
]

but remains unmeasured
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to date. The reason is its chiral–odd nature which requires the combination with another

chiral–odd object in helicity conserving processes. One possibility to access transversity

is the semi–inclusive deep–inelastic scattering process in which the distribution functions

are combined with fragmentation functions. The combination of the transversity func-

tion and the chiral–odd Collins fragmentation function causes a left–right asymmetry in

the cross section for a transversely polarised nucleon. The interest in this asymmetry in-

creased when a first measurement with the SMC experiment in 1999
[

Bra99
]

indicated

a positive asymmetry for positive hadrons produced in deep–inelastic scattering off a

transversely polarised hydrogen target. Semi–inclusive deep–inelastic scattering allows

furthermore the measurement of another distribution function, the Sivers function, which

describes the correlation of quark transverse momenta with the transverse spin of the

nucleon. The investigation of the Sivers function is motivated by the requirement of non–

zero orbital angular momenta of the quarks for the existence of this distribution function.

Like the combination of transversity and Collins functions, the Sivers function appears to-

gether with the unpolarised fragmentation function in the cross section for a transversely

polarised nucleon and produces a different left–right asymmetry.

The deep–inelastic scattering experiment HERMES (HERa MEasurement of Spin) uses

the lepton beam provided by the HERA (Hadron–Elektron–RingAnlage) facility at the DESY

(Deutsches Elektronen–SYnchrotron) laboratory in Hamburg, Germany. In the years 1996

to 2000, the lepton beam was scattered off fixed hydrogen and deuterium targets which

were longitudinally polarised. Published azimuthal asymmetry moments in pion produc-

tion
[

Air00, Air01, Air03
]

did not allow the disentanglement of the cross–section terms con-

taining the Sivers function, the Collins function, and a twist–three component from these

data. Since 2002, the operation of a target which is polarised transversely to the direction

of the lepton beam allows the individual measurement of Collins and Sivers asymmetry

moments and furthermore the separation of the twist–three component from the mea-

surement on a longitudinally polarised hydrogen target. The extraction of the Collins and

Sivers moments and the separation of the twist–three component are presented in this

thesis.

The theory of the inner structure of the nucleon is reviewed in Chapter 2 with em-

phasis on the concept of the factorisation of the deep–inelastic scattering process into

distribution and fragmentation functions. Since the field of distribution and fragmenta-

tion functions dependent on quark transverse momenta is quite young, many notations

for the various functions exist. Details about the chosen notation and further conventions

are given in the subsequent chapters and in Appendix A. In Chapter 3 the HERMES ex-

periment is introduced with its main components: the polarised hydrogen gas target, the

tracking and particle identification detectors of the spectrometer, and the data acquisi-

tion and processing. The formalism of the extraction of Collins and Sivers moments from

the experimental data and systematic studies of the obtained moments are presented

in the subsequent chapter. In Chapter 5 the systematic uncertainties are investigated

using a newly developed Monte Carlo generator which simulates azimuthal asymmetries

arising from intrinsic quark momenta. Monte Carlo simulations are also used for the esti-

mation of the contribution by decay hadrons from exclusively produced vector mesons

in Chapter 6. In the same chapter, measurements of asymmetry amplitudes for exclu-

sive ρ0 vector mesons are presented as well as an asymmetry in the difference between

positive and negative pion yields where the vector meson contribution cancel. The mea-
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sured Collins and Sivers moments can be used to separate the twist–three cross–section

component from the extracted amplitudes of the measurements on the longitudinally

polarised hydrogen target, which is described in Chapter 7. The discussion and inter-

pretation of the measured Collins and Sivers moments together with the comparison to

model predictions can be found in Chapter 8 before the summary and conclusion of this

work.
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The Inner Structure of the Nucleon

A very successful tool to gain information about the inner structure of the nucleon is

the deep–inelastic scattering process which is described in this chapter. Inclusive deep–

inelastic scattering was the first process in which point–like partons were identified inside

the nucleon. Quark distribution and fragmentation functions, which appear in the cross

section for semi–inclusive deep–inelastic scattering, are introduced and their properties

described. The topics of this thesis are the transversity and Sivers distribution functions

and the Collins fragmentation function which are addressed in Sections 2.4.1, 2.4.3, and

2.5.1. Furthermore, the concept of cross–section asymmetries—the measured quantities

in deep–inelastic scattering experiments for the extraction of quark distribution functions—

is presented.

The definition of twist as proposed in
[

Jaf96
]

is used, i.e., a leading–twist or respectively

twist–two term is identified with a term of leading order in a 1/Q expansion. The nota-

tion of Mulders and Tangermann
[

Mul96
]

is applied to the distribution and fragmentation

functions except for the three leading–twist distribution functions that do not vanish when

integrated over transverse quark momenta. For these three functions, q(x, |~pT |2) refers to

the unpolarised distribution f q
1 (x, |~pT |2), ∆q(x, |~pT |2) to the helicity distribution gq

1L(x, |~pT |2),
and δq(x, |~pT |2) to the transversity distribution hq

1(x, |~pT |2), where ~pT is the intrinsic quark

transverse momentum. The definitions of the azimuthal angles and the asymmetries fol-

low the Trento conventions
[

Bac04a
]

. Throughout this work, four–vectors are written as

bold symbols, e.g., q, space vectors with three or two components are indicated by

arrows, e.g., ~p = (~pT , pz), where transverse vectors (with two components) have an addi-

tional subscript T . Further notations and conventions can be found in Appendix A.

2.1 Inclusive Deep–Inelastic Scattering

In the deep–inelastic scattering (DIS) process a lepton scatters off a nucleon via the ex-

change of a virtual boson. For charged leptons and moderate squared momentum

transfers to the targetQ2, the exchange of a single virtual photon, as shown in Figure 2.1.1,

is the dominant process during which the nucleon breaks up and forms a final hadronic

state X. The maximum possible momentum transfer is determined by the centre–of–mass

energy
√
s which is only about 7.2 GeV at the HERMES experiment. In inclusive DIS only
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l

l′

q
γ∗

P X

Lµν

Wµν

Figure 2.1.1: DIS with one–photon exchange in the laboratory system.

the scattered lepton is detected whereas additional hadrons of the final state X are de-

tected in semi–inclusive DIS processes. In contrast to inclusive and semi–inclusive DIS the

hadronic state X is fully reconstructed in exclusive DIS. In the laboratory frame the four–

momentum of the incoming (outgoing) lepton is l = (E,~l ) (l′ = (E′,~l′)). For a fixed target

experiment like HERMES, only the first component of the four–momentum of the nucleoni

P = (M,~0 ) differs from zero, where M is the rest mass of the nucleon. The relevant kine-

matic variables for the inclusive DIS process are summarised in Table 2.1.1.

θ polar scattering angle

in the laboratory frame

q = l− l′ four–momentum transfer to the target

s = (P + l)2
lab≈ M2 + 2ME squared centre–of–mass energy

ν =
P · q
M

lab
= E − E′ energy transfer to the target

y =
P · q
P · l

lab
=

ν

E
fractional energy transfer to the target

Q2 = −q2 lab≈ 4EE′ sin2 θ

2
squared invariant mass of the virtual photon

W 2 = (P + q)2
lab
= M2 + 2Mν −Q2 squared mass of the final state

x =
Q2

2P · q
lab
=

Q2

2Mν
Bjorken scaling variable

Table 2.1.1: Kinematic variables used in the description of DIS. The (near–)

equalities marked ‘lab’ hold in the laboratory frame for a fixed tar-

get, neglecting the lepton rest mass.

The squared momentum transfer to the target Q2 is a measure of the spatial resolution

in the scattering process. In DIS processes, Q2 is large enough to resolve the constituents

of the nucleon. The dimensionless Bjorken scaling variable x describes the inelasticity

iThroughout this work natural units are used, i.e., ~ = c = 1.
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of the process. Mass is conserved in elastic scattering processes, i.e., W 2 = M2 which

implies x = 1. The squared mass of the final state becomes larger than the nucleon mass

in inelastic processes, and consequently 0 < x < 1. As additional degree of freedom, the

mass difference between final hadronic state and target nucleon – the excitation energy

– requires two independent variables for the description of the scattering process, e.g.,

Q2 and x.

The differential cross section for a scattered lepton which is detected within a solid

angle dΩ and in an energy range [E′, E′ + dE′] can be written as (see e.g.
[

Ans95
]

):

d2σ

dΩ dE′
=

α2

2MQ4

E′

E
Lµν W

µν =
α2

2MQ4

E′

E

[

L(S)
µν W µν(S) − L(A)

µν W µν(A)
]

, (2.1.1)

where α is the electromagnetic coupling constant. Lµν and Wµν are the leptonic and

hadronic tensors, describing the interaction at the leptonic and hadronic vertices of the

DIS process (cf. Figure 2.1.1). They can be split up in two parts which are symmetric and

antisymmetric under parity transformation, respectively:

Lµν = L(S)
µν + iL(A)

µν , Wµν = W (S)
µν + iW (A)

µν , (2.1.2)

where only the antisymmetric parts are spin–dependent. In the cross section of Eq. (2.1.1),

antisymmetric combinations of Lµν and Wµν do not appear due to the parity conserva-

tion of the electromagnetic interaction.

Since the lepton is a point–like spin–1
2 particle, the leptonic tensor can be calculated in

the Dirac formalism of QED. The small electromagnetic coupling constant α ≈ 1/137 and

the fact that photons do not couple to themselves allow the application of perturbative

QED. Using Dirac matrices (cf. Appendix A) and the Dirac spinor u(l, s) for spin–1
2 particles

with four–momentum l and spin four–vector s, the leptonic tensor reads:

Lµν(l, s; l
′, s′) = [ū′(l′, s′)γµu(l, s)]

∗ [ū′(l′, s′)γνu(l, s)] . (2.1.3)

The polarisation of the scattered lepton is not measured in the experiment, so the leptonic

tensor can be summed over the spin four–vector s′ of the scattered lepton. This results in

the following symmetric and antisymmetric parts of the tensor:

L(S)
µν (l; l′) = 2[lµl

′
ν + l′µlν − gµν(l · l′ −m2

l )] , (2.1.4)

L(A)
µν (l, s; l′) = 2mlǫµνλκs

λ(lκ − l′κ) . (2.1.5)

Here, gµν denotes the metric tensor, ǫµνλκ the Levi–Civita tensor normalised so that ǫ0123 =

1, and ml the lepton mass.

The complex inner structure of the nucleon prevents the exact calculation of the

hadronic tensor. Only a parametrisation in terms of structure functions is possible. A

general decomposition of Wµν in symmetric and antisymmetric parts:

W (S)
µν (q;P) = 2

(

−gµν +
qµqν
q2

)

F1(x,Q
2) +

2

P · q

(

Pµ −
P · q
q2

qµ

)(

Pν −
P · q
q2

qν

)

F2(x,Q
2) , (2.1.6)

W (A)
µν (q;P,S) = ǫµνλκ

2Mqλ

P · q

[

Sκg1(x,Q
2) +

(

Sκ − S · q
P · qP

κ

)

g2(x,Q
2)

]

, (2.1.7)
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fulfils additional symmetry requirements as Lorentz covariance, gauge invariance, and

parity conservation of the electromagnetic interaction. The Lorentz–invariant structure

functions F1, F2, g1, g2 depend on the two independent variables x and Q2 in DIS. The two

structure functions F1 and F2 appear in the symmetric part of the hadronic tensor while

the antisymmetric part contains the structure function pair g1, g2.

 Q2 (GeV2)

F
2(

x,
Q

2 ) 
* 

2i x

H1
ZEUS
BCDMS
E665
NMC
SLAC

10
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Figure 2.1.2: The proton structure function F2 measured in electromagnetic

scattering of positrons on protons (ZEUS
[

Che01
]

, H1
[

Adl01,

Adl03
]

) and for electrons (SLAC
[

Whi92
]

) and muons (BCDMS
[

Ben89
]

, E665
[

Ada96
]

, NMC
[

Arn97a
]

) on a fixed target. Statisti-

cal and systematic uncertainties added in quadrature are shown.

The data are plotted as a function of Q2 in bins of fixed x. Some

points have been slightly offset in Q2 for clarity. For the purpose of

plotting, F2 has been multiplied by 2ix , where ix is the number of

the x bin, ranging from ix = 1 (x = 0.85) to ix = 28 (x = 0.000063).

This plot is taken from
[

Eid04
]

.
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2.1.1 The Unpolarised Cross Section

Averaging over all spin states in the initial state of the scattering process, only the spin–

independent symmetric parts of the leptonic and hadronic tensors do not vanish and the

unpolarised cross section
[

Ans95
]

,

d2σunpol

dxdy
=

4πα2

sx2y2

{

xy2F1(x,Q
2) +

(

1− y − γ2y2

4

)

F2(x,Q
2)

}

, (2.1.8)

with γ = (2Mx)/Q is obtained. The structure functions F1(x,Q
2) and F2(x,Q

2) reflect the

unpolarised inner structure of the nucleon. They describe the deviation from the cross

section for the scattering of a relativistic spin–1
2 particle off a point–like central poten-

tial. Thus, they correspond to the electric and magnetic form factors in elastic electron–

nucleon scattering, which describe the Fourier transform of the electric charge distribu-

tion and the magnetic moment of the nucleon, respectively. A selection of world data

for the structure function F2 as a function of Q2 for different x can be found in Figure 2.1.2.

2.1.2 The Polarised Cross Section

In contrast to the symmetric part, the antisymmetric part of the cross section depends

on the lepton and the nucleon spins. For a lepton with its spin and momentum aligned,

i.e., longitudinally aligned, the cross section depends on the azimuthal and polar angles,

φl
S and θl

S , of the target spin ~S with respect to the lepton beam (cf. Figure 2.1.3). In

the difference between two opposite target spin states ±S, the unpolarised cross section

x

y

z

θl
S

φl
S

~l

~l′

~q

~S

~ST ~SL

Figure 2.1.3: Definition of azimuthal and polar angles of the target spin ~S.
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Figure 2.1.4: The spin–dependent structure function xg1 of the proton,

deuteron, and neutron measured as function of x in DIS of po-

larised leptons (HERMES:
[

Reg05
]

, SMC:
[

Ade98, Ade99
]

, E155:
[

Ant99, Ant00
]

, E143:
[

Abe98
]

). Statistical and systematic uncer-

tainties added in quadrature are shown.

cancels and one obtains the polarised cross section
[

Ans95
]

:

d3σpol

dxdy dφl
S

=
d3σ(−S)

dxdy dφl
S

− d3σ(+S)

dxdy dφl
S

=
4α2

sxy

{[(

2− y − γ2y2

2

)

g1(x,Q
2)− γ2yg2(x,Q

2)

]

cos θl
S + (2.1.9)

γ

√

1− y − γ2y2

4

[

γg1(x,Q
2) + 2g2(x,Q

2)
]

sin θl
S cosφl

S

}

.
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If the target nucleons are also longitudinally polarised, θl
S = 0 and the cross section re-

duces to:

d3σ
→⇐

dxdy dφl
S

− d3σ
→⇒

dxdy dφl
S

=
4α2

sxy

{[(

2− y − γ2y2

2

)

g1(x,Q
2)− γ2yg2(x,Q

2)

]}

. (2.1.10)

Here, → indicates the spin orientation of the incoming lepton and ⇐,⇒ the different

spin states of the target nucleon. The cross section is dominated by the structure func-

tion g1(x,Q
2) because g2(x,Q

2) is suppressed by γ2 ∼ 1/Q2 and g2(x,Q
2) is small by itself

and even vanishes in the simple quark parton model. The contribution of g2(x,Q
2) van-

ishes completely in case of a target polarised longitudinally with respect to the virtual

photon. Experimentally, however, a polarisation with respect to the virtual photon is not

achievable. Figure 2.1.4 shows measurements on longitudinally polarised proton and

deuteron targets of different experiments. The structure function g2(x,Q
2) is usually taken

into account by a parametrisation of world data. The precision of the parametrisation

has only a marginal effect on the g1(x,Q
2) measurement and is part of the systematic

uncertainty. The neutron structure function is extracted from the difference of the results

for the deuteron and the proton. It can be measured also directly with a polarised 3He

target, which is an effective polarised neutron target due to the almost complete can-

cellation of the proton spins (see e.g.
[

Ack97
]

).

In the special case of a target polarised transverse to the incoming lepton beam,

θl
S = π/2 and the polarised cross section remains φl

S dependent:

d3σ→⇓

dxdy dφl
S

− d3σ→⇑

dxdy dφl
S

=
4α2

sxy
γ

√

1− y − γ2y2

4

{

γg1(x,Q
2) + 2g2(x,Q

2)
}

cosφl
S . (2.1.11)

Here, neither g1(x,Q
2) nor g2(x,Q

2) dominates the cross section. The combination of mea-

surements on longitudinally and transversely polarised targets allows the extraction of

g2(x,Q
2). First measurements of g2(x,Q

2) exist
[

Ant03
]

.

2.1.3 Forward Virtual Compton Scattering

The optical theorem relates the hadronic tensor to the imaginary part of the forward

virtual Compton scattering amplitude Tµν :

Wµν =
1

2π
ImTµν . (2.1.12)

In the basis of helicity eigenstates (helicity basis), only four independent photon–hadron

amplitudes T (h,H;h′,H ′) exist because of helicity conservation:

T (1, 1
2 ; 1, 1

2), T (1,−1
2 ; 1,−1

2 ) , T (0, 1
2 ; 0, 1

2), T (0, 1
2 ; 1,−1

2 ) . (2.1.13)

They depend on the helicities of the initial (final) nucleon H (H ′) and photon h (h′) (cf. Fig-

ure 2.1.5). Combinations of the four amplitudes are proportional to the unpolarised and
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h h′

H H ′

Figure 2.1.5: The forward virtual Compton scattering amplitude.

polarised structure functions:

F1 ∼
1

2
Im[T (1, 1

2 ; 1, 1
2) + T (1,−1

2 ; 1,−1
2 )] (2.1.14)

(1 + γ2)
F2

2x
− F1 ∼ ImT (0, 1

2 ; 0, 1
2) (2.1.15)

g1 − γ2g2 ∼
1

2
Im[T (1, 1

2 ; 1, 1
2)− T (1,−1

2 ; 1,−1
2 )] (2.1.16)

γ(g1 + g2) ∼ ImT (0, 1
2 ; 1,−1

2 ) . (2.1.17)

The hadronic tensor yields the virtual photo–absorption cross sections σHH′

hh′ :

σ++
++ ∼ ImT (1, 1

2 ; 1, 1
2 ) , σ−−++ ∼ ImT (1,−1

2 ; 1,−1
2 ) ,

σ++
00 ∼ ImT (0, 1

2 ; 0, 1
2 ) , σ+−

0+ ∼ ImT (0, 1
2 ; 1,−1

2 ) .
(2.1.18)

The ratio of the photo–absorption cross sections of longitudinal and transverse virtual pho-

tons,

R(x,Q2) =
σL(x,Q2)

σT(x,Q2)
=

σ++
00

1
2(σ++

++ + σ−−++)
, (2.1.19)

relates the structure functions F1(x,Q
2) and F2(x,Q

2) to each other by:

R(x,Q2) =
(1 + γ2)F2(x,Q

2)− 2xF1(x,Q
2)

2xF1(x,Q2)
. (2.1.20)

In the Bjorken limit where Q2 →∞ and ν →∞ such that x remains constant, the kinematic

factor γ can be neglected and the photo–absorption cross section σL for longitudinal

photons with helicity 0 vanishes as a consequence of the requirement of helicity conser-

vation at the virtual photon–parton scattering vertex. Thus, R → 0 and Eq. (2.1.19) yields

the Callan–Gross relation
[

Cal69
]

,

F2(x) = 2xF1(x) , (2.1.21)

for scattering off point–like constituents of the nucleon with spin 1
2 .

2.2 The Quark Parton Model

In the 1960s, experiments in which high–energetic electrons were scattered off protons
[

Blo69, Bre69
]

yielded results which could not be interpreted with a diffusely distributed
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σDIS~

2

Figure 2.2.1: DIS in the parton model. The target is a cloud of partons and the

lepton scatters elastically from one of the partons by exchanging

a virtual photon.

proton charge. Instead, the measurements indicated discrete scattering centres. These

point–like components of the protons were called partons. They could be identified with

the quarks which were proposed by Gell–Mann
[

Gel64
]

and Zweig
[

Zwe64
]

as funda-

mental entities of the proton, neutron, and other hadrons to explain results from particle

spectroscopy.

In the Quark Parton Model (QPM), the essential assumption is that for large energy and

momentum transfer to the nucleon, the mediator interacts incoherently with free partons

in the nucleon. In a frame where the nucleon is moving with large (infinite) momentum,

the nucleon and quark masses can be neglected. If the target moves in the z direction in

this so–called infinite momentum frame, the three–momentum of a quark in the nucleon

can be written as follows:

~p = (~pT , xP ) , (2.2.1)

where P is the absolute nucleon momentum and ~pT are the components of the quark

momentum transverse to the z direction. Also the transverse motion of the quark during

the interaction time is small if P → ∞. Hence, the Bjorken scaling variable x can be

interpreted as the momentum fraction of the nucleon carried by the struck quark.

In the QPM, the total cross section for lepton scattering from the partons as a whole,

i.e., the nucleon (cf. Figure 2.2.1), is the sum of the individual contributions:

d2σ

dQ2 dν
=
∑

q,q̄

∫

dx q(x)
d2σlq

dQ2 dν
, (2.2.2)

where d2σlq/dQ2 dν is the cross section for the elastic lepton–quark scattering and the sum

is performed over all quark and antiquark flavours in the nucleon, q and q̄. The unpolarised

quark distribution function q(x) multiplied by the differential momentum fraction dx gives

the probability to find a quark of flavour q carrying a fraction of the target momentum

in the range [x, x+ dx]. Momentum conservation in the elastic scattering process yields

that the momentum fraction x is almost equal to the Bjorken scaling variable defined

in Table 2.1.1, as already mentioned above. The comparison of the QPM cross section

with the cross section in Eq. (2.1.8) obtained with the parametrisation of the hadronic

tensor, yields relations between the unpolarised structure functions and the unpolarised
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distribution function (DF)
[

Clo79
]

:

F1(x,Q
2) =

1

2

∑

q,q̄

e2qq(x) , (2.2.3)

F2(x,Q
2) =

∑

q,q̄

xe2qq(x) , (2.2.4)

where eq is the electric quark charge in units of the elementary charge e. Since the right

hand sides do not depend on Q2, the QPM predicts the so–called Bjorken scaling
[

Bjo69
]

,

i.e., that for fixed x the structure functions will be independent of Q2.

In the helicity base, the DF q(x) can be split up in functions for quarks with parallel

(+) and antiparallel (−) orientation of the spin with respect to the nucleon spin: q(x) =

q+(x)+ q−(x). The polarised or helicity DF is then defined as ∆q(x) = q+(x)− q−(x) and can

be related to the polarised structure function g1(x):

g1(x) =
1

2

∑

q,q̄

e2q∆q(x) =
1

2

∑

q,q̄

e2q
[

q+(x)− q−(x)
]

. (2.2.5)

The second polarised structure function vanishes in the QPM: g2(x) = 0.

2.3 Quantum Chromodynamics

As visible in Figure 2.1.2, the Bjorken scaling is approximately fulfilled only in the small

kinematic range 0.18 . x . 0.25. The violation of scaling can be explained if quarks

interact with each other in the nucleon. In the late 1970s, a field theory of Quantum

Chromodynamics (QCD) was developed whose basic fields are quarks interacting via

electrically neutral vector gluons. QCD is the non–Abelian gauge theory of the strong

interaction and part of the Standard Model. Quarks couple to the strong interaction

through three different colours. In contrast to Quantum Electrodynamics (QED) where the

photons have no electrical charge and cannot couple to each other, the field quanta

of the strong interaction, i.e., the gluons, do carry colour charge. This causes a scale or

energy dependence of the strong coupling ‘constant’ αs:

αs(Q
2) =

12π

(33 − 2nf ) ln(Q2/Λ2
QCD)

. (2.3.1)

The QCD scale parameter ΛQCD depends on the number of quark flavours nf and the

renormalisation scheme. It is of the order of a couple of hundred MeV. Eq. (2.3.1) is

only valid for Q2 ≫ Λ2
QCD and shows that the coupling decreases with increasing Q2 and

reaches zero for Q2 → ∞. This feature, which only appears in non–Abelian gauge the-

ories, is called asymptotic freedom. It explains the success of the description of exper-

imental results with the QPM in which the quarks are treated as free partons. For αs ≪
1 perturbative QCD is applicable and only lower order diagrams have to be taken into

account. But the coupling constant is not necessarily smaller than 1 for small Q2 so that

perturbation theory fails. In the so–called confinement region (Q2 . 1 GeV2), where αs is

of the order of 1 or larger, phenomenological models or QCD calculations on the lattice

have to be used to describe the experimental data. In fact, also the QED coupling con-

stant α depends slightly onQ2 because of the shielding effect of vacuum fluctuations into
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lepton–antilepton pairs. However, the Q2 dependence of α has the opposite tendency

than for αs and is much weaker.

Due to the fact that quarks and gluons interact, gluons dress the quarks in the nucleon

with a cloud of gluons and virtual quark–antiquark pairs, so–called sea quarks. With in-

creasing Q2 the wavelength of the virtual photon decreases and the resolution of the

external probing current increases. A quark which is not resolved at low Q2 can therefore

be resolved at larger Q2 as a quark with lower momentum plus gluon (see Fig. 2.3.1(a)).

Hence, there is a depletion of high momentum partons and an increase in the low mo-

mentum parton distribution as Q2 increases. This behaviour can be seen in Figure 2.1.2

where the structure function F2, i.e., the sum of the distribution functions of the different

quark and antiquark flavours weighted by x, is plotted dependent on Q2 for different

values of x. In addition, there is an enhancement of partons at small x due to resolved

gluons. At low Q2 a photon does not interact with the electrically neutral gluon. With

sufficient large Q2 the gluon can be resolved in a quark–antiquark pair and the photon

can interact with one of them (see Fig. 2.3.1(b)).

In leading order perturbative QCD, the structure functions have the same form as in

the QPM (Eq. (2.2.3) – (2.2.5)):

F1(x,Q
2) =

1

2

∑

q,q̄

e2qq(x,Q
2) , (2.3.2)

g1(x,Q
2) =

1

2

∑

q,q̄

e2q∆q(x,Q
2) , (2.3.3)

but the DFs q(x,Q2) and ∆q(x,Q2) are now Q2 dependent. Their logarithmic Q2 behaviour

is described by the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equations
[

Dok77,

Gri72, Lip75, Alt77
]

. The photo–absorption cross–section ratio R vanishes in leading order

perturbative QCD. Hence, the Callan–Gross relation (2.1.21) holds also in the so–called

QCD improved QPM. In contrast to the naïve QPM, in the QCD improved parton model

the structure function g2(x,Q
2) does not vanish but arises from quark–gluon interactions.

γ∗

γ∗

γ∗

γ∗

quark quark

gluon gluon

increasing Q2

(b)

(a)

Figure 2.3.1: Improving resolution for increasing Q2.
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2.4 Inclusive DIS in the QCD Improved QPM

In the QCD improved parton model, the scattering process can be described as elastic

quark–lepton scattering inside the nucleon. In the interaction with a virtual photon with

sufficiently large Q2, quarks behave like quasi–free particles.

The handbag diagram representing the hadronic tensor W µν is shown in Figure 2.4.1.

The virtual photon is absorbed by a quark with initial four momentum p. Thus, the four

momentum of the outgoing quark is k = p + q. Neglecting quark masses, the hadronic

tensor can be written as
[

Bar03
]

:

W µν =
∑

q,q̄

e2q

∫

d4pδ
(

(p + q)2
)

Tr
[

Φγµ(/p + /q)γν
]

, (2.4.1)

performing the sum over the different quark and antiquark flavours, q and q̄. The Dirac

matrices γµ are defined in Appendix A. The quark–quark correlation matrix Φij describes

the confinement of the quarks inside the nucleon and depends on the four momentum

of the quark (p) and the proton (P) and the spin of the proton (S):

Φij(p,P,S) =
1

(2π)4

∫

d4ξ eip·ξ 〈PS | ψ̄j(0)ψi(ξ) |PS〉 . (2.4.2)

Here, ψ is the quark spinor with i, j being Dirac indices. The summation over colour is not

indicated for clarity. The integration is performed over all possible separations ξ of the ith

component of the quark spinor.

The correlation function can be decomposed in a basis of Dirac matrices,

11, γµ, γµγ5, iγ5, iσ
µνγ5 , (2.4.3)

where σµν is defined as i
2 [γµ, γν ]:

Φ(p,P,S) =
1

2
{S11 + Vµγ

µ +Aµγ5γ
µ + iP5γ5 + iTµνσ

µνγ5} . (2.4.4)

p p

k k

q q

P P

Φ

Figure 2.4.1: Handbag diagram for inclusive DIS. It is equivalent to the lower

part of Figure 2.2.1.
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The scalar S, vector Vµ, axial–vector Aµ, tensor Tµν , and pseudo–scalar P5 parameters

depend on the vectors p, P, and S. They can be ordered according to powers of 1/P+

where the leading term is (1/P+)−1 = P+ and the next–to–leading term is (1/P+)0 = 1.

The different powers correspond to the twist expansion according to
[

Jaf96
]

, where the

leading term is twist–two.

If transverse momenta are neglected, in leading twist ( = twist–two), only the vector,

axial–vector, and tensor components are non–zero. They can be expressed by three real

amplitudes Ai(p
2,p ·P) satisfying hermiticity and parity invariance:

Φ(p,P,S) =
1

2

{

A1 /P +A2λγ5 /P +A3 /Pγ5/S⊥
}

, (2.4.5)

where the nucleon spin is S ≈ λ P
M + S⊥ with the nucleon helicity λ. Integrating the ampli-

tudes Ai over p with the constraint x = p+/P+, the three leading twist DFs are obtained:

q(x) =

∫

d4p

(2π)4
A1(p

2,p ·P)δ

(

x− p+

P+

)

, (2.4.6)

∆q(x) =

∫

d4p

(2π)4
A2(p

2,p ·P)δ

(

x− p+

P+

)

, (2.4.7)

δq(x) =

∫

d4p

(2π)4
A3(p

2,p ·P)δ

(

x− p+

P+

)

. (2.4.8)

Here and in the following, the implicit Q2 dependence of the DFs is indicated only when

relevant. The integrated quark–quark correlation function over the quark momentum p

in leading twist then reads:

Φ(x) =
1

2

{

q(x)/P + λ∆q(x)γ5 /P + δq(x)/Pγ5/S⊥
}

. (2.4.9)

2.4.1 Transversity

Two of the three leading twist DFs in Eq. (2.4.6) – (2.4.8) were already introduced in Sec-

tion 2.2. The third DF δq(x), called transversity, cannot be diagonalised in the helicity basis

and hence has no probabilistic interpretation, unlike q(x) and ∆q(x). In the basis of trans-

verse spin eigenstates, |⊥〉 and |⊤〉, which are defined as linear combinations of helicity

eigenstates, |+〉 and |−〉,

|⊥〉 = 1

2
(|+〉+ i |−〉) , |⊤〉 = 1

2
(|+〉 − i |−〉) , (2.4.10)

δq(x) can be interpreted as the probability to find a quark with its spin aligned along the

transverse spin of the nucleon minus the probability to find it oppositely aligned:

δq(x) = q⇑↑(x)− q⇑↓(x) . (2.4.11)

The quark–hadron scattering amplitude which transversity is related to includes helicity

flips of the quark and the hadron. In the infinite momentum frame, masses can be ne-

glected and helicity is equal to chirality. Thus, transversity is a chiral–odd function. In Fig-

ure 2.4.2, the handbag diagrams of inclusive DIS with the different possible configurations

of the nucleon and quark helicities are shown. The sum (difference) of configurations (a)
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and (b) is proportional to the unpolarised (polarised) DF q(x) (∆q(x)). The third configura-

tion (c) includes helicity flips of quark and nucleon and is proportional to the transversity

DF δq(x). Helicity conservation in hard scattering processes forbids its existence and pre-

vents therefore the measurement of transversity in inclusive DIS. Also no direct relation

between δq(x) and the second polarised structure function g2(x) exists, which can be

accessed in inclusive DIS on a transversely polarised target.

(a) (b) (c)

X

+ + + + + −

+ + − − − +

Figure 2.4.2: The three independent configurations of quark and nucleon he-

licities in the handbag diagram.

The basis of transverse spin eigenstates can be transferred to the helicity basis by rota-

tion. Thus, only in relativistic regimes where Lorentz boost and rotation do not commute,

differences of δq(x) and ∆q(x) are expected. In contrast to the helicity distribution, no

transversity distribution of gluons exists in nucleons. Such a distribution would imply a he-

licity flip of gluon and nucleon which is impossible because of the integer gluon helicity

of ±1 and the conservation of helicity. This results in a different Q2 evolution for transversity

and helicity DFs. Even if δq(x) = ∆q(x) for a certain Q2
0, the functions may differ at another

scale Q2
1.

The probabilistic interpretations of the DFs allow the relation q(x) = q+(x) + q−(x) =

q⇑↑(x) + q⇑↓(x) from which the following trivial bounds on the three leading twist DFs are

obtained:

|∆q(x)| ≤ q(x) , |δq(x)| ≤ q(x) . (2.4.12)

The derivation of the Soffer inequality
[

Sof95
]

is more complicated:

2|δq(x)| ≤ q(x) + ∆q(x) , (2.4.13)

because the three quantities are not diagonal in the same basis. All three inequalities

are preserved by QCD evolution.

2.4.2 Transverse–Momentum Dependent Distribution Functions

So far the quark transverse momentum ~pT has been neglected because it is small com-

pared to the longitudinal component. Nevertheless, it remains unchanged by the quark–

parton interaction and influences the final momenta of the produced hadrons. For the

analysis of semi–inclusive DIS on a transversely polarised target (see Section 2.5), it will

be therefore necessary to consider also quark transverse–momentum dependent DFs.

Taking into account non–zero ~pT , in leading twist additional amplitudes Ai appear in the

vector Vµ, axial–vector Aµ, and tensor Tµν component of the correlation function. All

amplitudes are related to eight different ~pT –dependent DFs. They are listed in Figure 2.4.3
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together with illustrations of their probabilistic interpretations. Nucleon and quark are rep-

resented by light and dark grey circles, respectively. Their spin orientations with respect

to the incident virtual photon which is thought of entering Figure 2.4.3 from the left side,

are indicated by arrows.

T–even T–odd

chiral–even chiral–odd chiral–even chiral–odd

q

∆q

g1T

h⊥1L

h⊥1T

h1T

f⊥1T

h⊥1

Figure 2.4.3: Leading twist transverse–momentum dependent quark distribu-

tion functions. All DFs depend on x and p2
T = |~pT |2. For clarity

the index q of the quark flavour is omitted unless it contributes to

the name of the DF.

The functions are grouped according to their behaviour under chirality and time–

reversal operations. Integrating the DFs over the transverse momentum of the quark,

most of the functions vanish and the three DFs (2.4.6) – (2.4.7) are retrieved:

q(x) =

∫

d2~pT q(x, p2
T ) , (2.4.14)

∆q(x) =

∫

d2~pT ∆q(x, p2
T ) , (2.4.15)

δq(x) =

∫

d2~pT

{

hq
1T (x, p2

T ) +
p2

T

2M
h⊥q

1T (x, p2
T )

}

≡
∫

d2p2
T δq(x, p2

T ) . (2.4.16)

It is convenient to express integrated cross sections in terms of the following moments of

any DF dq(x, p2
T ):

d(1/2)q(x) ≡
∫

d2~pT d(1/2)q(x, p2
T ) ≡

∫

d2~pT
|~pT |
2M

dq(x, p2
T ) , (2.4.17)

d(n)q(x) ≡
∫

d2~pT d(n)q(x, p2
T ) ≡

∫

d2~pT

(

p2
T

2M2

)n

dq(x, p2
T ) , (2.4.18)

for integer values of n.
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2.4.3 Gauge Link and T–Odd Distribution Functions

In QCD, a path–dependent link operator Lmust be inserted between the quark fields to

obtain a gauge invariant correlation function Φ
[

Boe00, Ell83
]

:

Φij(p,P,S) =
1

(2π)4

∫

d4ξ eip·ξ 〈PS | ψ̄j(0)L(0, ξ)ψi(ξ) |PS 〉 . (2.4.19)

The gauge link L, which is also called Wilson line,

L(0, ξ) = P exp

(

−i
√

4παs

∫ ξ

0
dsµAµ(s)

)

, (2.4.20)

is a bilocal operator connecting the quark fields ψ in two different points in space and

time, 0 and ξ. Here, P indicates the path–ordering of the integral over the gauge field Aµ.

The Wilson line corresponds to the summation of all diagrams with soft gluon exchange.

As example, the handbag diagram for one–gluon exchange is shown in Figure 2.4.4. In

the light–cone gauge (A+ = 0) the gauge link is equal to unity for ξT = 0 and was therefore

neglected so far.

Figure 2.4.4: The handbag diagram with one additional gluon exchanged be-

tween quark line and the nucleon remnant.

The Wilson line plays an important role for the existence of time–reversal odd (T–odd)

DFs. Invariance under the time–reversal operation which transforms initial states into final

states, implies the following constraint on the correlation function Φ
[

Bar03
]

:

Φ∗(p,P,S) = γ5CΦ(p̃, P̃, S̃)C†γ5 , (2.4.21)

where C = iγ2γ0 and the tilde four–vectors are defined as p̃µ = (p0,−~p ). T–odd terms in Φ

will change sign on the left–hand side and are therefore forbidden. With the insertion of L
in Φ, time–reversal invariance does not constrain the T–odd DFs—f⊥q

1T (x, p2
T ) and h⊥q

1 (x, p2
T )

in leading twist—to be zero but gives a relation between processes that probe Wilson

lines pointing in opposite directions
[

Col02
]

.

Figure 2.4.4 can also be interpreted in terms of final–state interactions via soft glu-

ons
[

Bro02
]

. The colliding particles interact strongly with non–trivial relative phases and
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the transformation of interacting final states into initial states is not as simple as for non–

interacting final states. Therefore, time–reversal invariance cannot be implemented by

naïvely imposing the condition (2.4.21). T–odd, rather than violating time–reversal invari-

ance, means that the condition (2.4.21) is not satisfied and is often referred to as naïve

T–odd.

The naïve T–odd DF f⊥q
1T (x, p2

T ) was first proposed by Sivers
[

Siv90
]

to explain single–spin

asymmetries observed in pion production in proton–proton scattering. It is hence referred

to as the Sivers function. This DF describes the correlation between the intrinsic transverse

momentum of the quarks and the transverse polarisation of the nucleon (cf. Figure 2.4.3).

An interesting prerequisite for a non–zero Sivers function is the existence of orbital angular

momentum of the quarks, contributing to the spin of the nucleon
[

Bro02, Bur04
]

.

Also for the T–odd DFs, bounds can be found to ensure positivity of any matrix element

of the spin matrix
[

Bac00
]

:

|f⊥(1)q
1T (x, p2

T )| ≤ q(1/2)(x, p2
T ) , (2.4.22)

|h⊥(1)q
1 (x, p2

T )| ≤ q(1/2)(x, p2
T ) . (2.4.23)

2.4.4 Subleading–Twist Distribution Functions

Taking into account also terms of order (1/P+)0 in the correlation function, more DFs en-

ter Φ(p,P,S). Six of these twist–three DFs survive the integration over the transverse quark

momentum. Three of the functions are T–even functions, eq(x), hq
L(x), gq

T (x), and three

of them are T–odd functions, hq(x), eqL(x), f q
T (x), where L and T indicate a longitudinally

and transversely polarised nucleon, respectively. Different kinematic and dynamic effects

contribute to higher twist: quark masses, intrinsic transverse motion, and gluon interac-

tion. Due to the quark–quark–gluon correlations all subleading–twist DFs have no simple

partonic meaning. In general, twist–three DFs can be decomposed into a quark mass

term, a term which is related to a twist–two DF, and an interaction dependent term. The

latter arises from non–handbag diagrams like the one illustrated in Figure 2.4.4, where the

gluon is now a hard gluon. Hence, the interaction dependent term may differ for differ-

ent processes. The non–handbag diagrams for hard gluons require the introduction of

quark–quark–gluon correlation functions.

One important twist–three function is gq
T (x) which is related to the second polarised

structure function g2(x) by:

g1(x) + g2(x) =
1

2

∑

q,q̄

e2qg
q
T (x) . (2.4.24)

The decomposition of gq
T (x) contains, among other terms, the transversity DF suppressed

by the quark mass mq

[

Mul96
]

:

gq
T (x) =

mq

Mx
δq(x) +

1

x
g
(1)q
1T (x) + g̃q

T (x) . (2.4.25)

The interaction dependent term is indicated by a tilde. Thus, only an indirect relation

between the polarised structure function g2(x) and transversity δq(x) exists.
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2.5 Semi–Inclusive Deep–Inelastic Scattering

2.5.1 Fragmentation Functions

As explained in the previous section, transversity cannot be measured in inclusive DIS. In

order to access the chiral–odd transversity function, it has to be combined with another

chiral–odd object. One possibility is the semi–inclusive DIS process where fragmentation

functions (FF) enter the cross section in conjunction with the DFs. In a semi–inclusive DIS

measurement, at least one produced hadron h with four–momentum Ph is detected in

addition to the scattered lepton. The detected hadron has an energy fraction

z =
P ·Ph

P · q
lab
=
Eh

ν
(2.5.1)

and a spin four–vector Sh, which goes undetected in most experiments.

Figure 2.5.1 shows the extended handbag diagram for semi–inclusive DIS, representing

the hadronic tensor
[

Bac02b
]

:

W µν =
∑

q,q̄

e2q

∫

d4p d4k δ (p + q− k) Tr [Φ(p,P,S)γµ Ξ(k,Ph,Sh)γν ] . (2.5.2)

Here, Φ is the correlation function as defined in Eq. (2.4.2) and Ξ is a new quark–quark–

correlation function
[

Bar03
]

,

Ξij(k,Ph,Sh) =
1

(2π)4

∫

d4ξ eik·ξ 〈0 |ψi(ξ) |Ph,Sh 〉 〈Ph,Sh | ψ̄j(0) |0〉 , (2.5.3)

describing the way the struck quark evolves into a hadronic final state of which the

hadron h is detected. This process is called hadronisation or fragmentation of the quark.

Decomposition of the correlation function Ξ in the basis of Dirac matrices (2.4.3) including

final quark transverse momentum ~kT , yields eight fragmentation functions in leading twist,

p p

k k

q q

P P

Ph Ph

Φ

Ξ

Figure 2.5.1: Extended handbag diagram for semi–inclusive DIS.
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dependent on the hadron energy fraction z and on z2k2
T = z2|~kT |2. After summation over

the spin of the produced hadron Sh, only two FFs remain, the unpolarised FF Dq→h
1 (z, z2k2

T )

and the so–called Collins function H⊥q→h
1 (z, z2k2

T )
[

Col93
]

. The index q → h, which indi-

cates the fragmentation of a quark with flavour q into a hadron of type h, is often omitted

for clarity. Like twist–two DFs, also twist–two FFs have a probabilistic interpretation. The

unpolarised FF D1(z, z
2k2

T ) is the probability density that a struck quark of flavour q with

transverse momentum ~kT fragments into a certain hadron of type h with energy fraction

z. The Collins FF H⊥1 (z, z2k2
T ) is the difference of the probability densities for quarks with

transverse spin state ↑ and ↓ to fragment into a hadron h (cf. Figure 2.5.2).

Dq→h
1 H⊥q→h

1

Figure 2.5.2: Leading twist transverse–momentum dependent quark fragmen-

tation functions independent of the produced hadron spin. Both

FFs depend on z and z2k2
T . The struck quark (produced hadron) is

indicated as a dark (light) grey circle.

D1(z, z
2k2

T ) does not change sign under chirality and time–reversal operations while

the Collins function is chiral–odd and T–odd. In contrast to the T–odd DFs described in

Section 2.4.3, T–odd FFs are not constrained by time–reversal invariance because of the

unknown hadronic final state X accompanying the hadron h. It has been shown that

final–state interactions, which happen solely in the upper soft part of the extended hand-

bag diagram described by the correlation function Ξ, are sufficient for the existence of

T–odd FFs
[

Bac01, Bac02a
]

. Therefore, a soft gluon exchange between the initial quark

and the correlator Ξ is not necessary.

As for the DFs also for the unpolarised FF—and equivalently for the Collins function—

the introduction of moments is convenient:

D
(1/2)
1 (z) ≡ z2

∫

d2~kT D
(1/2)q
1 (z, z2k2

T ) ≡ z2

∫

d2~kT
|~kT |
2Mh

Dq
1(z, z

2k2
T ) , (2.5.4)

D
(n)
1 (z) ≡ z2

∫

d2~kT D
(n)q
1 (z, z2k2

T ) ≡ z2

∫

d2~kT

(

k2
T

2M2
h

)n

Dq
1(z, z

2k2
T ) , (2.5.5)

where n is an integer. The following inequality arises from the positivity constraint
[

Bac02b
]

:

|H⊥(1)
1 (z, z2k2

T )| ≤ D(1/2)
1 (z, z2k2

T ) . (2.5.6)

Different phenomenological models have been developed to describe the unpo-

larised fragmentation process. A very successful model for the description of experi-

mental data is the LUND string fragmentation model
[

And83, And97
]

. In this model, the

colour field connecting the initial quarks is assumed to possess a constant field energy

density. This results in a potential which increases linearly with the distance between the

quarks. After one of the quarks is struck and moves away, the energy stored in the colour
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string rises. As soon as it exceeds the rest mass of a quark–antiquark pair the string may

break up and create such a pair. The partners of this pair are then connected to the

initial quarks by two new strings. They continue to break independently until a string–

connected quark–antiquark pair is close to the mass shell of a colour singlet hadron.

The number of independent FFs for quarks of flavour q fragmenting in hadrons of type

h, decreases significantly when charge conjugation and isospin symmetry is applied,

which is valid for a strong interaction process like fragmentation. In case of three dif-

ferent quark flavours which hadronise into pions, only three independent unpolarised FFs

remain:

D1,fav(z) = Du→π+

1 (z) = Dū→π−

1 (z) = Dd̄→π+

1 (z) = Dd→π−

1 (z) , (2.5.7)

D1,dis(z) = Du→π−

1 (z) = Dū→π+

1 (z) = Dd̄→π−

1 (z) = Dd→π+

1 (z) , (2.5.8)

D1,s(z) = Ds→π+

1 (z) = Ds̄→π−

1 (z) = Ds̄→π+

1 (z) = Ds→π−

1 (z) . (2.5.9)

They are called favoured, disfavoured, and strange unpolarised FFs. The FF of the neutral

pion is obtained by:

Dq→π0

1 (z) = 1
2 [Dq→π+

1 (z) +Dq→π−

1 (z)] (2.5.10)

= 1
2 [D1,fav(z) +D1,dis(z)] for q = u, d, ū, d̄ , (2.5.11)

= D1,s(z) for q = s, s̄ . (2.5.12)

Applying the same symmetry constraints to the Collins function yields three independent

functions: the favoured H⊥1,fav, the disfavoured H⊥1,dis, and the strange H⊥1,s Collins function.

2.5.2 Cross Sections and Azimuthal Asymmetry Moments

The differential cross section,

d6σ

dxdy dz dφS d2 ~Ph⊥
=

α2

4zs2x2y
LµνW

µν , (2.5.13)

can be calculated using the hadronic tensor (2.5.2). Here, ~Ph⊥ is the transverse momen-

tum of the produced hadron and P 2
h⊥ = |~Ph⊥|2 must be small compared to Q2 to avoid

the introduction of further hard scales
[

Bac02b
]

. The azimuthal angle φS is defined as the

angle around the virtual photon between the target spin ~ST and the plane spanned by

the incoming and outgoing lepton, as depicted in Figure 2.5.3. It is convenient to split the

cross section into unpolarised and polarised terms:

dσ6 = dσ6
UU + dσ6

LU + dσ6
UL + dσ6

LL + dσ6
UT + dσ6

LT . (2.5.14)

Two subscripts are used to indicate beam and target polarisation where U means unpo-

larised, L longitudinally polarised, and T transversely polarised. Here and in the following,

the differential kinematic variables are omitted for clarity. The unpolarised cross section

in leading twist contains two products of DF and FF
[

Bac02b
]

:

d6σUU =
2α2

sxy2

{

A(y)
∑

q,q̄

e2q I
[

q(x, p2
T )Dq

1(z, z
2k2

T )
]

−

B(y) cos 2φ
∑

q,q̄

e2q I
[

2(~pT · P̂h⊥)(~kT · P̂h⊥)− ~pT · ~kT

MMh
h⊥q

1 (x, p2
T )H⊥q

1 (z, z2k2
T )

]}

,

(2.5.15)
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x

y

z

φS

φ~Ph

~Ph⊥

~ST

~l

~l′

~q

Figure 2.5.3: Definition of the azimuthal angles φ and φS between the scatter-

ing plane (white), the production plane (grey), and the transverse

nucleon spin component ~ST .

where Mh is the mass of the produced hadron and P̂h⊥ is the unit vector of the hadron

transverse momentum. The two products of DF and FF appear in the integral,

I[W · d · F ] ≡
∫

d2~pT d2~kT δ

(

~pT −
~Ph⊥
z
− ~kT

)

W · d · F , (2.5.16)

defined for any combination of DF d and FF F multiplied by the weightW dependent on

P̂h⊥, ~pT , ~kT , x, and z. The kinematic factors A(y), B(y) and the C(y), D(y) used later are

defined as:

A(y) =1− y +
y2

2
, B(y) =1− y ,

C(y) =y
(

1− y

2

)

, D(y) =2(2− y)
√

1− y .
(2.5.17)

Using Table 2.5.1, different azimuthal modulations of the unpolarised and polarised

cross–section terms can be constructed by:

d6σbeam target =
2α2

sxy2
· factor · modulation ·

∑

q,q̄

e2q I[W · d · F ] . (2.5.18)

In the table, λ is the beam helicity and ~SL and ~ST are the longitudinal and transverse

target spin components with respect to the virtual photon. The relevant azimuthal angles

are the already introduced angle φS and the angle φ between the scattering and the

hadron production plane, as defined in Figure 2.5.3. Table 2.5.1 includes only twist–two

and twist–three cross–section terms. The table is not complete since the twist–three terms

of dσ6
LL and dσ6

LT are missing and the cross–section terms of dσ6
LU are not listed. The twist–

three terms contain several DFs d in conjunction with FFs F where either d or F is a twist–

three function combined with a twist–two function. The functions D̃⊥(z, z2k2
T ), G̃⊥(z, z2k2

T ),

and H̃(z, z2k2
T ) are the interaction dependent parts of the twist–three FFs D⊥(z, z2k2

T ),

G⊥(z, z2k2
T ), and H(z, z2k2

T ), respectively. The twist–three DFs f⊥(x, p2
T ), f⊥T (x, p2

T ), f⊥L (x, p2
T ),

hT (x, p2
T ), and h⊥T (x, p2

T ) vanish when integrated over the transverse quark momentum.
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Quark mass terms which are proportional to mq/M or mq/Mh are neglected. The sub-

leading–twist component of the unpolarised cross section which exhibits a cosφ modu-

lation is also known as Cahn effect
[

Cah78
]

. All twist–two and twist–three cross–section

terms can be found for instance in
[

Mul96, Boe98, Bac04c, Bac06
]

.

The product of the transversity DF and the Collins FF appears as a sin(φ+ φS) modula-

tion in the polarised cross section for an unpolarised beam and a transversely polarised

target:

d6σUT = − 2α2

sxy2
|~ST | B(y) sin(φ+ φS)

∑

q,q̄

e2q I
[

~kT · P̂h⊥
Mh

δq(x, p2
T )H⊥q

1 (z, z2k2
T )

]

. (2.5.19)

The same polarised cross section exhibits also a sin(φ−φS) modulation proportional to the

product of the Sivers function and the unpolarised FF:

d6σUT = − 2α2

sxy2
|~ST | A(y) sin(φ− φS)

∑

q,q̄

e2q I
[

~pT · P̂h⊥
M

f⊥q
1T (x, p2

T )Dq
1(z, z

2k2
T )

]

. (2.5.20)

Experimentally the measurement of cross–section asymmetries is preferred over the

measurement of absolute cross sections or differences thereof as many uncertainties

cancel for asymmetry measurements. In order to extract the individual products d ·F with

different azimuthal modulations in the cross section, it is common to measure azimuthal

moments:

〈sin(nφ+mφS)〉beam target(x, y, z) ≡
∫

dφS d2 ~Ph⊥ sin(nφ+mφS) d6σbeam target
∫

dφS d2 ~Ph⊥ d6σUU

,

〈cos(nφ+mφS)〉beam target(x, y, z) ≡
∫

dφS d2 ~Ph⊥ cos(nφ+mφS) d6σbeam target
∫

dφS d2 ~Ph⊥ d6σUU

,

(2.5.21)

where the integers n and m can be positive or negative. For the separation of the indi-

vidual polarised cross–section terms, cross–section differences of opposite spin states are

formed in which the unpolarised cross–section component cancels:

d6σUL ≡
1

2
(d6σU← − d6σU→) , d6σLL ≡

1

2
(d6σ→← − d6σ→→) ,

d6σUT ≡
1

2
(d6σU↑ − d6σU↓) . d6σLT ≡

1

2
(d6σ→↑ − d6σ→↓) ,

(2.5.22)

The arrows show the direction of the spin orientation, which can be parallel → and an-

tiparallel ← to the direction of the virtual photon and parallel ↑ and antiparallel ↓ to the

direction specified by the angle φS .

The so–called Collins moment,

〈sin(φ+ φS)〉UT = −|~ST |
1

xy2B(y)
∑

q,q̄ e
2
q

∫

d2 ~Ph⊥ I
[

~kT ·P̂h⊥
Mh

δq(x, p2
T )H⊥q

1 (z, z2k2
T )
]

2 1
xy2A(y)

∑

q,q̄ e
2
q q(x)D

q
1(z)

, (2.5.23)

gives access to transversity and the Collins function. The factor 2 in the denominator

remains of the integration over the angle φS . Unfortunately, the product δq · H⊥1 is still

embedded in a convolution integral over the transverse momenta of the initial and final

quarks and of the produced hadron. The integral cannot be factorised like in the case of
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the product of unpolarised DF and FF because of the weight W =
~kT ·P̂h⊥

Mh
. One ansatz to

solve the integral is to assume Gaussian transverse momentum distributions in the DF and

FF:

δq(x, p2
T ) ≈ δq(x)

π〈p2
T (x)〉e

− p2
T

〈p2
T

(x)〉 , H⊥1 (z,K2
T ) ≈ H⊥1 (z)

π〈K2
T (z)〉e

− K2
T

〈K2
T

(z)〉 , (2.5.24)

where ~KT = −z~kT is the transverse momentum of the hadron with respect to the quark,

and the mean values are defined as:

〈p2
T (x)〉 ≡

∫

d2~pT p2
T q(x, p

2
T )

q(x)
, 〈K2

T (z)〉 ≡
∫

d2 ~KT K2
TD1(z,K

2
T )

D1(z)
. (2.5.25)

With this Gaussian ansatz, transversity and Collins function factorise in the Collins moment
[

Bac02b
]

:

〈sin(φ+ φS)〉UT =
|~ST |

√

1 + z2〈p2
T 〉/〈K2

T 〉

1
xy2B(y)

∑

q,q̄ e
2
q δq(x)H

⊥(1/2)q
1 (z)

1
xy2A(y)

∑

q,q̄ e
2
q q(x)D

q
1(z)

. (2.5.26)

A different ansatz which avoids any assumption on the transverse momentum distri-

butions, includes Ph⊥ in the convolution integral for cross–section terms with a weight W
proportional to P̂h⊥. In case of the sin(φ + φS) modulation, this yields the Ph⊥–weighted

Collins moment:

〈

Ph⊥
zMh

sin(φ+ φS)

〉

UT

≡
∫

dφS d2 ~Ph⊥
Ph⊥
zMh

sin(φ+ φS) d6σUT
∫

dφS d2 ~Ph⊥ d6σUU

= |~ST |
1

xy2B(y)
∑

q,q̄ e
2
q δq(x)H

⊥(1)q
1 (z)

1
xy2A(y)

∑

q,q̄ e
2
q q(x)D

q
1(z)

.

(2.5.27)

The combination of Sivers function and unpolarised FF can be extracted from the

unweighted and Ph⊥–weighted Sivers moments:

〈sin(φ− φS)〉UT = − |~ST |
√

1 + 〈K2
T 〉/(z2〈p2

T 〉)

1
xy2A(y)

∑

q,q̄ e
2
q f
⊥(1/2)q
1T (x)Dq

1(z)

1
xy2A(y)

∑

q,q̄ e
2
q q(x)D

q
1(z)

, (2.5.28)

〈

Ph⊥
zM

sin(φ− φS)

〉

UT

= − |~ST |
1

xy2A(y)
∑

q,q̄ e
2
q f
⊥(1)q
1T (x)Dq

1(z)

1
xy2A(y)

∑

q,q̄ e
2
q q(x)D

q
1(z)

. (2.5.29)

Note that the factor 1
xy2A(y) may not cancel because numerator and denominator are

integrated separately over certain x and y ranges in a measurement. Since the Collins

and Sivers functions appear in the above introduced azimuthal asymmetry moments, the

possible existence of these asymmetry moments are often referred to as Collins and Sivers

effect, respectively.

The factorisation of the cross section into the contributions of long–distance and short–

distance interaction which allows the application of perturbative calculations, was

proven for transverse–momentum independent functions in leading twist already in the

1980s
[

Col88
]

. Only recently proofs were published for the factorisation of twist–two trans-

verse momentum dependent functions at low transverse momenta in semi–inclusive DIS
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and Drell–Yan
[

Ji04, Ji05
]

. Whether factorisation holds also for subleading twist is still un-

clear. The appearance of the functions under the convolution integral and the inclusion

of gauge links is challenging. In addition, the Q2 evolution for transverse–momentum de-

pendent functions in leading order of the αs expansion became the subject of studies

only in the last years
[

Idi04
]

.

2.5.3 The Purity Formalism

For the extraction of the Sivers DF from the measured azimuthal asymmetry moments, it is

convenient to introduce purities
[

Nic98
]

which are constructed from unpolarised quanti-

ties only:

Ph
q (x, z) ≡

e2q q(x)D
q→h
1 (z)

∑

q′,q̄′ e
2
q′ q
′(x)Dq′→h

1 (z)
. (2.5.30)

Using this definition of the purities, the Ph⊥–weighted Sivers moment can be rewritten as:

〈

Ph⊥
z

sin(φ− φS)

〉

UT

= −|~ST |
1

xy2A(y)

1
xy2A(y)

∑

q,q̄

Ph
q (x, z)

f
⊥(1)q
1T (x)

q(x)
. (2.5.31)

Results from a large number of unpolarised DIS experiments with high precision are avail-

able for one component of the purities: the unpolarised DF. The second component, the

unpolarised FF, can be parametrised based on the LUND string fragmentation model. The

parametrisation is implemented in a Monte Carlo simulation of the HERMES experiment

which takes into account its acceptance. The parameters included in the simulation

are tuned so that hadron multiplicities extracted from the simulation describe results from

HERMES data
[

Hil05
]

. This Monte Carlo simulation allows the determination of purities for

the different quark flavours and hadron types. The azimuthal asymmetry moments of dif-

ferent hadron types can be combined to extract the (1)–moment of the Sivers function

for different quark flavours.

The purity formalism was already used for the extraction of the helicity DF ∆q(x) which

appears in the cross–section term for longitudinally polarised beam and target. This cross–

section term does not depend on the azimuthal angles and integration over ~Ph⊥ and φS

yields the double–spin asymmetry:

Ah
LL(x, y, z) ≡

∫

dφS d2 ~Ph⊥ d6σLL
∫

dφS d2 ~Ph⊥ d6σUU

= |λ||~SL|
1

xy2C(y)
∑

q,q̄ e
2
q ∆q(x)Dq→h

1 (z)

1
xy2A(y)

∑

q,q̄ e
2
q q(x)D

q→h
1 (z)

= |λ||~SL|
1

xy2C(y)

1
xy2A(y)

∑

q,q̄

Ph
q (x, z) · ∆q(x)

q(x)
. (2.5.32)

The expression is valid for polarisations with respect to the virtual photon. In experiments

where beam and target are polarised with respect to the lepton beam, a correction

including the second polarised structure function g2(x) has to be taken into account
[

Rob90
]

. The purities determined with the Monte Carlo simulation of the HERMES experi-

ment, allowed the extraction of ∆q(x) from the HERMES data on longitudinally polarised

targets. The double–spin asymmetries for different types of produced hadrons were com-

bined and yield the results for x∆q(x)
[

Air05a
]

shown in Figure 2.5.4 together with two

parametrisations.
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Figure 2.5.4: The quark helicity distributions x∆q(x,Q2
0) evaluated at a com-

mon value of Q2
0 = 2.5 GeV2 as a function of x. The dashed line

is the GRSV2000 parametrisation
[

Glü01
]

and the dashed–dotted

line is the Blümlein–Böttcher parametrisation
[

Blü02
]

(for details see
[

Air05a
]

).

A new type of purity including the Collins function has to be introduced for the ex-

traction of the transversity DF. The determination of transversity from the measured Collins

moments will thus be possible after detailed information on the Collins function becomes

available.

2.6 Universality

In order to measure transversity, in total two hadrons in the initial and final state are nec-

essary where at least one of them must be transversely polarised. The possible processes

for a measurement are the semi–inclusive DIS on a transversely polarised target discussed

here (see Figure 2.6.1(a)), the scattering of two transversely polarised hadrons, in particu-

lar, the transversely polarised Drell–Yan (DY) process (see Figure 2.6.1(b)), and hadron pro-
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Figure 2.6.1: The semi–inclusive DIS process (a), the DY process (b), and hadron

production in electron–positron annihilation (c), hadron–hadron

scattering (d). The white ellipses (gray circles) represent DFs (FFs).

duction with one transversely polarised initial hadron (Figure 2.6.1(d)). The cross sections

contain the convolution of one DF and one FF, two DFs, or two DFs and one FF, respec-

tively. For a measurement of the T–odd Sivers function in Drell–Yan processes only one

initial hadron needs to be polarised. The Collins function can be accessed in processes

involving fragmentation functions like electron–positron annihilation with the production

of a quark–antiquark pair which fragments into hadrons (Figure 2.6.1(c)). Here, no DFs

are involved but two FFs are convoluted in the cross section. The question arises whether

or not the involved DFs and FFs are universal for all the different scattering processes.

Thus, can the measurements of different experiments be compared to each other and,

furthermore, can they be combined? Such a combined analysis of different processes is

often needed for the separation of the different DFs and FFs as at least two of them are

usually involved.

As a consequence of factorisation, universality for twist–two transverse–momentum in-

tegrated functions was proven in the 1980s
[

Col88
]

. The proof of universality for transverse–

momentum dependent functions was only recently established for T–even functions
[

Col04
]

. For twist–two T–odd transverse–momentum dependent DFs, a sign–change be-

tween the semi–inclusive DIS and the DY processes,

f⊥q
1T (x,Q2)|DIS = −f⊥q

1T (x,Q2)|DY , (2.6.1)

h⊥q
1 (x,Q2)|DIS = −h⊥q

1 (x,Q2)|DY , (2.6.2)

is caused by the Wilson line
[

Col02
]

. This gauge link which is necessary to allow T–odd

functions (cf. Section 2.4.3), is past–pointing in the DY process contrary to the future–

pointing Wilson line in the semi–inclusive DIS process.
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Whereas time–reversal can be used to relate T–odd DFs between the semi–inclusive

DIS and the DY processes, it is not possible to apply such an argument for T–odd FFs
[

Boe03, Col04
]

. A proof of universal FFs was formalised at one–loop
[

Met02
]

and gener-

alised to a calculation that shows universality of DFs and FFs in semi–inclusive DIS, electron–

positron annihilation and DY processes
[

Col04
]

. However, the calculations are model

based on Feynman diagrams and might not be an explicit proof of universality
[

Bom04,

Pij04
]

. Gauge links could spoil universality, and their possible contribution to FFs is not yet

clarified. New results in this active field are expected both from the theoretical side as

well as from various current and future experimental efforts.



The HERMES Experiment

A deep–inelastic scattering experiment like HERMES needs three ingredients in order to

measure azimuthal asymmetry moments. These are a high–energy polarised or unpo-

larised lepton beam, a polarised or unpolarised nucleon target, and a spectrometer with

reasonable particle identification and tracking resolution. In the following the various

components used in the HERMES experiment are described.

3.1 The HERA Positron Beam

The HERMES experiment is operated in the East Hall of the storage ring facility HERA, which

is part of the DESY accelerator complex located in Hamburg. In the two HERA rings shar-

ing a tunnel with a circumference of 6.3 km a lepton beam and a proton beam can

HERA–B

HERMES

ZEUS H1

E

W

S N

longitudinal polarimeter

transverse polarimeter

spin rotator

p beam

e+ beam

Figure 3.1.1: Schematic view of the two HERA storage rings with the locations

of the experiments in the configuration since fall 2001. The spin

orientation of the positron beam is indicated by arrows.
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be accelerated to energies of 27.5 GeV and 920 GeV, respectively, and stored. HERA is

capable of storing electrons or positrons. Positrons were used from 1992 until October

1997 and from June 1999 until the second switch–over to electrons in November 2004. In

the following, the term ‘beam positrons’ will be used when referring to beam leptons in

general. The configuration of the HERA facility is sketched in Figure 3.1.1. Both beams are

brought into collision in the North and the South experimental halls where the two col-

lider experiments H1 and ZEUS are located. The HERA–B experiment in the West hall used

only the proton beam until the year 2003, whereas in the East hall the HERMES experiment

uses the positron beam. Both of these experiments use internal targets in one of the HERA

beams.

Due to a small asymmetry in the probability of emission of synchrotron radiation, the

initially unpolarised positrons become polarised. This mechanism is called the Sokolov–

Ternov effect
[

Sok64
]

. The typical time constant of the polarisation rise for the layout

and operating beam momentum of HERA is about 30 min. The spin orientation of the

positron beam is aligned transversely to the beam direction (see Figure 3.1.1) because

of the vertical magnetic field of the HERA dipole bending magnets. The polarisation of

the beam is continuously measured by two polarimeters close to the HERA East and West

halls. In the East section of HERA the beam spin orientation is turned into the longitudinal

direction and back to the transverse direction by a pair of spin rotators located up– and

downstream of the HERMES experiment. The longitudinal beam polarisation is measured

with the so–called Longitudinal Polarimeter
[

Bec02
]

. On the opposite side of the ring the

polarisation of the transversely polarised beam is measured by a second device, the so–

called Transverse Polarimeter
[

Bar93
]

. Until the year 2001 the spin orientation of the beam

was rotated only in the HERA East section and longitudinal polarisations up to 70 % were

achieved. In 2002, two additional pairs of spin rotators were installed to provide also the

experiments H1 and ZEUS with longitudinally oriented positron spins. After a commission-

ing phase, maximum polarisation values of 50 % were achieved in March 2003. During

regular operation in the years 2003 and 2004 the routinely obtained polarisation values

stayed lower at 30–40 %. The decrease of the beam currents caused by the scattering of

the beam particles requires a refill of the HERA lepton beam every 8–12 h. The longer life

time of the HERA proton beam allows usually more than one lepton fill during a proton fill.

3.2 The Target

A fixed target in a storage ring needs a special setup to preserve a reasonable life time

of the stored beam. In order to fulfil the requirements of HERA, an internal gas target
[

Air04
]

was chosen for the HERMES experiment, although achieved area densities are

much smaller than for solid targets. However, a polarised gas target provides a high

figure of merit as dilutions from unpolarised material typical in liquid or solid state targets

are not present in the pure gas target. In addition, background from scattering events at

the target material container is not present. Figure 3.2.1 shows the scheme of the HERMES

target with its main components: the atomic beam source (ABS), the storage cell, the

target gas analyser (TGA), and the Breit–Rabi Polarimeter (BRP). Furthermore, the target

magnet (not drawn in Figure 3.2.1) provides a holding field to define the polarisation

axis and to prevent spin relaxation by effectively decoupling the magnetic moments
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Figure 3.2.1: A schematic view of the HERMES polarised target.

of electrons and nucleons. Two different holding field configurations, longitudinal and

transverse with respect to the beam direction, were in use for the HERMES target.

In 1995 the HERMES experiment started data taking with a longitudinally polarised 3He

target followed by longitudinally polarised hydrogen in 1996 and 1997 and longitudinally

polarised deuterium from 1998 till 2000. During the shutdown in 2001 the longitudinal

target magnet was replaced by a transverse target magnet and since 2002 a transversely

polarised hydrogen target is in operation. As the analysis described in Chapters 4 and 7

is performed only on hydrogen data, the following description of the polarised target will

focus on hydrogen.

3.2.1 The Atomic Beam Source

Hydrogen atoms possess four hyperfine energy levels which split up in an external mag-

netic field, as shown in Figure 3.2.2. In this diagram the field values are given in units of

the corresponding critical field BC and the energy values in units of the hyperfine splitting

EHFS. The hyperfine splitting corresponds to the energy difference between the states

with total spin F = 0 and F = 1 if no external magnet field is present. The critical field is

defined as the external field which causes an energy difference between states |1〉 and

|3〉 equal to the hyperfine splitting EHFS. The interaction between the shell electron and

nucleon spins dominates in external fields below BC whereas the spin–field interaction

dominates in stronger external fields B > BC. The four states are combinations of the spin

states up and down of the nucleon, mI = ±1
2 , and the shell electron, mS = ±1

2 .

The different components of the ABS
[

Nas03
]

which are necessary to provide the stor-

age cell with Hydrogen atoms in certain hyperfine states, are drawn on the left–hand side

of Figure 3.2.1. In a first step molecular hydrogen is dissociated by a radio frequency dis-

charge with a dissociation degree up to 80 %. The hydrogen atoms flow through a cooled

nozzle with a temperature of 100 K where a thin layer of frozen water on the nozzle surface
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Figure 3.2.2: Hyperfine energy levels of hydrogen atoms as function of an ex-

ternal magnetic field.

helps to prevent recombination.

After passing the nozzle and a beam forming system, hydrogen atoms in all four hy-

perfine states enter a sextupole magnet system which deflects the states |3〉 and |4〉 and

focuses atoms in states |1〉 and |2〉 onto the central axis of the magnet system. Following

the magnet system, the atoms traverse two radio frequency transitions, which can be

operated independently. A so–called weak field transition (WFT) interchanges the oc-

cupation numbers of hyperfine states |1〉 and |3〉 whereas the strong field transition (SFT)

acts on states |2〉 and |4〉. By operating either the SFT or the WFT, atoms in the hyperfine

state combinations |1〉+|4〉 and |2〉+|3〉 are provided at the exit of the ABS such that the

electron polarisation vanishes and the nucleon spin projection is either +1
2 or −1

2 in the

high field limit. During the operation of the longitudinally polarised target the nucleon

spin state was changed every 60 s. For the transversely polarised target at first a spin flip

interval of 60 s was used which was later increased to 90 s in order to reduce the dead

time during the roughly 1 s long configuration changes. The atoms with polarised nucle-

ons and unpolarised shell electrons are injected in the storage cell with fluxes of up to

6.5·1016 atoms/s.

3.2.2 The Storage Cell

The storage cell
[

Bau03b
]

is a 400 mm long open–ended tube made of 75µm thin pure

aluminium. The tube has an elliptical cross section with major and minor axes of 21.0 mm

and 8.9 mmi and is embedded in the target chamber inside the ultra high vacuum of

the HERA positron machine. The polarised atoms are injected from the ABS through the

injection tube which is connected to the storage cell at its centre. They diffuse along the

cell axis towards both ends and are pumped away by a very powerful pumping system.

A special coating on the aluminium walls minimises depolarisation and recombination

iUntil December 1999 a larger tube with dimensions 29.8×9.8 mm2 was installed.
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caused by surface collisions. The cell axis coincides with the positron beam orbit and the

target density has a triangular shape with the maximum at the position of the injection

tube. The cooling of the storage cell is set to the optimal value for hydrogen of 100 K

where recombination and depolarisation effects are low. In addition to the injection

tube a smaller sampling tube exists which extracts about 5 % of the gas for analysis in the

TGA and BRP. This sampling tube is installed opposite to the injection tube at an angle of

120◦. The distance between injection and sampling tube allows for the thermalization of

the gas with the storage cell wall. A vented extension at the downstream end of the tube

ensures that all scattered particles in the HERMES acceptance traverse the same amount

of material in the cell walls. In front of the storage cell and behind its extension so–called

wake–field suppressors provide a gradual electrical transition between the storage cell

and the beam pipe. Without the wake–field suppressors the bunched positron beam in

HERA would cause strong radio frequency fields to be emitted at the discontinuity of the

beam pipe impedance. These wake fields would not only heat up the target cell but also

destabilise the beam orbit.

3.2.3 The Target Gas Analyser

The main component of the TGA
[

Bau03a
]

is a 90◦ off–axis quadrupole mass spectrome-

ter (see right–hand side of Figure 3.2.1). It is used for the measurement of the atomic and

molecular content of the gas sampled at the centre of the storage cell. In front of the

quadrupole mass spectrometer a chopper periodically blocks the sample beam to allow

subtraction of the residual gas signal. In order to avoid interference with the BRP measure-

ment the TGA is tilted by 7◦ with respect to the sampling tube. The measured normalised

nucleon flow rates for atoms φa and molecules φm yield the degree of dissociation of the

sample beam,

αTGA ≡
φa

φa + φm
, (3.2.1)

which is measured roughly once per minute. Together with calibration measurements

which are performed during the breaks between fills of the HERA positron ring, two quan-

tities can be calculated
[

Air04
]

. These are the degree of dissociation, also called atomic

fraction, in the absence of recombination within the cell, α0, and the fraction of atoms

surviving recombination in the cell, αr. Both values are necessary for the determination

of the density–averaged nuclear polarisation PT in the cell.

3.2.4 The Breit–Rabi Polarimeter

A second measurement using the gas extracted by the sampling tube is performed by

the BRP
[

Bau02
]

. As can be seen on the right–hand side of Figure 3.2.1, the BRP consists

of a pair of radio frequency transitions – a strong (SFT) and a medium field transition (MFT)

– which can be tuned for different hyperfine state transitions. A sextupole magnet sys-

tem focuses atoms with mS = +1
2 towards the detector unit and defocuses atoms with

mS = −1
2 . To prevent atoms which enter on the symmetry axis of the sextupole magnet

system (where the field gradient is zero) from entering the detector unit, a beam blocker

is installed in front of the first magnet of the sextupole system. As in the TGA, a quadrupole

mass spectrometer together with a chopper for background subtraction is used for the
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detection. From the measured relative populations of the hyperfine states of hydrogen

atoms, the atomic polarisation Pa can be deduced.

The value of the polarisation Pa measured with the BRP is the polarisation at the centre

of the storage cell. It must be related to the polarisation averaged along the cell, PBRP,

by sampling corrections cP :

PBRP = cP · Pa . (3.2.2)

The sampling corrections are obtained with the help of Monte Carlo simulations of the

ballistic flow of target gas atoms in the storage cell
[

Air04
]

. Using the BRP and TGA mea-

surements the averaged target polarisation PT as seen by the electron beam can be

calculated:

PT = α0[αr + (1− αr)β]PBRP . (3.2.3)

Here, β is the ratio of the nuclear polarisation of molecules produced by recombination

and the nuclear polarisation of the atoms. A direct measurement of the remnant polari-

sation contained in the molecules is not possible at HERMES as the BRP is capable only of

atomic polarisation measurements. In dedicated measurements at a higher storage cell

temperature of 260 K and by boundary considerations, the range of β could be restricted

to a range of β = [0.45,0.83]. The uncertainty on β is part of the systematic uncertainty of

the target polarisation value.

The HERMES target group provides average target polarisation values for different time

periods which can be found in Table 3.2.1. The accumulated data of the HERMES ex-

periment are combined in so–called data productions which cover data taking periods

of roughly one year between shut downs of the HERA accelerator for maintenance pur-

poses. Also the target polarisation values are usually averaged over the period of one

data production. In the year 2004 the performance of the polarised target became un-

stable after a period of three months in the beginning of the year. The remaining five

months had to be split into smaller periods with average target polarisations between

0.648±0.090 and 0.775±0.044. During the commissioning of the target in 1996 the TGA

was not available for most of the time and the measurement of the target polarisation

suffered from a large systematic uncertainty. Therefore the value given in Table 3.2.1 was

obtained from a renormalisation of the inclusive DIS cross section to the results from the

97 production
[

Bec03
]

.

production time period holding field polarisation

96 Aug 1996 – Dec 1996 ‖ 0.759±0.042

97 Feb 1997 – Oct 1997 ‖ 0.851±0.031

02 Apr 2002 – Mar 2003 ⊥ 0.783±0.041

03 Sep 2003 – Dec 2003 ⊥ 0.795±0.033

04 Jan 2004 – Mar 2004 ⊥ 0.777±0.039

04 Apr 2004 – Aug 2004 ⊥ 0.648±0.090 . . . 0.775±0.044

Table 3.2.1: Target polarisation values for the different hydrogen productions.

The statistical uncertainty is negligible compared to the listed sys-

tematic uncertainty.
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3.2.5 The Target Magnet

The target magnet surrounding the storage cell provides a holding field defining the polar-

isation axis. It also suppresses spin relaxation due to the splitting of the hyperfine energy

levels. While a holding field parallel to the positron beam has no effect on the beam

and a marginal effect on the scattered particle trajectories, for a transverse holding field

different effects have to be taken into account. The deflection of the beam requires

compensation by correction coils and limits the strength of the magnetic field due to

the amount of synchrotron radiation generated by the beam. Not only the beam but

also the scattered particles are deflected. Hence, the reconstructed vertex position and

scattering angles must be corrected for the deflection.

In addition to the influence on the particle trajectories, depolarisation effects occur

due to the bunched structure of the HERA positron beam. The time period of 96.1 ns be-

tween two adjacent positron bunches corresponds to a bunch frequency of 10.41 MHz.

The induced magnetic high frequency field around the positron beam contains a large

number of harmonics because of the short bunch length of 30 ps. The energy splitting

and hence the resonance frequency between the hyperfine states of the target atoms

depends on the strength of the magnetic holding field B (see Figure 3.2.2). If a harmonic

of the beam induced field matches such a transition frequency, the target polarisation

decreases. In order to avoid depolarisation, the holding field must be set to a value be-

tween such resonances. Two kinds of transitions, π and σ, exist for beam induced fields

perpendicular and parallel to the holding field, respectively. For nuclear π (∆mI = ±1,

∆mS = 0) transitions which are possible for both longitudinal and transverse holding fields,

the spacing ∆B between two resonances is of the order of 50 mT for a field strength

around B = 300 mT. σ (∆mI = ±1, ∆mS = ∓1) transitions occur only in case of a trans-

verse holding field and have a very small spacing (∆B = 0.37 mT at B = 300 mT). Hence,

the transverse magnetic holding field needs a good homogeneity over the storage cell

to minimise the bunch field induced depolarisation.

The longitudinal target magnet was operated at a field strength B‖ = 335 mT with

maximum deviations around 10 mT within the storage cell. For the transverse target a

homogeneity of ∆B⊥ ≤ 0.15 mT was required at a field value of 297 mT. With the magnet

configuration in 2002 maximum deviations of ∆B⊥z = 0.05 mT, ∆B⊥y = 0.15 mT, and ∆B⊥x =

0.60 mT were achieved. This setup was improved by an additional correction coil installed

in 2003 which reduced the deviations to ∆B⊥y = 0.05 mT and ∆B⊥x = 0.30 mT
[

Wan04
]

. A

dedicated measurement showed that the depolarisation because of the σ resonances

could be reduced by roughly 1
3 of the total effect

[

Tai06
]

.

3.2.6 The Unpolarised Gas Feed System

Alternatively to the injection of polarised atoms from the ABS, the storage cell can be

filled with unpolarised gas using the unpolarised gas feed system (UGFS). Adjustable den-

sities and the possibility to inject the gas also into the target chamber (as opposed to

the storage cell) furthermore allow various calibration measurements necessary for the

determination of the target polarisation and the different contributions to its systematic

uncertainty.
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3.3 The Spectrometer

The HERMES experiment uses a forward spectrometer for the detection of the scattered

positron and a large fraction of the hadronic final state. The spectrometer is capable of

the detection in a broad kinematic region with a good angular and momentum resolu-

tion
[

Ack98, Dür95
]

. It consists of two symmetric halves above and below the horizontal

plane in which the HERA beam pipes are located parallel to each other. In Figure 3.3.1

a spectrometer cross section in the y–z plane of the HERMES coordinate system is drawn.

The z–axis of the right–handed HERMES coordinate system is defined along the lepton

beam direction and its x–axis is pointing away from the centre of the HERA rings.
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Figure 3.3.1: Side view of the HERMES spectrometer in the configuration since

summer 1998.

Located about 2 m downstream of the target cell the spectrometer magnet provides

a vertical field with a deflecting power of
∫

B dl =1.3 T·m. The influence of the field on

the HERA beams is minimised by a 11 cm thick steel plate surrounding the beam pipes.

The remaining effects are compensated by a correction coil. Field clamps in front of and

behind the magnet reduce fringe fields in the adjacent detectors. The horizontal accep-

tance of the spectrometer is ±170 mrad. The vertical acceptance ±(40 . . . 140) mrad has

a gap due to the beam pipes embedded in the steel plate.

3.3.1 The Tracking System

In front of the spectrometer magnet two drift chambers (FC 1/2)
[

Bra01
]

are in operation

for the reconstruction of the event vertex and the scattering angles with respect to the
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lepton beam. Each detector consists of 2×3 planes, two planes with wires arranged

in the vertical direction, and four wire planes tilted by ±30◦ with respect to the vertical

direction. In order to enhance the front–track reconstruction an additional drift chamber,

the drift vertex chamber (DVC)
[

Ack98
]

, with 6 wire planes in the same configuration was

installed in 1997. Unfortunately, due to a less than optimal alignment the reconstruction

resolution improved only slightly, and therefore consistently for all data productions only

the FCs are used for the front track reconstruction. For the track reconstruction behind

the magnet two pairs of drift chambers (BC 1/2 and BC 3/4)
[

Ber98
]

are located in front of

and behind the Čerenkov (RICH) detector. Also these drift chambers consist of 6 planes

each which are identically to the FCs arranged, thereby simplifying the reconstruction

code significantly
[

Wan96
]

. For low–momentum particles which do not reach the rear of

the spectrometer three multi–wire proportional chambers (MC1-3)
[

And01
]

are installed

in the gap inside the magnet. Each chamber contains three planes and they are used

for momentum determination of the low–energy particles which are not included in the

analysis presented in the following chapters.

The front and back tracks are reconstructed from the drift chamber hits by a pattern

recognition algorithm based on a fast tree search. They are combined if both tracks in-

tersect in the centre of the magnet within a given tolerance. The precision of the front

track is increased by adding an additional virtual point at the intersection of the forward

extrapolation of the back track with the xy–plane at the middle of the magnet (force

bridge technique). Using look–up tables the momentum of a charged particle is deter-

mined from the front and back track parameters. With the threshold Čerenkov counter

installed a momentum resolution of ∆P/P < 2.2 % and an angular resolution of ∆θ <

1.4 mrad for particles with P > 2 GeV could be obtained. In 1998 the resolutions became

worse with the installation of a ring–imaging Čerenkov detector in place of the threshold

Čerenkov counter because of increased multiple scattering. The resolutions increased to

values of ∆P/P < 2.6 % and ∆θ < 1.8 mrad.

In case of the transverse target holding field the vertex and scattering angle recon-

struction has to be corrected for the deflection. To do this the transverse magnet field has

to be mapped which was only possible in the shutdown of 2003 after the implementation

of additional correction coils. The measured field map can be used for the productions

03 and 04 whereas for the 02 production a theoretical field map was calculated with the

help of the magnetostatic program MAFIA
[

Wei97
]

. A survey of the magnet field along

the z–axis and at certain positions along the x direction served as input for this calcula-

tion. Two different methods for the target magnet correction (TMC) are available, both

using the track position information from the DVC and the FCs
[

Aug06
]

.

In method 1 the correction on the particle track is applied based on reference tracks

from a database. In a detailed (and time–consuming) tracking calculation a grid of

trajectories covering the HERMES acceptance is computed in small steps of momentum,

z–vertex and vertical and horizontal angles. From this set the trajectory closest to a mea-

sured particle track is selected, based on the tracking information from the DVC and FCs.

The remaining deviations from the reference track in the data base are used in a linear

interpolation to yield the corrected z–vertex and vertical scattering angle of the mea-

sured track. The true horizontal angle can then be computed from the position on FC2

by a simple relationship.
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Method 2 is based on a ray tracing procedure. Using the reasonable assumption that

a trajectory which is in the beginning close to a reference trajectory will also be close to

the reference trajectory at the end, a Taylor expansion for the final position in terms of

the initial position can be performed. The coefficients provide a quick way to relate the

initial position of a track to its final position with the help of a transfer function. For the

determination of these transfer coefficients several reference particles had to tracked

through the magnet field using the MIT-RAYTRACE program
[

Kow87
]

. In order to correct

the z–vertex position and the scattering angles the right transfer function, which depends

on the particle momentum and the z–position from which the particle is assumed to

originate, has to be found iteratively until convergence is achieved.

Using a Monte Carlo simulation of the HERMES detector (cf. Chapter 5) resolutions of

the relevant azimuthal angles φ and φS (cf. Chapter 2), the angle between the virtual

photon and the outgoing hadron θγ∗h, and the transverse momentum of the produced

hadrons were compared with and without transverse target magnet field. Especially for

the azimuthal angle φS the resolution degrades with the magnet field as can be seen

in Figure 3.3.2 (for the case of positive pions). Also shown in this figure is the resolution

after correction method 2 is applied which almost fully recovers the resolution without

the transverse target magnet. Similar results are obtained using correction method 1 and

for negative and neutral pions and charged kaons.

The measured field map of the magnet configuration after 2003 is not yet imple-
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Figure 3.3.2: The resolution of the azimuthal angles and the transverse momen-

tum for positive pions as a function of the pion energy. Compared

are the values for the transverse target magnet switched off and

on, once with and without correction method 2.
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mented in method 2. Therefore method 1 is used for the 03 and 04 production. This

method was not yet working properly when the 2002 data was produced and method 2

was applied for the correction in the 02 production.

3.3.2 Particle Identification Detectors

The HERMES experiment utilises four detectors for the particle identification (PID): a thresh-

old Čerenkov counter which was replaced by a ring–imaging Čerenkov (RICH) detector

in 1998, a transition radiation detector (TRD), a preshower detector, and an electromag-

netic calorimeter. Typical PID detector responses are plotted in Figure 3.3.3.
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Figure 3.3.3: The responses of the different PID detectors for hadrons and lep-

tons. In order to plot the responses for a given detector, the par-

ticles were identified with cuts on the responses of the remain-

ing PID detectors. Except for the threshold Čerenkov counter his-

togram which was extracted from the 96 and 97 production, the

histograms were computed from the 04 production.

The first PID detector on the particle’s way through the detector is a Čerenkov detec-

tor located between the two pairs of BCs. If a particle passes through a material with a

velocity larger than the phase velocity of light in the material it emits Čerenkov radiation



44 3.3 The Spectrometer

n P π
thresh [GeV] PK

thresh [GeV] P p
thresh [GeV]

Aerogel 1.0304 0.6 2.0 3.8

C4F10 1.00137 2.7 9.4 17.9

Table 3.3.1: Refractive indices and Čerenkov threshold momenta for the two

radiators of the RICH detector.

on a cone with a characteristic opening angle θc given by:

cos θc =
1

βn
, (3.3.1)

where n is the refractive index of the material and β = v
c is the ratio of the velocity v of

the particle and the speed of light in vacuum c. Particles with

β < βthresh =
1

n
or P < Pthresh =

m√
n2 − 1

, (3.3.2)

do not emit Čerenkov light. Until 1998 a threshold Čerenkov counter was installed which

was filled with a radiator gas. The gas consisted of 70 % vol. N2 and 30 % vol. C4F10 and

had a refractive index of n = 1.000629. Eq. (3.3.2) yields the threshold momenta 0.014,

3.8, 13.9, and 26.4 GeV for leptons, pions, kaons, and protons, respectively. Hence, all

leptons traversing the threshold Čerenkov counter radiate as can be seen in Figure 3.3.3.

The peak for the lepton sample at zero photo–electrons is due to detector inefficiencies.

Only hadrons with momenta larger than 3.8 GeV radiate, resulting in a larger peak at

zero for hadrons. With the threshold Čerenkov counter pion identification in a hadron

sample is possible in the momentum range between 3.8 to 13.9 GeV where only pions

emit Čerenkov light.

aluminium box

mirror array

soft steel plate
PMT matrix

aerogel tiles

Figure 3.3.4: The upper half of the RICH detector schematically drawn.
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In order to improve the hadron identification the threshold Čerenkov counter was re-

placed by a dual–radiator RICH detector
[

Ako02
]

in 1998. Particles with the same mo-

mentum but with different masses emit Čerenkov light in cones with different opening

angles θc. The RICH detector measures the pattern of the Čerenkov photons which per-

mits the reconstruction of the Čerenkov angle θc and thus enables the identification of

pions, kaons, and protons in the hadron sample. Like the threshold Čerenkov counter also

the RICH detector is used for the separation of leptons and hadrons. Figure 3.3.4 shows

the configuration of the upper half of the RICH detector with its two radiator materials.

After entering the detector volume through a thin entrance window foil (not shown in the

sketch) particles pass a first radiator made of 5.5 cm thick aerogel tiles. This is a colloidal

suspension of quartz in air. The second radiator is the heavy C4F10 gas which fills the inte-

rior of the detector. The refractive indices of the radiators and threshold momenta can

be found in Table 3.3.1. The emitted Čerenkov photons are focused by a spherical mirror

array on a photo–multiplier tube (PMT) matrix, consisting of 1934 PMTs in both top and

bottom part of the RICH detector.

As the second PID detector located between the two hodoscopes H1 and H2, also

the TRD serves to distinguish between lepton and hadrons. When a highly relativistic

charged particle crosses a dielectric boundary it emits electromagnetic radiation. This

can be explained by the required continuity of the Coulomb fields at the boundary. Due

to the different dielectric constants, the induced Coulomb fields differ between the two

media at the boundary and do not fulfil the continuity requirement. This gives rise to

an additional field observed as the transition radiation. The total energy of the emitted

radiation for a transition between a medium and vacuum,

E =
2

3
αωpγ , (3.3.3)
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Figure 3.3.5: The upper half of the TRD with a positron and a pion track. The

opening angles of the transition radiation produced by the lepton

are exaggerated.
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is proportional to the Lorentz factor γ = 1/
√

1− β2 and the plasma frequency of the

medium ωp

[

Art75
]

. At high particle energies the radiation consists mainly of X–rays. It is

emitted in a narrow cone with an opening angle θ ∼ 1/γ. Since the probability for the

emission of transition radiation is small for a single boundary many material boundaries

are necessary for the realisation of a TRD.

For the HERMES TRD an irregular mesh of very thin polyethylene/polypropylene fibres

was chosen as radiator, arranged in a plane to form a 6.35 cm thick module. Behind the

module a multi–wire proportional chamber, filled with a mixture of 90 % Xenon and 10 %

CH4 gas, detects the deposited energy. The top and bottom part of the TRD consists of

six consecutive modules each with an active area of 72.4×325 cm2 (see Figure 3.3.5).

At HERMES energies only leptons emit a large enough amount of transition radiation

to be detected. The emitted energy depends linearly on γ which for a lepton with the

same energy as a pion is about 270 times larger. Due to ionisation losses dE/dx in the

chamber gas all particles deposit some energy in the wire chamber. In general, leptons

leave approximately 2.5 times the amount of energy of pions, allowing for a separation

by the energy deposition in the TRD modules. In Figure 3.3.3 a typical response to lep-

tons and hadrons is shown. Plotted is the truncated mean which is the averaged signal

calculated from five modules, discarding the module with the largest response. This pro-

cedure reduces significantly the Landau tail of the hadronic response that originates from

δ electrons while leaving the mean values of the distributions almost unaffected.

The preshower detector is a scintillating hodoscope with a 11 mm thick curtain of lead

in front. The hodoscope (H2) is build from 42 vertical panels of scintillator with a thickness

of 1 cm. The panels have an area of 9.3×91 cm2 and overlap by 2–3 mm for maximum effi-

ciency. The individual panels are read out by PMTs away from the beam pipe as sketched

in Figure 3.3.6. For traversing leptons, the passive lead radiator initiates electromagnetic

showers which deposit more energy than minimum ionising particles. This results in energy

losses of 20–40 MeV for leptons whereas hadrons deposit only around 2 MeV, as shown in

Figure 3.3.3.

Behind the preshower an electromagnetic calorimeter
[

Ava98
]

is installed in which

leptons lose almost all of their energy in an electromagnetic shower. The depth of 50 cm

or 18 radiation lengths ensures that the shower is almost completely contained in the

calorimeter. Each half of the detector is a wall of 420 lead–glass blocks with a cross

section of 9×9 cm2 (cf. Figure 3.3.6). These radiation–resistant F101 blocks are coupled

to PMTs at the back by means of silicone glue. A 3×3 array of blocks was measured in

a test beam resulting in an energy resolution of σ(E)/E[%] = 5.1/
√

E[GeV]+1.5 and a

linear energy response for electrons to within 1 % in the range from 1 to 30 GeV
[

Ava96
]

.

The energy resolution of the full scale calorimeter in operation turned out to be slightly

worse because of the presence of the preshower detector and imperfections in the gain

matching of the lead–glass block/PMT units.

Contrary to leptons, hadrons lose only a small fraction of their energy, due to nuclear

interactions and ionisation losses dE/dx. Since electrons lose almost all of their energy, the

total deposited energy E measured by the calorimeter is close to the momentum P of

the lepton measured with the spectrometer. This allows a good discrimination of leptons

from hadrons in the distribution of E/P as can be seen in Figure 3.3.3.

The calorimeter is also capable of the detection of energetic photons. The photons
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Figure 3.3.6: The preshower detector and the calorimeter setup of the HERMES

experiment.

leave a signal in a cluster of blocks which does not coincide with a track reconstructed

in the HERMES acceptance. By weighting the centroid of each block of a cluster with the

logarithm of the corresponding energy, a position resolution of about 0.5 cm for photons

is achieved
[

Ely01
]

.

3.3.3 The Luminosity Monitor

The measurement of absolute and relative luminosities is necessary for the calculation of

cross sections and cross section asymmetries. In the HERMES experiment the luminosity is

measured by means of a reference scattering process which is the scattering of beam

leptons off shell electrons in the target gas. In case of a positron beam these are the

annihilation and Bhabha scattering processes. For electrons as beam particles Møller

scattering takes place. The luminosity can be obtained from the ratio of the scattering

process rate and its effective cross section. The effective cross section is the theoretical

cross section which is known to high orders in quantum electrodynamics, multiplied by

the efficiency of the luminosity monitor and integrated over its acceptance.

For high energetic beam positrons which scatter off or annihilate with fixed target

shell electrons, the scattering angles of both leptons or the two photons, respectively, are

small. Therefore the luminosity monitor
[

Ben01
]

consists of two small calorimeters located

7.2 m downstream of the target, mounted as close as possible on both sides of the beam

pipe. The calorimeters are built from 12 NaBi(WO4)2 crystals arranged in a 3×4 matrix.

Each crystal is 20 cm long and has a cross section of 2.2×2.2 cm2. At the back side a PMT

is coupled to each crystal for the read out of the signal. The two scattered particles are

detected in coincidence in the two calorimeters. A required energy deposition above
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4.5 GeV in both calorimeters minimises background events.

The large systematic uncertainty of 6 % in the measurement of absolute luminosities

due to the dependence of the luminosity monitor acceptance on the beam position

and slope
[

Els01
]

cancels in the calculation of relative luminosities. Their uncertainties are

negligible.

3.3.4 The Trigger System

The trigger system is used for the very fast discrimination of interesting candidate events

from background events and initiates the readout of all spectrometer components. While

the detectors are read out, no new events can be recorded, resulting in a dead time δdead

of the spectrometer. The dead time is defined as the ratio of trigger requests which had

to be rejected and the total number of readout requests. During standard running it is

typically well below 10 %.

In the trigger system, two additional hodoscopes H0 and H1 are used together with

the hodoscope H2 of the preshower detector described above. The hodoscope H1 is

constructed in the same way as H2 except for the lead sheet in front, while H0 is not

segmented horizontally as it is only used in the trigger. Each half of the hodoscope H0 is

build from a single sheet of 3.2 mm thick plastic scintillator and read out by two PMTs. The

hodoscopes H0 and H1 are located in front of FC1 and the TRD, respectively (see Figure

3.3.1). The aim of the forward hodoscope H0 is to suppress backward–going particles

from the HERA proton beam.

Various first–level triggers are used in the HERMES experiment for DIS events, photo–

production events and for calibration and monitoring of the detectors. The trigger de-

cision is made within about 400 ns of an event. The DIS trigger selects lepton events as

candidates for a DIS event. A lepton traversing the spectrometer is identified by requiring

hits in the three hodoscopes H0, H1, and H2 together with an energy deposition in two

adjacent calorimeter columns above a threshold energy Ethresh, all in coincidence with

the HERA beam bunch signal. The threshold energy of the calorimeter is set to 1.4 GeV for

data taking with the polarised target and 3.5 GeV for the unpolarised targeti. Ethresh =

3.5 GeV corresponds to a cut on y < 0.87. The lower threshold relaxes the cut to a higher

y value of 0.95, but it increases significantly background from the collimator just upstream

of the target. Only around 13 % of the DIS trigger events have at least one identified lep-

ton (cf. Figure 4.2.2) and approximately 4–6 % of the recorded events are identified as DIS

events in the offline analysis.

3.4 Data Acquisition and Processing

The readout of the detector is carried out by specific readout electronics hosted in Fast-

Bus crates which are located in an electronic trailer close to the spectrometer. For the

timing and analogue information LeCroy 1877 Multihit FastBus TDCs (time–to–digital con-

verter) and LeCroy 1881M FastBus ADCs (analogue–to–digital converter) are in use. The

magnet chambers and the RICH are read out by the LeCroy PCOS4 system. The data

iIn the beginning of the 96 production the higher threshold of 3.5 GeV was also used for polarised data

taking.
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from the FastBus crates are bundled by event builder modules and sent over fast opti-

cal links to a Linux cluster (a DEC Alpha cluster before 2002), where they are stored on

staging disks and on data tapes. So–called slow control data, like information from the

luminosity monitor, the polarimeters, the target, detector temperatures, voltage settings,

etc., is recorded in addition. The slow control data are read out once every ∼10 s, in-

dependent of triggers from the spectrometer. All raw data is buffered in EPIO format on

hard disks in the Linux cluster and backed up regularly on data tapes. It is transferred to

a taping robot at the DESY main site after the end of each HERA positron fill using a FDDI

(fast distributed data interface) link.

From the electronic detector signals, the hit positions, energy depositions, etc. are

determined with the HERMES decoder (HDC) using mapping, geometry and calibration

of the individual detectors. All required information is stored in an ADAMO
[

CER93b
]

database, which is an entity–relationship database allowing structured and portable

data storage. In a next step the HERMES reconstruction (HRC) program finds tracks in

the spectrometer. Using a timing signal that is written to the event data and slow control

data streams, both data streams can be synchronised. All synchronised data which is

useful for physics analyses, is stored in data summary tables – the so–called µDST files.

Different time scales are used in the HERMES data. The shortest time interval is the event

containing all reconstructed tracks which are observed when a trigger is generated. All

events recorded within approximately 10 s are grouped into a burst. This is the time scale

on which the slow control information is synchronised to the event data. In order to split

up the raw data into small enough pieces for storage, bursts are combined into a run

with a size of about 450 MB. Dependent on the luminosity, a run lasts around 10 min. The

longest time scale, the fill, is determined by the 8–12 h storage time of the HERA positron

beam.



50 3.4 Data Acquisition and Processing



Azimuthal Asymmetry Moments

In the years 2002 to 2004, the HERMES experiment collected data with a transversely po-

larised hydrogen target. The extraction of azimuthal single–spin asymmetry moments

from the accumulated semi–inclusive deep–inelastic scattering events is presented in this

chapter. In the analysis, several checks are applied in order to ensure a high quality of

the data before semi–inclusive events are identified from the reconstructed tracks by cer-

tain geometry and kinematic requirements. The obtained count rates of semi–inclusive

events are used to form a single–spin asymmetry depending on two azimuthal angles.

With a two–dimensional fit the sine modulations of the Collins and Sivers effect are ex-

tracted. Systematic studies are performed to estimate influences on the extraction from

different sources.

4.1 Data Quality

The produced µDST–files of the different data taking periods are labelled by the last two

digits of the corresponding year of data taking, a letter to indicate the production, and a

cypher. In the first production of µDST–files for a new data taking period (a–production),

detector calibrations are used which are based on the data of the preceding period.

The a–production allows detailed detector calibrations which serve as input for a re-

production of the µDST–files (b–production). In the subsequent c–production, additional

corrections which rely on proper calibrations are taken into account. The cypher which

completes the production name, is increased for each reproduction without a new track

reconstruction. Such a reproduction usually is carried out when improved slow control

information such as beam or target polarisation values becomes available. The analysis

presented here is based on the data productions 02c0, 03c0, and 04b0.

Although some measurements are performed on longer time scales, the information

of the different components of the HERMES experiment and of the relevant HERA param-

eters is available on burst level (cf. Section 3.4). To ensure a high data quality in each

recorded burst, several measured quantities are checked for consistency. Data quality

checks on

- the rate of the luminosity monitor,

- the beam current and the beam polarisation,
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- the status of the target and of the data acquisition system,

- the information from the shift logbook

and for

- malfunctioning PID detectors and

- high voltage trips in the wire chambers

are performed. For each data production, a burst list with the information of the data

quality checks is provided by the HERMES data quality group. Details about the data

quality checks can be found in
[

Wen03
]

and on the HERMES µDST data quality web page
[

HDQb
]

.

The analysis of target–spin asymmetries does not require a polarised lepton beam. The

outcome of the data quality checks on the beam polarisation and the status of its mea-

surement can therefore be ignored in this analysis. Furthermore, one single out of all PMTs

connected to a calorimeter block is allowed to be dead in the year 2002, in which the

calorimeter suffered from ageing which caused several failures of scintillator–PMT units.

An elaborate study showed that one dead unit does not influence semi–inclusive az-

imuthal asymmetries of charged hadrons
[

Has03
]

. For the identification of neutral pions,

which is based on the calorimeter signals solely, all PMTs are required to work properly.

4.2 Event Selection

In all DIS trigger events of bursts passing the above mentioned quality cuts, a particle type

is assigned to each track that fulfils certain requirements on its geometry as described

in more detail later. After identification of the scattered positron and the produced

hadrons, several cuts are applied on the kinematics for the selection of semi–inclusive

DIS events. The cuts are described in the order as they are applied in the analysis chain.

charged particles photons

vertex position -18 cm ≤ zvertex ≤ 18 cm

calorimeter position
|xcalo| ≤ 175 cm |xcalo| ≤ 125 cm

30 cm ≤ ycalo ≤ 108 cm 33 cm ≤ ycalo ≤ 105 cm

front field clamp position |xffc| < 31 cm

septum plate position |ysp| > 7 cm

rear field clamp position |yrfc| < 54 cm

rear clamp position
|xrc| ≤ 100 cm

|yrc| ≤ 54 cm

Table 4.2.1: The geometry cuts which are applied to the detected charged

particles and photons.
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4.2.1 Geometry Cuts

Before the identification of the particles, several geometry cuts on the particle tracks are

applied to ensure that the track reconstruction was not influenced by the edges of the

HERMES spectrometer and to suppress background. The longitudinal vertex coordinate

zvertex at which the scattering occurred, is restricted to the dimension of the target cell. In

addition, the vertical and horizontal positions of the track are checked at the locations

of several detector components which limit the HERMES acceptance. All geometry cuts

are listed in Table 4.2.1 for charged particles and photons. The latter are required to hit a

smaller area of the calorimeter front because they are not deflected by the spectrometer

magnet and to avoid transverse shower leakage as photon identification is exclusively

based on the calorimeter signal.

4.2.2 Particle Identification

Lepton–Hadron Discrimination

Combining the responses of the four PID detectors described in Section 3.3.2, a sepa-

ration between leptons – positrons and electrons – and hadrons is possible. The combi-

nation of several PID detectors reduces the contamination significantly compared to a

particle identification with only one detector. For each PID detector D, the conditional

probability Li
D(ξ) that a given particle of type i (i = lepton, hadron) generates a de-

tector response ξ, can be extracted using very restrictive cuts on the remaining three

PID detector responses. The conditional probability is related by Bayes’ theorem to the

probability,

Pi
D(ξ) =

ΦiLi
D(ξ)

∑

j ΦjLj
D(ξ)

, (4.2.1)

that a given signal ξ was caused by a particle of type i. Φi is the incident flux of particles

of type i and the sum is performed over all particle types j to be distinguished.

The extracted conditional probabilities of each PID detector serve as input for the so–

called PID value, which is defined as the decadic logarithm of the ratio of the conditional

probabilities for leptons (l) and hadrons (h),

PIDD ≡ log10

Ll
D(ξ)

Lh
D(ξ)

. (4.2.2)

It is common to combine the three PID values of the preshower detector, the calorimeter,

and the Čerenkov detector (threshold Čerenkov counter before and RICH detector since

the year 1998) into one quantity:

PID3 ≡ log10

Ll
PreLl

CalLl
Cer

Lh
PreLh

CalLh
Cer

. (4.2.3)

In the special case of the RICH detector, the conditional probabilities for gas and aerogel

radiators are multiplied. Also the signals of the six TRD modules are combined into one

PID value:

PID5 ≡ log10

∏6
m=1 Ll

TRDm
∏6

m=1 Lh
TRDm

. (4.2.4)
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Figure 4.2.1: Sum of PID3 and PID5 for the three analysed data productions. The

applied cuts for the separation of hadrons and leptons are plotted

as vertical lines.

PID3 and PID5 values are assigned to each detected particle dependent on the re-

sponses in the different PID detectors. Once the Li
D have been determined for each

particle type i and detector D, the restrictive cuts for the extraction of the conditional

probabilities can be lifted and instead a cut is applied on the quantity

PID3 + PID5 − log10

Φh

Φl
= log10

P l

Ph
. (4.2.5)

This quantity can be interpreted as the logarithm of the probability ratio that a given par-

ticle is a lepton or a hadron. The hadron and lepton fluxes, Φh and Φl, can be calculated

iteratively, which has not yet been done for all of the transverse target data productions.

However, the impact of the flux factor log10(Φ
h/Φl) is small for semi–inclusive DIS event

kinematics and an analysis using only the sum of PID3 and PID5 is a good approximation
[

Wen03
]

. Figure 4.2.1 shows the PID3 + PID5 distribution of tracks in DIS trigger events with

a local minimum around 1.5. As indicated by the shaded areas, leptons and hadrons are
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Figure 4.2.2: Number of leptons and hadrons in DIS trigger events of a subset of

the 02 production after applying data quality cuts.
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identified with the following cutsi:

PID3 + PID5 > 2.0 for leptons, (4.2.6)

PID3 + PID5 < 0.0 for hadrons. (4.2.7)

Most of the DIS trigger events contain only hadrons and no leptons, as can be seen in

Figure 4.2.2.

Charged Hadron Identification

When passing through the two RICH radiators, charged particles emit a certain pattern of

Čerenkov photons (cf. Section 3.3.2). This allows the separation of the individual charged

hadron types. The photon pattern which is focused on the PMT matrix by the spherical

mirror array, is associated with a track in the spectrometer using an inverse ray tracing

algorithm
[

Jun00
]

. Combining all measured Čerenkov angles in a range around the the-

oretically expected angle, averaged Čerenkov angles are computed for the two radia-

tors, aerogel (a) and gas (g), and for each of the three hadron hypotheses, h = π, K, p.

From these, two likelihoods La,g
h can be calculated from the averaged Čerenkov angles

and combined to the total likelihood Ltot
h = La

h · L
g
h. The hadron type hypothesis with the

largest combined likelihood is assigned to the track.

The success of the identification is assured by requiring a positive value of the quality

parameter Qp which is defined as the logarithm of the likelihood ratio of the most and

the second most likely hadron types, h1 and h2:

Qp = log10

Ltot
h1

Ltot
h2

> 0 . (4.2.8)

If the identification algorithm could not find a most probable hadron type the quality

parameter is set to zero.

Using a Monte Carlo simulation of the RICH detector, contamination and efficiency of

the hadron identification are estimated. The analysis of the Monte Carlo data allows the

determination of the conditional probability P (hid|htrue) that a given hadron of true type

htrue is identified as particle of type hid. For htrue = hid, the conditional probability is equiv-

alent to the efficiency of the identification. However, for the interpretation of P (hid|htrue)

as contamination in case of htrue 6= hid, the relative hadron fluxes must be taken into

account in analogy to Eq. (4.2.1). These conditional probabilities are combined into a

matrix,

P =







P (πid|πtrue) P (πid|Ktrue) P (πid|ptrue)

P (Kid|πtrue) P (Kid|Ktrue) P (Kid|ptrue)

P (pid|πtrue) P (pid|Ktrue) P (pid|ptrue)






, (4.2.9)

dependent on the track momentum and the topology of the photon patterns on the PMT

matrix. The more tracks are detected in one detector half (top or bottom), the higher is

the probability for patterns to overlap. Therefore, the P–matrix elements are extracted for

one, two, and three or more tracks in the given detector half and in 1 GeV momentum

bins. The results are plotted in Figure 4.2.3, arranged in the same way as Eq. (4.2.9).

iFor both particle types, |PID3+PID5| < 80.0 is requested in order to reject events with unreliable PID values.
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Figure 4.2.3: The P–matrix, dependent on the momentum of the particle, for

the HERMES RICH detector obtained from a Monte Carlo simulation
[

Hom04
]

. Plotted are the conditional probabilities that a given

hadron of true type htrue is identified as a pion, kaon, or proton,

respectively. The different plot symbols represent the dependence

on the number of charged particle tracks per detector half.

The RICH pion identification has a large efficiency and the probability to misidentify a

kaon or proton as a pion is small over almost the entire momentum range. For kaons the

momentum threshold of the gas radiator is visible as a discontinuity at around 10 GeV.

The P–matrix relates the flux of identified hadrons, ~I = (N id
π ,N

id
K ,N

id
p ), to the true flux

of hadrons, ~N = (N true
π , N true

K , N true
p ), by ~I = P · ~N . In order to obtain the true flux from the

measured flux of identified hadrons, the P–matrix must be inverted:

~N = P−1 · ~I . (4.2.10)

In the analysis of semi–inclusive events, a weight dependent on the identified hadron

type is assigned to each particle track according to the inverse P–matrix. A track iden-

tified as hid is weighted by (P−1)πtrue,hid
in the true pion count rate and by (P−1)Ktrue,hid

in

the true kaon count rate. The sum of these weights over all tracks l with identified hadron

type (hid)l yields the number of true hadrons:

N true
h =

∑

l

(P−1)htrue,(hid)l
. (4.2.11)
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It is common to present a count number of weighted events in terms of an equivalent

count number Neq which is defined as the number of unweighted events with the same

relative error as the sum of weighted events N =
∑

iwi:

σ(Neq)

Neq
=

√

Neq

Neq
≡

√

∑

iw
2
i

∑

iwi
=
σ(N)

N
, (4.2.12)

with the elements of the inverse P–matrix as weights wi in case of the RICH hadron iden-

tification.

Neutral Pion Identification

The short life time of the neutral pion allows its identification by the decay into a pair

of photons with a branching ratio of almost 99 %
[

Eid04
]

. In the HERMES spectrometer,

the energies and positions of photons are measured by the calorimeter, as described in

Section 3.3.2. The reconstructed photon position on the calorimeter front is connected

to the vertex z–coordinate of the scattered positron by a straight line for the calculation

of the photon momentum. Two photons with energies larger than 1 GeV are combined

and the invariant mass Mγγ is computed. For events with more than two photons and

less than eleven, all possible combinations are considered. Events with more than ten

photons yield more than
∑9

n=1 n = 45 combinations and are therefore considered as

background events. They are rejected in order to limit the combinatorial background.

Figure 4.2.4 shows the invariant mass distribution of all photon combinations after ap-

plying the geometry and kinematic cuts described below. A fit is superimposed on the

histogram using a Gaussian for the decay peak and a third order polynomial to describe

the background. The fit results in a π0 mass Mπ0 = (134.29±0.06) MeV which is close to the

value of (134.98±0.06) MeV obtained by the PARTICLE DATA GROUP
[

Eid04
]

. The 5σ devia-

tion is caused by the energy calibration of the calorimeter and the position reconstruction
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Figure 4.2.4: Invariant mass distribution of the photon pairs with geometry and

kinematic cuts applied. The solid line is a fit to the spectrum using

a Gaussian and a third order polynomial. The dashed line is the

third order polynomial only which parametrises the combinatorial

background.
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of the photons which is solely based on the calorimeter signals. The width of the peak σ =

(11.37±0.06) MeV reflects the resolution of the calorimeter. In the range [0.10, 0.17] GeV

which corresponds approximately to Mπ0 ± 3σ, the fraction of signal events Nsig/Ntot can

be deduced from the fit. While this fraction is independent of x it is strongly correlated to

the energy fraction z (cf. Section 4.5). The fraction of signal events,

Nsig

Ntot
= 0.736 ± 0.003 , (4.2.13)

is obtained in the semi–inclusive range 0.2 < z < 0.7 and 0.023 < x < 0.4.

In the analysed data productions, the energy calibration of the calorimeter yielded a

constant correction factor for the measured photon energies. An energy calibration de-

pendent on the signal in the preshower, which will improve the resolution of the calorime-

ter, is under study
[

Ave04b
]

but is not yet implemented in this analysis. The new calibration

is also planned to improve the reconstruction of the π0 mass.

4.2.3 Kinematic Cuts

The scattered DIS positron is selected by several kinematic cuts listed in Table 4.2.2. A

four–momentum transfer of more than 1 GeV2, i.e., larger than the squared proton mass,

is required for scattering processes in the deep–inelastic region. Events from the reso-

nance region (W . 2 GeV) are excluded by a cut on the invariant mass of the final

hadronic state. For inclusive DIS events which can be used for the luminosity normalisa-

tion described below, this cut is lower than for semi–inclusive DIS events. For the latter,

the higher cut improves the separation of the observed hadrons carrying the informa-

tion of the struck quark from the observed hadrons which come from the target remnant
[

Bec00
]

. The upper limit on the fractional energy transfer y eliminates DIS events from a

region with a large contribution to the cross section by higher order QED effects, e.g.,

bremsstrahlung. This limit discards leptons with momenta lower than 4.1 GeV. Due to the

restrictions on W 2 and Q2, the lowest possible value of the fractional energy transfer in

semi–inclusive events is around 0.18. For inclusive events, in contrast, the lowest possible

value of 0.07 is excluded by a lower cut of y > 0.1. The chosen range in the Bjorken

scaling variable is determined by the HERMES acceptance and the cuts on Q2 and W 2.

inclusive DIS semi–inclusive DIS

four momentum transfer Q2 > 1 GeV2 Q2 > 1 GeV2

squared mass of the final state W 2 > 4 GeV2 W 2 > 10 GeV2

fractional energy transfer 0.1 < y < 0.85 y < 0.85

Bjorken scaling variable 0.023 < x < 0.4 0.023 < x < 0.4

virtual photon – hadron angle θγ∗h > 0.02 rad

hadron momentum 2 GeV < Ph < 15 GeV

energy fraction (extended range) 0.2 < z < 0.7 (0.7 < z < 1.2)

Table 4.2.2: The kinematic cuts for the selection of inclusive and semi–inclusive

DIS events.
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Figure 4.2.5: Distributions of the inclusive variables x, y, Q2, and W 2 for the π+,

π−, and π0 event samples after all cuts are applied.

If more than one positron track remains in the event after the geometry and kinematic

cuts the one with the highest momentum is identified with the DIS positron.

Further cuts are applied on those hadrons that are detected in coincidence with the

identified DIS positron. In order to limit the uncertainty in the determination of the azi-

muthal angles φ and φS (for the definition see Figure 2.5.3), events with an angle θγ∗h be-

tween the virtual photon (γ∗) and the hadron (h) smaller than 0.02 rad are discarded. This

value reflects the resolution of the reconstruction of θγ∗h (cf. Figure 3.3.2). The constraint

on the angle between photon and hadron limits the transverse momentum Ph⊥ = |~Ph⊥| of

the hadron, e.g., for 2 GeV hadrons, transverse momenta below 0.05 GeV are excluded.

In addition, the absolute momenta of the hadrons are restricted to a range between

2 GeV and 15 GeV for a reliable hadron identification with the RICH detector. The upper

limit of the energy fraction z < 0.7 rejects scattering events in a region which is dominated

by exclusively produced vector mesons. For the investigation of the z dependence, this
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Figure 4.2.6: Distributions of the semi–inclusive variables Ph, Ph⊥, θγ∗h, and z for

the π+, π−, and π0 event samples after all cuts are applied. The

extended z range is indicated by a dashed line. This range is not

included in the distributions of Ph, Ph⊥, and θγ∗h.

cut is lifted and the range in energy fraction is extended to 1.2. The lower limit of 0.2 in

combination with the W 2 cut enhances the fraction of observed hadrons which carry

the information of the struck quark. All hadrons passing the kinematic cuts are included

in the analysis.

A correction for charge symmetric background processes, e.g., electron–positron pair

production, is applied to the particle count rates. The positron from such a process might

be misidentified as the scattered beam positron from the DIS process. The background

rate is estimated by considering electron tracks which pass the kinematic cuts for inclu-

sive or semi–inclusive events. These electrons are assumed to originate from charge sym-

metric background events. The rate of electrons passing the DIS cuts can be used as

estimate since the rates of electrons and positrons from charge symmetric background

events are equivalent. For the correction, the number of DIS events with electrons instead
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incl. DIS π0 π0
sig π0

bkg

count number N 3352199 81011 59624 21387

π+ π− K+ K−

number of most likely type N id
h 268219 190069 58132 23074

true count number N true
h 281497 200650 48802 16450

equivalent count number Neq 257049 184085 23654 6742

Table 4.2.3: Count numbers of DIS positrons and semi–inclusive DIS hadrons for

the three productions 02c0, 03c0, and 04b0 combined.

of positrons is subtracted from the particle count rates. The resulting particle count rates

for inclusive and semi–inclusive DIS events are listed in Table 4.2.3. The signal and back-

ground count numbers of π0 events are determined using the fraction of signal events

(4.2.13) extracted from the fit to the invariant mass spectrum. For the charged hadrons,

the number of hadrons identified by the RICH as most likely hadron type together with

the true hadron and the equivalent count numbers as defined in (4.2.11) and (4.2.12),

are given.

The distributions of inclusive and semi–inclusive variables relevant for this analysis, are

plotted for charged and neutral pions in Figures 4.2.5 and 4.2.6. As explained in Section

2.5.2, the squared transverse momentum of the hadron must be small compared to Q2.

This is approximately fulfilled as can be seen in Figure 4.2.7 which shows the distribution

of P 2
h⊥/Q

2 for the charged and neutral pions. Only a negligible event fraction of around

0.1 % has a squared transverse momentum which is larger than Q2.
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Figure 4.2.7: Distribution of P 2
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2 for the three different pion types.

4.3 The Extraction of Asymmetry Moments

The azimuthal target–spin asymmetry is derived from the cross–section asymmetry be-

tween two opposite spin states of the transversely polarised target:

AUT(φ, φS) =
1

〈P 〉
N↑(φ, φS)L↓ −N↓(φ, φS)L↑

N↑(φ, φS)L↓ +N↓(φ, φS)L↑
, (4.3.1)

where N↑/↓ are the count numbers of true hadrons (4.2.11) for the two target spin states

parallel (↑) and antiparallel (↓) to the target magnet field, binned in the angles φ and φS
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semi–inclusive range 1 2 3 4 5 6

x bin limits 0.023 0.05 0.09 0.15 0.22 0.4

Ph⊥ bin limits [GeV] 0.05 0.25 0.4 0.55 0.8 30.0

y bin limits 0.1 0.31 0.415 0.54 0.69 0.85

Q2 bin limits [GeV2] 1.0 1.59 2.51 3.97 6.3 15.0

z bin limits 0.2 0.3 0.4 0.55 0.7

extended range 1 2 3 4 5 6

z bin limits 0.7 0.85 1.2

Table 4.3.1: Bin limits of the kinematic quantities used in the analysis.

(see Figure 2.5.3). The count numbers are normalised to the integrated luminosities L↑/↓,
which can either be calculated from the integrated rates of the luminosity monitor or from

the count rates of inclusive DIS events. The different polarisation values are weighted by

the integrated luminosity to obtain the averaged target polarisation 〈P 〉 = 0.75±0.05. The

calculation of the azimuthal angle φS is with respect to the nucleon spin direction in target

spin state ↑. This results in a cancellation of the unpolarised (polarised) cross–section terms

in the numerator (denominator).

The asymmetry is computed in bins of one kinematic quantity while integrated over

the other kinematic quantities. In Table 4.3.1 the bin limits of the different kinematic quan-

tities used for the analysis, are listed. The binning in the energy fraction z is extended

with two bins between 0.7 and 1.2 in order to investigate the behaviour of the asymme-

try moments beyond the semi–inclusive range. The HERMES spectrometer acceptance

causes a strong coupling of x and Q2 which results in an increasing mean value 〈Q2〉 in

consecutive x bins and vice versa. For the pion asymmetries each kinematic bin is split
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Figure 4.3.1: Distribution of the azimuthal angles φ and φS of charged pions in

the kinematic range 0.023 < x < 0.4 and 0.2 < z < 1.2.
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up into 12×12 equidistant bins in the azimuthal angles φ and φS as superimposed on the

two–dimensional distribution of the azimuthal angles in Figure 4.3.1. In the distribution of

φS the separation between top and bottom half of the HERMES spectrometer is clearly

visible. The number of azimuthal bins is adjusted to obtain sensible statistical precision in

each bin using a Monte Carlo simulation (see Section 5.1.2). For the kaons with their lower

statistics an 8×8 binning is chosen.

The 144 (64) azimuthal asymmetries are fitted by a two–dimensional function including

all bins with at least one event in each target spin state. The parameters of the fit function:

AUT(φ, φS) =A
sin(φ+φS)
UT · sin(φ+ φS) +A

sin(φ−φS)
UT · sin(φ− φS)+

A
sin(2φ−φS)
UT · sin(2φ − φS) +Asin φS

UT · sinφS + C ,
(4.3.2)

are the amplitudes A
sin(nφ±φS)
UT of different sine modulations (n = 0,1,2) and a constant

C which should vanish for a correct luminosity normalisation of the asymmetries. This is

in fact found in all the fits performed in this analysis. Neglecting the coupling between

subleading–twist terms of the cross section and remaining acceptance effects, the ex-

tracted amplitudes are related to the asymmetry moments 〈sin(nφ ±mφS)〉UT defined in

Section 2.5.2 by:

A
sin(nφ±mφS)
UT = 2〈sin(nφ±mφS)〉UT = 2

∫

dφS d2 ~Ph⊥ sin(nφ±mφS) (d6σ↑ − d6σ↓)
∫

dφS d2 ~Ph⊥ (d6σ↑ + d6σ↓)
. (4.3.3)

In addition to the Collins and Sivers moments, 〈sin(φ + φS)〉UT and 〈sin(φ − φS)〉UT, two

other sine modulations are included in the fit. They are subleading–twist terms of the
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Figure 4.3.2: Comparison of the results of three different fit methods with the

function (4.3.2) considering as example the positive pions.
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cross section (cf. Chapter 2) which cannot be omitted because they are significantly

non–zero and influence the fit results of the Collins and Sivers moments, as shown later

on.

Three different fit routines based on the least–squares method are used for the extrac-

tion of the fit parameters. The fit function (4.3.2) is a linear function in the fit parameters.

Hence, the minimum of the figure–of–merit function χ2 can be calculated analytically

involving decomposition and back substitution of a matrix. Two different decomposition

methods, the single value (SV) decomposition and the LU decomposition which is based

on a lower and an upper triangular matrix
[

Pre94
]

, are implemented in the fit routines.

As a third method, the program MINUIT
[

Jam75
]

is used which determines the minimum

of the figure–of–merit function by scanning the parameter space. Figure 4.3.2 shows the

comparison of the extracted asymmetries of positive pions using LU and SV decomposi-

tion and the program MINUIT. If the matrices involved in the fit are numerically close to

being singular the LU decomposition can fail to give satisfactory results, as can be seen

in the first y bin. In the following, the SV decomposition is used if not indicated otherwise.

The goodness of the fits can be estimated by the reduced χ2 which is the minimum of

χ2 divided by the number of degrees of freedom (ndf). For a good fit it should be close

to 1. The distribution of the reduced χ2 of the various fits used to extract the amplitudes

for the different hadron types in each kinematic bin, is plotted in Figure 4.3.3. In addition,

a Gaussian fit is shown which yields a mean value close to 1. The correlation between

the extracted Collins and Sivers amplitudes varies over the different kinematic bins. On

average it is around -0.5.

In experiments the target is polarised along an axis that is fixed with respect to the lep-

ton beam, while the direction of the virtual photon generally changes in each scattering

event. In the case of a transversely polarised target this causes a small longitudinal target

spin component with respect to the virtual photon besides the dominant transverse spin

component. The influence of the longitudinal target spin component on the measured

transverse asymmetry moments is investigated in Chapter 7.

As explained in Section 2.5.2, asymmetry moments that include the transverse mo-
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menta of the produced hadrons in the convolution integral, can be interpreted in terms

of distribution and fragmentation functions without assumptions on the distributions of

the quark transverse momenta. Besides the so–called unweighted asymmetry moments

(4.3.3), the Ph⊥–weighted asymmetry moments,

〈

Ph⊥
zMh

sin(φ+ φS)
〉

UT
and

〈

Ph⊥
zM sin(φ− φS)

〉

UT
,

are therefore of interest. For the extraction of the latter, an asymmetry is formed in which

the events in the numerator are weighted by Ph⊥/z:

A
Ph⊥/z
UT (φ, φS) =

1

〈P 〉
L↓
∑N↑(φ,φS)

i=0 (Ph⊥/z)i − L↑
∑N↓(φ,φS)

i=0 (Ph⊥/z)i
N↑(φ, φS)L↓ +N↓(φ, φS)L↑

. (4.3.4)

The calculation of the statistical uncertainty of this asymmetry requires the assumption

that the sum over the events
∑N↑↓

i=0 and the total amount of events N↑↓ are uncorrelated.

The Ph⊥–weighted asymmetry amplitudes or moments, respectively, are extracted by a

two–dimensional fit using the fit function:

A
Ph⊥/z
UT (φ, φS) =2Mh

〈

Ph⊥
zMh

sin(φ+ φS)

〉

UT

· sin(φ+ φS)+

2M

〈

Ph⊥
zM

sin(φ− φS)

〉

UT

· sin(φ− φS)+

2

〈

Ph⊥
z

sin(2φ− φS)

〉

UT

· sin(2φ− φS)+

2

〈

Ph⊥
z

sinφS

〉

UT

· sinφS +C ,

(4.3.5)

where the hadron and proton masses assure that the Collins and Sivers Ph⊥–weighted

moments are dimensionless.

4.4 Systematic Studies

In this section, systematic studies performed with the HERMES data of the three produc-

tions 02c0, 03c0, and 04b0 are presented. While only example plots of unweighted asym-

metry amplitudes for certain hadron types are shown here, the studies have been per-

formed on unweighted and Ph⊥–weighted asymmetry amplitudes and all hadron types

and the conclusions presented in this chapter are valid throughout.

4.4.1 Event Number Distributions in the Azimuthal Bins

The uncertainty of the asymmetries in the azimuthal bins is calculated under the assump-

tion of the validity of Poissonian statistics which implies an uncertainty
√
N on a number of

countsN . To ensure a reliable χ2 minimisation, the number of entries in each azimuthal bin

is required to exceed 20. The additional requirement in the analysis results in a decrease

of the number of azimuthal bins taken into account, especially in kinematic bins with low

count rates. Therefore, the largest deviations of the asymmetry amplitudes appear in

the kinematic bins with the largest statistical errors, as can be seen for the amplitudes of
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Figure 4.4.1: Comparison of the asymmetry amplitudes of charged hadrons

dependent on y. In general, the event numbers of the two target

spin states in each azimuthal bin are required to be larger than

zero. For the results plotted with the open symbols, also the sum of

the event numbers in both spin states must be larger than 20.

the charged hadrons in bins of y, as plotted in Figure 4.4.1. While this approach results

in a slight underestimate of the statistical uncertainty, the requirement N > 20 has not

been applied in the following as no systematic bias on the amplitudes is observed and

the analysis is based on a larger event sample without the cut. In general, an extraction

of the asymmetry amplitudes with an unbinned maximum likelihood fit is not affected by

low count numbers. However, such a fit is not yet implemented.

4.4.2 Compatibility of Data Taking Periods

The data analysed in this chapter were recorded during a period that extends over three

years. Within this long period changes of the HERMES spectrometer, e.g., in the alignment

or the efficiencies of the detectors, may occur which can influence the extracted asym-

metry amplitudes. As a check results from two shorter distinct periods are compared.

The 02 production does not only contain data of the year 2002 but also data that

were taken during the first month of the year 2003 before a long shutdown of the HERA

accelerator. The 03 production covers only the data taking period of the last four month

of the year 2003 and hence has a lower statistics than the 02 and 04 productions. The

break between the short data taking period at the end of 2003 and the long period

in 2004 lasted only a couple of days and no major maintenance work was carried out

on the spectrometer components during this period. This legitimates the combination of
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Figure 4.4.2: Deviations as defined in Eq. (4.4.1) of the asymmetry amplitudes

between the independent data productions 02c0 and 03c0 com-

bined with 04b0. The neutral pions are not corrected for combi-

natorial background.

the 03c0 and the 04b0 productions for a comparison to the 02c0 production. The results

of the 02c0 production were presented in the first publication of single–spin asymme-

try amplitudes measured on a transversely polarised target with the HERMES experiment
[

Air05b
]

. To allow the identification of systematic discrepancies, deviations between the

two data taking periods are computed as:

deviation =
A

sin(φ±φS)
UT (02c0)−Asin(φ±φS)

UT (03c0,04b0)
√

σ2(02c0) + σ2(03c0,04b0)
. (4.4.1)

For the kinematic variables x and z the deviations of the pion Collins and Sivers moments

are plotted in Figure 4.4.2. They fluctuate around zero and do not show any systematic

trend. The reduced χ2 (which is the sum of the squared deviations) for the amplitudes of

the three pion types in all z bins, i.e., three times six amplitudes, is 1.20 (1.43) in case of the

Sivers (Collins) amplitudes. The 15 amplitudes in the different x bins result in a reduced χ2

of 0.75 for the Sivers amplitudes and 1.69 for the Collins amplitudes. Consequently, these

two different data taking periods are consistent with each other.

4.4.3 Luminosity Normalisation

The integrated luminosities L↑/↓ appear in the definition of the azimuthal asymmetry (4.3.1)

for the normalisation of the count numbers in the opposite target spin states. They can

be determined by means of the luminosity monitor measurement which is based on a
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Figure 4.4.3: Comparison of the asymmetry amplitudes computed for two dif-

ferent luminosity measurements (see text). Shown are the am-

plitudes extracted for neutral pions without combinatorial back-

ground correction.

reference scattering process, as described in Section 3.3.3. Before integration, the rate

of the reference scattering measured by the luminosity monitor must be corrected for the

trigger efficiency of the data acquisition system 1-δdead (see Section 3.3.4). The integration

is performed by adding up the measured luminosity monitor rates in the different bursts

multiplied by the correspondent burst length.

Instead of the scattering of beam leptons off shell electrons, also the inclusive DIS pro-

cess can be used as reference scattering for the measurement of the luminosityi. Since

this measurement is performed with the HERMES spectrometer its trigger efficiency is al-

ready accounted for. Both the number of inclusive DIS events as well as the integrated

rate of the luminosity monitor are only proportional to the absolute luminosities. How-

ever, in the calculation of the azimuthal asymmetry, these proportionality factors drop

out. In case of the normalisation with the inclusive DIS rate, the dependence on the kine-

matic variable x is taken into account by using the binning defined in Table 4.3.1. The

comparison of the extracted asymmetry amplitudes for luminosity normalisation with the

luminosity monitor rate multiplied by the burst length and the inclusive DIS count number

shows no difference, as can be seen, e.g., for neutral pions in Figure 4.4.3. In the following

the semi–inclusive count rates are normalised with the integrated rates of the luminosity

monitor.

iThe influence of the inclusive polarised cross section (2.1.11) which does not vanish in case of unbal-

anced beam helicity states, is neglected since the averaged beam polarisation is approximately zero.



4.4.4 Additional Sine Moments and Unpolarised Cosine Moments 69

4.4.4 Additional Sine Moments and Unpolarised Cosine Moments

To suppress the influence of additional sine modulations in the cross section on the ex-

tracted Collins and Sivers moments, these modulations can be included in the fit function.

In addition to the Collins and Sivers moments, a 〈sin(3φ − φS)〉UT moment exists at lead-

ing twist and two subleading–twist moments exhibit sinφS and sin(2φ− φS) modulations in

the cross section, respectively (cf. Table 2.5.1). Although no net longitudinal target spin

component with respect to the virtual photon exists, components of the cross section for

longitudinally polarised nucleons are considered. These are the twist–two 〈sin 2φ〉UL and

the twist–three 〈sinφ〉UL moments.

The asymmetries in the azimuthal bins are fitted by a three parameter fit function in-

cluding only the Collins and Sivers amplitudes and a constant as fit parameters. Com-

pared to the results from this fit are amplitudes extracted with a five and six parameter

fit function. On the left–hand side of Figure 4.4.4, the sine modulations sin(3φ − φS), sinφ,

and sin 2φ are accounted for by three additional fit parameters. All three amplitudes

are consistent with zero and they do not alter the fit results for the azimuthal modulations

of the Collins and Sivers effect. The two subleading–twist moments 〈sin(2φ − φS)〉UT and

〈sinφS〉UT are included in the five parameter fit. Here, a change in the results for the

Collins and Sivers moments is visible, especially for the negative pions where the sinφS

amplitude is of the order of -0.05. Therefore, the standard fit comprises five fit parameters,

as already introduced in the previous section.

Not only the polarised cross sections contain azimuthal modulations but also the un-

polarised cross section. The 〈cos 2φ〉UU moment in leading twist and the 〈cos φ〉UU moment

in subleading twist appear in the denominator of the azimuthal asymmetry (4.3.1). A
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Figure 4.4.4: Additional sine amplitudes extracted by five (right) and six (left)

parameter fits. The results for the Collins and Sivers amplitudes are

compared to an extraction with a three parameter fit.
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Taylor expansion of the denominator yields for the azimuthal asymmetry:

AUT ≈
(

2〈sin(φ± φS)〉UT sin(φ± φS) + 2〈sinφS〉UT sinφS + . . .
)

×
(

1− 2〈cosφ〉UU · cosφ− 2〈cos 2φ〉UU · cos 2φ+ . . .
)

.
(4.4.2)

Since sinφS · cosφ = 1
2

[

sin(φ + φS) + sin(φ − φS)
]

, the coupling of the unpolarised cosine

moment 〈cosφ〉UU and the twist–three cross–section term proportional to sinφS contributes

to the extracted amplitudes A
sin(φ±φS)
UT . Thus, the determination of the unpolarised cosine

moments is necessary for the estimate of their contribution to the systematic uncertainty.

A nonlinear fit to the azimuthal asymmetries including the unpolarised cosine mo-

ments in the denominator as fit parameters:

AUT(φ, φS) =
A

sin(φ+φS)
UT · sin(φ+ φS) +A

sin(φ−φS)
UT · sin(φ− φS) + . . .

1 +Acos φ
UU · cosφ+Acos 2φ

UU · cos 2φ
, (4.4.3)

cannot be performed using the LU or SV decomposition but only by the program MINUIT.

Unfortunately, the nonlinear fit produces unstable results dependent on the start values

of the parameters. Fixed values of the two parameters Acos φ
UU and Acos 2φ

UU are necessary in

order to allow a reliable linear fit. The HERMES data summed over both target spin states

together with an unpolarised Monte Carlo simulation of the HERMES spectrometer can be

used to estimate the cosine moments. The measured cross section of the spin averaged

data sample,

σmeas(φ, x, y, z) =

σ0(x, y, z)(1 + 2〈cos φ〉UU · cosφ+ 2〈cos 2φ〉UU · cos 2φ) ǫacc(φ, x, y, z) ǫrad(φ, x, y, z) ,
(4.4.4)

is influenced by the acceptance and radiative effects taken into account by the accep-

tance function ǫacc and the radiative correction function ǫrad. Here, the integrated unpo-

larised cross section is σ0(x, y, z) =
∫

dφS d2 ~Ph⊥ d6σUU with d6σUU taken from Eq. (2.5.15).

The azimuthal dependence of the acceptance function may be expanded in a Fourier

series ǫacc = a0 +
∑∞

n=1 an cos(nφ) +
∑∞

k=1 bk sin(kφ). The radiative effects change the total

measured cross section because elastic events are smeared into and out of the inelastic

region. In addition, they also exhibit cosine modulations because in the peaking approx-

imation the real photon is radiated collinear to the lepton momentum and the virtual–

photon momentum is changed within the scattering plane. This effect is symmetric in the

azimuthal angle φ about the incident lepton beam and hence the radiative correction

function can be expressed as: ǫrad = r0 +
∑∞

m=1 rm cos(mφ). From the measured unpo-

larised cross sections or hadron yields, respectively, cosine amplitudes can be extracted

by a combination of the obtained parameters of a fit with the function p0+
∑4

j=1 pj cos(jφ):

2〈cos φ〉meas =
p1

p0
, 2〈cos 2φ〉meas =

p2

p0
. (4.4.5)

They contain the following components of the measured cross section (4.4.4):

2〈cos φ〉meas = 2〈cos φ〉UU +
a1

a0
+
r1
r0
, 2〈cos 2φ〉meas = 2〈cos 2φ〉UU +

a2

a0
+
r2
r0
. (4.4.6)
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Figure 4.4.5: Comparison of the extracted asymmetry amplitudes for π0 using

the standard fit function (4.3.2) and an extended fit function with

the unpolarised cosine moments included in the denominator.

The choice of the number of orders of cosine modulations included in the fit does influ-

ence the goodness of the fit but not the results of the two extracted cosine amplitudes.

The unpolarised cosine moments, 〈cosφ〉UU and 〈cos 2φ〉UU, are not implemented in

a PYTHIA Monte Carlo simulation including exclusively produced vector mesons and the

full simulation of the HERMES spectrometer (see Section 5.1). Therefore, extracted cosine

amplitudes from reconstructed PYTHIA Monte Carlo events contain only acceptance and

radiative effects:

2〈cosφ〉MC =
a1

a0
+
r1
r0
, 2〈cos 2φ〉MC =

a2

a0
+
r2
r0
. (4.4.7)

If acceptance and radiative effects are well described by the Monte Carlo simulation

the extracted moments can be subtracted from the HERMES data results in order to es-

timate the unpolarised cosine moments. The difference of cosine moments extracted

from HERMES data and the PYTHIA Monte Carlo simulation is shown in Figures E.2 and

E.3 for the three pion types. The obtained unpolarised cosine moments are used to fix

the additional fit parameters of the fit function (4.4.3): Acos φ
UU = 2〈cosφ〉meas − 2〈cos φ〉MC

and Acos 2φ
UU = 2〈cos 2φ〉meas − 2〈cos 2φ〉MC. The changes to the extracted Sivers and Collins

moments give an estimate of the systematic uncertainty due to the unpolarised cosine

moments. This estimate is included in the systematic uncertainties of the extracted am-

plitudes. The results of both fits are compared in Figure 4.4.5, as an example for neutral

pions uncorrected for combinatorial background.
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4.4.5 Beam Polarisation

In contrast to the year 2002 when the beam polarisation was very small, the HERA lep-

ton beam was longitudinally polarised in the years 2003 and 2004 with an average po-

larisation of around 30.8 % for helicity λ = +1, i.e., spin orientation parallel to the beam

momentum, and -39.8 % for helicity λ = -1. The existence of a polarised beam gives rise

to additional cross–section terms, e.g., in leading twist a cos(φ − φS) modulation (see Ta-

ble 2.5.1). The asymmetry amplitudes A
cos(φ−φS)
LT of the two helicities have opposite signs

leaving a non–zero overall amplitude if the polarisations of the two beam spin states differ.

In order to study the influence of the beam polarisation on the extraction of Collins

and Sivers moments, the productions 03c0 and 04b0 are split into two independent data

sets with positive and negative helicity. As for the comparison of the two data taking

periods, the deviations between the extracted asymmetry amplitudes for positive and

negative beam helicity,

deviation =
A

sin(φ±φS)
UT (λ = +1)−Asin(φ±φS)

UT (λ = -1)
√

σ2(λ = +1) + σ2(λ = -1)
, (4.4.8)

are calculated for the different kinematic bins. No systematic deviations are visible, as

shown for the x and z bins in Figure 4.4.6. The evaluation of the reduced χ2 for all pion

types and z (x) bins yields 0.69 (1.20) for the Sivers amplitudes and 1.16 (0.90) for the Collins
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Figure 4.4.6: Deviations (4.4.8) of the asymmetry amplitudes for the indepen-

dent data sets with positive and negative beam helicity. Plotted

is the dependence on the kinematic variables x and z for all pion

types. The neutral pions are not corrected for combinatorial back-

ground.
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amplitudes, respectively. Therefore, no effort is made to balance the helicity of the two

data samples. Furthermore, the beam helicity in the total data sample is already almost

balanced since the combination of all three productions yields a luminosity averaged

beam polarisation of only 0.2 %.

4.4.6 Hadron Classification with the RICH

In order to clarify the importance of the application of the inverse P–matrix especially

for the kaon identification by the RICH detector, asymmetry amplitudes are compared

which are obtained from true count numbers (4.2.11) and count numbers of identified

hadrons, i.e., of the most likely hadron type. Pions are identified by the RICH detector

with a large efficiency leading to a small difference in the true count number of pions

and the count number of identified pions. This difference is larger for kaons due to an

efficiency drop to values below 80 % in some momentum bins. In contrast to the pion

asymmetry amplitudes, the kaon amplitudes therefore vary when the inverse P–matrix

elements are assigned as event weights instead of weighting the most likely hadron type

in each event with weight 1 and the other hadron types with weight 0. In Figure 4.4.7 the

results of both methods are compared in the different x bins. The amplitudes for pions on

the left–hand side are almost identical whereas the lower true kaon count numbers result

in fluctuations and larger statistical uncertainties in the kaon amplitudes on the right side.

For the negative kaons, the lower true kaon count numbers do not allow the amplitude
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Figure 4.4.7: Comparison of the asymmetry amplitudes of charged hadrons

dependent on x. The events are either weighted by the inverse

P–matrix elements in order to obtain the true hadron count num-

bers or the most likely hadron type is assigned to the particle.
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Figure 4.4.8: Comparison of the asymmetry amplitudes of charged hadrons

dependent on Ph⊥. The events are weighted by the elements of

three different inverse P–matrices extracted from a Monte Carlo

simulation and from HERMES lepton and decay particle data.

extraction in the last two z bins.

For the estimate of the systematic uncertainty in the true hadron numbers, two addi-

tional P–matrices
[

Hom04
]

are used for the amplitude extraction. One of the matrices is

purely derived from the analysis of HERMES data. Only decaying particles like for instance

ρ0 and φ mesons, are considered in the analysis. By constraining the invariant mass of

the decay particles to the mass of the parent particle, they can be identified, e.g., as

charged pions for the ρ0 → π+π− decay. The disadvantage of this procedure is the re-

stricted topology of the decay events. For the second matrix, the simulation of the RICH

detector implemented in the Monte Carlo simulation of the HERMES spectrometer (HMC,

cf. Section 5.1) is tuned to responses from leptons in the HERMES data which can be iden-

tified by the other PID detectors. In Figure 4.4.8 the extracted asymmetry amplitudes for

all three P–matrices are compared to each other. Deviations are found especially in

the kinematic bins with low statistics. The maximum difference between results using the

Monte Carlo P–matrix and the P–matrices obtained from lepton or decay particle data,

is assigned as systematic uncertainty in each kinematic bin.

4.4.7 Target Magnet Field Correction

The measurement of the azimuthal target–spin asymmetry (4.3.1) requires a transversely

polarised target. The transverse holding field which provides the polarisation axis for the

nuclei (see Section 3.2), causes a bending of the trajectories of the scattered positron
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Figure 4.4.9: Comparison of the asymmetry amplitudes for π+ with and without

tracking corrections for the transverse target field.

and the produced hadrons due to the Lorentz force. The reconstructed partial particle

tracks in front of the spectrometer magnet do not yield the correct vertex positions and

scattering angles when they are extrapolated into the target cell by a straight line. As

described in Section 3.3.1, two different TMC methods are used for the correction of the

obtained positions and angles which regain the reconstruction resolution without trans-

verse magnet field almost completely. Even though the correction of the vertex positions

and scattering angles is possible and always applied, the influence of uncorrected par-

ticle tracks on the extracted asymmetry amplitudes is studied. The amplitudes with and

without tracking corrections are compared, e.g., for positive pions in Figure 4.4.9. Al-

though difference up to 1/
√

2 of the statistical uncertainties are visible, the conclusion of

the extracted amplitudes remains unchanged. Thus, the correction of the influence of

the magnetic field is necessary but has not a strong impact on the extracted asymmetry

amplitudes. No additional systematic uncertainty on the amplitudes has been applied.

4.4.8 Misalignment

A measurement of azimuthal quantities can also be biased by a misaligned spectrom-

eter leading to a misreconstruction of the particle tracks, dependent on the traversed

spectrometer half. In an elaborate analysis of the HERMES data, the tilt and offset of each

spectrometer half was estimated
[

Brü03
]

. The analysis shows a change in the obtained

values after the long shutdown in 2001 in which the detector was moved out of the HERA

beam line orbit and major maintenance work was carried out. All values for top and

bottom spectrometer halves are listed in Table 4.4.1. The slopes and offsets listed need
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before 2001 x–slope [mrad] y–slope [mrad] x–offset [cm] y–offset [cm]

top 0.44 -1.20 -0.09 -0.08

bottom 0.24 0.02 -0.11 0.11

after 2001 x–slope [mrad] y–slope [mrad] x–offset [cm] y–offset [cm]

top -0.18 -0.62 0.30 -0.08

bottom -0.42 0.49 0.29 0.11

Table 4.4.1: Estimated misalignment of the spectrometer halves before and af-

ter 2001
[

Brü03
]

.

not come from a real tilt and offset in the spectrometer halves. Part of the misalignment

could be artificially introduced by the force bridge technique of the HERMES reconstruc-

tion code described in Section 3.3.1.

In order to study the effect of an angular misalignment on the extraction of azimuthal

asymmetries, the reconstructed scattering angles of the particles are corrected for the

angular misalignment of the spectrometer half by subtracting the correspondent x– and

y–slopes. This results in the migration of some events between azimuthal bins. The influ-

ence on the extracted amplitudes is more pronounced in kinematic bins with lower count

numbers but no systematic deviations are visible, e.g., for the negative pion asymmetry

amplitudes shown in Figure 4.4.10.

A misaligned spectrometer results in a cosφ modulation in the hadron count rates, i.e.,
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Figure 4.4.10: Comparison of the π− asymmetry amplitudes with uncorrected

and corrected scattering angles for the possible detector mis-

alignment.
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in the denominator of the azimuthal asymmetry. Like the unpolarised cosφmoment, it can

couple to subleading–twist modulations of the polarised cross section and contribute to

the Collins and Sivers amplitudes. The misalignment of the detector is estimated to pro-

duce a negative cosφ moment with an absolute value smaller than 0.03
[

Mai05
]

. The

implementation of a cosφ modulation with an amplitude of -0.06 in the fit results in a negli-

gible change of the extracted asymmetry amplitudes. Furthermore, the amplitude of the

cosine modulation caused by the misalignment appears as additional term in Eq. (4.4.6)

but not in the extracted cosine moment from the Monte Carlo simulation based on a per-

fectly aligned spectrometer. Hence, the effect is already accounted for in the systematic

uncertainty estimated in Section 4.4.4 and the corrections for the angular misalignment

described above are not applied in the following.

A new alignment procedure based on a recent survey of the spectrometer, is under

study and will decrease the uncertainty of the detector alignment to values of the order

of 200µm and 100µrad
[

Kis05
]

. The new alignment procedure will be implemented in the

reconstruction code and will therefore necessitate a reproduction of the data taken. This

advanced alignment correction is not included in the presented analysis.

4.4.9 Fake Asymmetry Amplitudes

In order to study other effects of the spectrometer acceptance and efficiency on az-

imuthal asymmetries, fake asymmetry amplitudes are investigated. These amplitudes are

extracted from unpolarised data by assigning the target spin state randomly. The unpo-
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Figure 4.4.11: Asymmetry amplitudes extracted from unpolarised deuterium

data by assigning the target spin state randomly.
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larised deuterium data recorded in the year 2004 are analysed. The data have statistics

comparable to the three productions 02c0, 03c0, and 04b0 combined. As expected for

unpolarised data, only statistical fluctuations of the amplitudes around zero are found,

shown for the Ph⊥ bins as example in Figure 4.4.11. Although some data points deviate

by more than one σ from zero, the overall reduced χ2 is 0.56 in case of the Sivers ampli-

tudes and 0.96 for the Collins amplitudes. The fluctuations seem to be more pronounced

in the amplitudes of the pions with their smaller statistical uncertainties. But also here,

a reasonable reduced χ2 of 0.71 (1.33) is obtained when all Sivers (Collins) amplitudes

of the pions are combined. The extracted asymmetry of the data with the transversely

polarised target is hence not biased by a fake asymmetry introduced by the HERMES

spectrometer.

4.5 The Correction for Neutral Pion Combinatorial Background

The invariant mass spectrum of photon pairs in Figure 4.2.4 shows a π0 peak on top of a

rather flat combinatorial background. With the knowledge of the signal fraction in the

measurement region between 0.1 GeV and 0.17 GeV and the asymmetry amplitude of

the background Abkg, the measured amplitudes Ameas for neutral pions can be corrected

for combinatorial background:

Acor =
Ntot

Nsig
Ameas −

Nbkg

Nsig
Abkg . (4.5.1)
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amplitudes are shaded.
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Figure 4.5.2: Measured and corrected π0 asymmetry amplitudes dependent

on Q2 and the background amplitudes used for correction.

In all kinematic bins, the background asymmetry amplitudes can be extracted from

two–photon events in the 0.025 GeV (≈2σ) sidebands—indicated as grey areas in Figure

4.5.1—of the invariant mass peak outside the signal region. Due to the lower statistics in

the sidebands, an 8×8 azimuthal binning as for kaons is applied and only a three param-

eter fit is performed. For the determination of the ratio Ntot/Nsig, invariant mass spectra

are fitted for each kinematic bin. In order to take into account the correlation of the

individual fit parameters for the signal and background parts of the spectrum, the fit is

performed including Ntot/Nsig as one of the fit parameters. The fits to the invariant mass

spectra are shown in Figure 4.5.1 for the six z bins. In the last bin, a fit omitting the third

order polynomial for the background description, gives a reasonably good reduced χ2.

Thus, no background correction is necessary in this particular bin. The obtained ratios

Ntot/Nsig and Gaussian means and widths are listed for all kinematic bins in Table F.1. The

variation of the Gaussian widths is caused by the energy dependence of the calorimeter

resolution. In Figure 4.5.2, the corrected and uncorrected neutral pion asymmetry am-

plitudes are plotted dependent on Q2. In addition, the amplitudes of the combinatorial

background in the sidebands are shown.
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Monte Carlo Studies

The main advantage of forming cross section asymmetries over the direct measurement

of polarised cross sections is that most of the acceptance effects cancel. In order to study

the remaining influence of the acceptance on the extraction of azimuthal asymmetry

amplitudes, a Monte Carlo generator can be used. Additionally, effects of other sources

in the HERMES experiment such as the target magnet field or the smearing in the mea-

sured kinematic variables due to the detector resolutions can be investigated. Owing to

the lack of a Monte Carlo generator for a transversely polarised target, the first Monte

Carlo studies were performed with two different generators for DIS events on an unpo-

larised target
[

Els03
]

. The azimuthal asymmetries are implemented by assigning randomly

a transverse target spin state and weighting the events by the asymmetry dependent on

this target state. The unpolarised Monte Carlo generators are used for the estimate of the

systematic uncertainty due to the extraction method and the different sources in the ex-

periment. Later a Monte Carlo generator gmc_trans was developed which can simulate

azimuthal distributions due to transverse–momentum dependent quark distribution and

fragmentation functions
[

Mak03b
]

. It shows a good reproduction of the implemented

amplitudes in case of unweighted asymmetries and reveals large acceptance effects in

the extracted Ph⊥–weighted asymmetries.

5.1 The Unpolarised Monte Carlo Generators

The two different unpolarised Monte Carlo generators which are used for the studies are

PYTHIA
[

Sjö03
]

and DISNG. As indicated in the flow chart in Figure 5.1.1, PYTHIA generates

first the kinematics of the scattered lepton according to the cross section. The generated

cross sections of all processes that are implemented in PYTHIA, were tuned to HERMES data
[

Lie04
]

. If radiative effects, i.e., bremsstrahlung in the initial or final state of the scattering

process, are to be taken into account in the Monte Carlo production, the generated

kinematics is passed to the program RADGEN
[

Aku98
]

. This program decides whether or

not a photon is radiated off and calculates the true kinematics at the lepton vertex, leav-

ing the generated kinematics unchanged. After that the scattering process is chosen by

PYTHIA and in case of semi–inclusive DIS the quark, the diquark, and the string are gen-

erated. Based on the LUND string model (cf. Section 2.5.1) the following program JETSET
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Figure 5.1.1: The PYTHIA Monte Carlo production chain.

[

Sjö94
]

creates the hadronic final state. The fragmentation process can be influenced

by means of JETSET parameters which were tuned to describe hadron multiplicities mea-

sured at HERMES
[

Hil05
]

. The hadronic final state can be passed either to a GEANT Monte

Carlo simulation
[

CER93a
]

of the HERMES spectrometer (HMC) or the HERMES Smearing

Generator (HSG)
[

Men01, Hil05
]

. In HSG, a parametrisation of all smearing and resolution

effects is used instead of the time consuming full GEANT simulation. The final step is per-

formed by the µDST writer which writes all relevant information into ADAMO tables with a

similar layout as the tables of the real HERMES data.

The second Monte Carlo generator DISNG generates the lepton kinematics uniformly

distributed in a ν, Q2 box and not according to the cross section like PYTHIA. Therefore,

each event has to be assigned an event weight dependent on the cross section whereas

the events generated with PYTHIA have weights unity. Also in the DISNG Monte Carlo

chain, RADGEN applies the radiative corrections to the lepton kinematics before the de-

cision on the scattering process by the program LEPTO
[

Ing97
]

(see Figure 5.1.2). The

following steps are performed by JETSET, HMC or HSG, and the µDST writer as in the PYTHIA

Monte Carlo simulation chain.

DISNG

generation of
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Q2, νRADGEN

radiation of a
real photon?

Q2
true, νtrueLEPTO

process
generation

quark, diquark, string

JETSET

fragmentation
lepton,

hadrons

HMC or HSG µDST writer

Figure 5.1.2: The DISNG Monte Carlo production chain.
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The PYTHIA and DISNG Monte Carlo generators differ in the generated processes.

PYTHIA does not include elastic processes which are irrelevant for studies of semi–inclusive

DIS, and in the DISNG generator, exclusive meson production is not implemented. Al-

though the generation of Monte Carlo events with PYTHIA needs significantly more time

than with DISNG for comparable statistics, productions with fully tracked particle trajec-

tories using HMC are available for both generators in addition to the faster simulated HSG

Monte Carlo productions.

The semi–inclusive pion production cross sections of the 02c0 production are deter-

mined for a cross section comparison between HERMES data and the fully tracked Monte

Carlo productions. The cross section of the HERMES data is calculated in each kinematic

bin using:

σπ =
Nπ

R · C02
LUMI

, (5.1.1)

where Nπ is the number of events in the bin, R is the integrated rate of the luminosity

monitor corrected for the dead time of the spectrometer (see Appendix B), and C02
LUMI is

the luminosity constant for the data taking period 2002 which is different for unpolarised

and polarised data due to the influence of the transverse target magnet field and the

different target densities (cf. Appendix B). The luminosity constant relates the count rate

of the luminosity monitor to the luminosity. The pion count numbers are not corrected for
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Figure 5.1.3: Pion cross section comparison between HERMES data and the

DISNG Monte Carlo. The systematic uncertainty of the luminosity

constant is included in the error bar.
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PYTHIA Monte Carlo. The systematic uncertainty of the luminosity

constant is included in the error bar.

detector inefficiencies.

Figures 5.1.3 and 5.1.4 show the cross section comparisons for the two unpolarised

Monte Carlo generators. The latest JETSET tune 2004c is used in both Monte Carlo pro-

ductions
[

Hil05
]

. The systematic uncertainty of the luminosity constants is contained in

the error bars. In the HERMES data, the cross sections of the π0 events are obtained from

the integrated Gaussian of the fit to the invariant mass spectra, as described in Section

4.5.

The charged pion cross sections are described very well with both generators. The

slightly worse description of neutral pions compared to charged pions by DISNG can be

explained by an imperfect simulation of the HERMES calorimeter. This affects only the

π0 because charged particles are identified in a Monte Carlo production not by the

detector responses but by the generated particle types. The PYTHIA Monte Carlo events

were later produced using an HMC version with an improved calorimeter simulation. The

agreement between HERMES data and both Monte Carlo productions is suitable for the

study of cross section ratios used in the asymmetry calculation. The differences in the

cross sections of polarised and unpolarised HERMES data is caused by the uncertainty in

the determination of the two luminosity constants (cf. Appendix B) which is not yet based

on a Monte Carlo simulation of the luminosity monitor.
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Figure 5.1.5: Comparison of the azimuthal angular distributions between HER-

MES data of all three productions (02c0, 03c0, 04b0) and the

two unpolarised Monte Carlo generators. All histograms are nor-

malised to unity.

The study of azimuthal asymmetries with Monte Carlo events requires also a good

description of the distributions of the azimuthal angles φ and φS . In Figure 5.1.5 the shapes

of the angular distributions are compared, for all three pions in case of the angle φ. The

angular distribution of φS is simulated very well by both generators. The Monte Carlo φ

distributions of all three pion types are broader than in the HERMES data but of roughly

similar shape. Since the unpolarised cosine moments are not implemented in the Monte

Carlo generators, a perfect agreement of the φ distributions is not expected (see Section

4.4.4).

5.1.1 Asymmetry Amplitude Scan

The before mentioned unpolarised Monte Carlo generators do not contain azimuthal

modulations of the cross section. Instead, the azimuthal asymmetries are implemented

after the event generation and tracking by assigning at random a transverse target spin

state ↑ or ↓ and weighting the events with 1±
[

A
sin(φ+φS)
UT sin(φ+φS)+A

sin(φ−φS)
UT sin(φ−φS)

]

,

dependent on the assigned target spin state. This is possible since the polarised cross

sections for the two target spin states can be written as σ↑↓UT(φ, φS) = σUU · (1±AUT(φ, φS)).

The influence of different biases on the extracted asymmetry amplitudes is modelled by

a relative correction f of the measured amplitude Ameas:

Acor = (1 + f) · Ameas . (5.1.2)
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For the simultaneous extraction of two amplitudes, both have to be accounted for in the

correction:
Asin(φ+φS)

cor = Asin(φ+φS)
meas + Fcc · Asin(φ+φS)

meas + Fcs · Asin(φ−φS)
meas ,

Asin(φ−φS)
cor = Asin(φ−φS)

meas + Fsc ·Asin(φ+φS)
meas + Fss · Asin(φ−φS)

meas ,
(5.1.3)

yielding a relative correction matrix F :

~Acor = (1 + F ) · ~Ameas . (5.1.4)

Here, the indices c and s denote the Collins and Sivers amplitudes, respectively.

For the determination of the matrix F , a constant asymmetry amplitude A
sin(φ±φS)
imp is

implemented in the unpolarised Monte Carlo production independent of any kinematic

variable and any hadron type. This constant amplitude is scanned between the values

-1 and 1 with a step size of 0.1 and the Monte Carlo production is analysed for each

setting. When the extracted amplitudes A
sin(φ±φS)
ext are plotted versus the implemented

amplitudes a linear dependence is expected: A
sin(φ±φS)
ext = S ·Asin(φ±φS)

imp (see Figure 5.1.6).

Without any influence of the extraction method, the acceptance, the transverse target

magnet field or other possible sources the slope S of a fitted straight line is supposed to

be 1. Taking into account mixing effects, i.e., the influence of an implemented Sivers

amplitude on the extracted Collins amplitude and vice versa, the extracted amplitudes

are related to the implemented ones by:

A
sin(φ+φS)
ext = Scc · Asin(φ+φS)

imp + Scs · Asin(φ−φS)
imp ,

A
sin(φ−φS)
ext = Ssc · Asin(φ+φS)

imp + Sss · Asin(φ−φS)
imp .

(5.1.5)

All four slopes Scc, Scs, Ssc, and Sss can be combined in a matrix S:

~Aext = S · ~Aimp , (5.1.6)

which allow the determination of the relative correction matrix F by:

F = S−1 + 11 , (5.1.7)

because the corrected amplitudes should recover the implemented amplitudes and the

extracted amplitudes correspond the measured ones. Here, 11 is the two–dimensional

unity matrix.

5.1.2 Binning Effect

The extracted amplitudes of the generated events covering the whole range (4π) of the

solid angle, are neither affected by the track reconstruction nor the spectrometer ac-

ceptance. They can be used to estimate a possible bias of the extraction method on the

extracted amplitudes. The generated events are analysed in different azimuthal binnings

for each of the 21 implemented amplitudes of the scan between -1 and 1. The binnings

are the 8×8 φ × φS binning which was applied for the published results
[

Air05b
]

, and the

binnings with increased numbers of 12×12, 16×16, and 20×20 bins in φ and φS . In Figure

5.1.6, the extracted Collins and Sivers amplitudes from a PYTHIA Monte Carlo production

are plotted versus the implemented amplitudes. These are Sivers type amplitudes in the
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Figure 5.1.6: Sivers (top) and Collins (bottom) amplitude scans in the first x bin

(top) and the last z bin (bottom) for different azimuthal binnings.
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top part of the figure and Collins type amplitudes in the lower part. The amplitudes are

shown for all three pion types and for the four different binnings. In addition, a fit with

a straight line, which was constrained through the origin, is indicated. The statistics of
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Figure 5.1.7: Elements of the relative correction matrix F for two different az-

imuthal binnings with 8×8 (top) and 12×12 bins (bottom).
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the generated events is adjusted to the statistics of the reconstructed events in the three

HERMES data productions listed in Table 4.2.3.

For the scan of the Sivers amplitude, the first x bin with a high statistics is chosen as

example whereas the Collins amplitude scan is plotted for the last z bin with the lowest

statistics. The reduced χ2 of the straight line fits becomes worse with a higher number

of azimuthal bins and with lower statistics. The reason is a nonlinear behaviour of the

extracted amplitudes clearly visible for the 20×20 binning in the last z bin. This nonlinear

effect is caused by a non–Gaussian event distribution in the azimuthal bins and could

be avoided for instance with a cut on the total number of events, as performed with

the HERMES data for a study in Section 4.4.1. However, this strategy results in event losses

which prevent the amplitude extraction in some kinematic bins.

With the obtained slopes of the fits, the relative correction factor F can be deter-

mined. The four elements are plotted in Figure 5.1.7 dependent on the different kine-

matic quantities for 8 and 12 azimuthal bins. No mixing effect is visible, i.e., a given Sivers

amplitude does not influence the extraction of the Collins amplitude and vice versa. The

extracted amplitudes are around 5 % smaller than the implemented amplitudes in case of

a 8×8 binning and only around 2 % smaller for the larger bin number of 12. For kinematic

bins with lower statistics, the diagonal elements Fcc and Fss of the relative correction

matrix are lower due to the onset of a nonlinear dependence between extracted and

implemented amplitudes. The obtained values for Fcc and Fss correspond to the relative

difference ∆ between the fit function at the centre values of the bin, φc and φSc, and the

mean value of the fit function in the bin:

∆ =
sin(φc ± φSc)− 〈sin(φ± φS)〉bin

〈sin(φ± φS)〉bin
, (5.1.8)

where the mean value is defined as:

〈sin(φ± φS)〉bin =

∫

bin dφdφS sin(φ± φS)
∫

bin dφdφS
. (5.1.9)

In Figure 5.1.8, the function ∆ describing this binning effect is plotted versus the number of

azimuthal bins. In addition, the results of a fit with a constant to the diagonal elements of

1

10

5 10 15 20
no. of bins

∆ 
[%

]

Figure 5.1.8: The effect of the azimuthal binning ∆ (solid line) and the results

of a fit with a constant to Fcc(x) and Fss(x) for positive pions (•)
dependent on the number of azimuthal bins.
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F are shown. For these results, the x dependence of positive pions was fitted. Eq. (5.1.8)

yields binning effects of 5.3 %, 2.3 %, 1.3 %, and 0.8 % for 8, 12, 16, and 20 azimuthal bins, re-

spectively. In principle, a larger number of azimuthal bins decreases the effect of the finite

bin size but results in event distributions in the bins which are not Gaussian. In the analysis

of the semi–inclusive DIS data, a 12×12 φ× φS binning was chosen, which corresponds to

a good compromise to avoid biases on the extracted Collins and Sivers amplitudes (too

many bins) and systematic offsets introduced by too few bins.

5.1.3 Spectrometer Acceptance Effects

As a next step, the reconstructed events of the Monte Carlo productions are analysed

using 12×12 azimuthal bins. For reconstructed events, the extracted amplitudes contain

effects from the acceptance and the smearing in the angles due to the reconstruction

resolution. Monte Carlo productions which do not include a target magnet field, are

analysed at first. Again the elements of the relative correction matrix F are computed,

now with the number of reconstructed events equivalent to the combined statistics of

the three HERMES data productions.

For both unpolarised generators, DISNG and PYTHIA, fully tracked productions are

available without a transverse target magnet field using the latest JETSET tune. The im-

plementation of asymmetry amplitudes of ±1 results very often in unreliable slope pa-

rameters which spoil the linear fit. This might be caused by resolution effects distorting the

sine behaviour of the asymmetry. Furthermore, the existence of such large asymmetries

is very unlikely due to the positivity limits of the involved quark distribution and fragmen-

tation functions. For the reconstructed events, only amplitudes between -0.9 and 0.9 are

therefore used in the linear fits. Figures 5.1.9 and 5.1.10 show the elements of F obtained

from the DISNG and the PYTHIA productions, respectively. The diagonal elements that

contain the 2.3 % effect due to the finite azimuthal bin size (see previous Section 5.1.2)

increase to values up to 5 %. The off–diagonal elements describing the mixing effect be-

tween the two amplitudes, become non–zero in general but they remain small (less than

2 % in most kinematic bins).

Both Monte Carlo productions give similar results for the relative correction matrix F .

The small deviations can be explained by the differences in the generated processes—

different processes have different event kinematics—and in the calorimeter simulation.

Also the slightly different azimuthal angular distributions as shown in Figure 5.1.5 might

cause minute variations in the elements of the correction matrix for the DISNG and the

PYTHIA productions. Furthermore, a comparison of results from a fully tracked Monte Carlo

production with results from a production with HSG shows a good agreement between

both spectrometer simulation methods.

5.1.4 Target Magnet Field Correction

Another influence on the extracted amplitudes can arise from the transverse target mag-

net field, although the resolution in the reconstruction of scattering angles and vertex is

almost completely recovered by the target magnet field correction as shown in Figure

3.3.2 on page 42. The transverse magnetic field together with the applied corrections of

method 1 and 2 (cf. Section 3.3.1) is implemented in an existing DISNG production. For
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Figure 5.1.9: Elements of the relative correction matrix F for a DISNG produc-

tion without a transverse target magnet field. The elements are

computed for fully tracked Monte Carlo events and 12×12 az-

imuthal bins.
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Figure 5.1.10: Elements of the relative correction matrix F for a PYTHIA produc-

tion without a transverse target magnet field. The elements are

computed for fully tracked Monte Carlo events and 12×12 az-

imuthal bins.
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this production, an older JETSET tune was used which gives slightly different semi–inclusive

cross sections compared to the latest tune. However, the effect on the cross section

asymmetries is negligible so that studies performed with this Monte Carlo production re-

main valid for the present purpose. Figure 5.1.11 shows the extracted elements of the

relative correction matrix F for this production. TMC method 2 was used for the correc-

tion of the scattering angles and the vertex. As expected no significant change is visible

compared to the elements without transverse target field in Figure 5.1.9. The same con-

clusion is obtained when applying TMC method 1.

5.1.5 Radiative Effects

In the studies described above, radiative effects are not taken into account because

the program RADGEN provides only true kinematic quantities such as xtrue, Q
2
true and not

the true azimuthal angles φtrue and φS,true. Both azimuthal angles are influenced by the

radiation of a real photon because the virtual–photon momentum defines the z–axis of

the coordinate system in which the angles are calculated. With the information of the

true kinematic quantities only, it is not possible to compute the true azimuthal angles

because RADGEN does not define the moment when the photon is radiated. The real

photon can be radiated in the initial state (ISR) or in the final state (FSR) of the scattering

process. Thus, the momentum of the lepton either before or after the scattering has to be

corrected by the momentum of the photon. In contrast to the DISNG generator, PYTHIA

stores the four–momentum qreal of the radiated real photon. With this information the mo-

mentum of the virtual photon can be corrected without the knowledge about ISR or FSR:

q = l−l′−qreal. In the peaking approximation used the real photon is radiated collinear to

the lepton momentum and the virtual–photon momentum changes only within the scat-

tering plane. Although the correction of the incoming and outgoing lepton momenta

differs for ISR and FSR, it is irrelevant for the definition of the scattering plane. Hence, the

PYTHIA generator can be used for the estimate of the influence of the radiative effects.

Figure 5.1.12 shows the obtained correction matrix elements for the PYTHIA Monte

Carlo production. Here, the radiated real photons are taken into account as described

above. The absolute values of both the diagonal and the off–diagonal elements of F in-

crease compared to the results without the inclusion of radiative effects (cf. Figure 5.1.10).

In addition, a difference is visible between the influence on the amplitude extraction of

the two sine modulations: The absolute values of the elements Fcc and Fcs which are rel-

evant for the extracted Collins amplitude, are larger than the absolute values of Fss and

Fsc needed for the Sivers amplitude correction.

5.1.6 Detector Misalignment

In the full simulation of the HERMES spectrometer in HMC a database is used in which

the detector geometry is stored. In the studies above, the Monte Carlo events are pro-

duced with a database that contains perfectly aligned detectors. In addition, a second

database is available with a misaligned detector geometry based on the values for the

years before 2001, listed in Table 4.4.1. This misaligned detector geometry was imple-

mented in a DISNG production and the relative correction matrix extracted. The matrix

elements are plotted in Figure 5.1.13 and have to be compared to the results in Figure
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Figure 5.1.11: Elements of the relative correction matrix F for a DISNG produc-

tion with a transverse target magnet field.

-0.05

0

0.05

0.1

Fcc Fcs
Fsc Fss

F

π+

-0.05

0

0.05

0.1F

π–

-0.05

0

0.05

0.1

0 0.1 0.2 0.3
x

F

π0

0.2 0.4 0.6 0.8
z
0.2 0.4 0.6 0.8

y
0 0.25 0.5 0.75 1

Ph⊥  [GeV]
0 2 4 6 8 10

Q
2
 [GeV

2
]

Figure 5.1.12: Elements of the relative correction matrix F for a PYTHIA produc-

tion when radiative effects are taken into account.
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5.1.11 because in both productions the transverse target magnet field is present. The mis-

aligned geometry influences the extracted Collins asymmetry amplitudes stronger than

the Sivers amplitudes yet the changes compared to the results for the perfectly aligned

detectors are small. Furthermore, the effect of a misaligned HERMES spectrometer is al-

ready accounted for in the systematic uncertainty as described in Section 4.4.8.

Note that the detector misalignment has a similar effect as the radiative effects dis-

cussed in the previous section. While a detector misalignment is constant for all events

in the data set, the radiation of a real photon leads to a kink in the lepton trajectory

which can also be considered as a detector misalignment, albeit for the lepton track

only and varying from event to event. The Collins amplitudes are more susceptible to

these changes of the lepton kinematics as they are based on the sum of the two az-

imuthal angles φ and φS (see Figure 2.5.3 on page 25) while for the Sivers amplitudes

the difference between these two angles enters and a change in the orientation of the

lepton scattering plane cancels.

5.1.7 Ph⊥–Weighted Asymmetry Amplitudes

Also Ph⊥–weighted asymmetry amplitudes can be investigated with the unpolarised

Monte Carlo productions. In this case, the events are weighted by:

1±
[

A
sin(φ+φS)
UT (zM)/Ph⊥ sin(φ+ φS) +A

sin(φ−φS)
UT (zM)/Ph⊥ sin(φ− φS)

]

, (5.1.10)

dependent on the assigned target spin state. The kinematic variables z and Ph⊥ of the

generated event are used for the event weight and the amplitudes A
sin(φ±φS)
UT are again

scanned between -0.9 and 0.9. The extracted elements of the relative correction matrix

F are shown in Figure 5.1.14 for the DISNG production with implemented transverse target

field. Note the enlarged scale compared to the previous plots. The influence of the

track reconstruction and the spectrometer acceptance is much stronger for the Ph⊥–

weighted amplitudes compared to the unweighted amplitudes. The diagonal elements

have maximum values up to 10 % and show a different dependence on the kinematic

variables. In addition, the mixing effects between the two extracted amplitudes, i.e., the

off–diagonal elements, are larger for Ph⊥–weighted than for the unweighted amplitudes:

they also reach 10 % in some kinematic bins. This sizable effect is further investigated using

a Monte Carlo generator for the simulation of azimuthal distributions due to transverse–

momentum dependent DFs and FFs in Section 5.2.

5.1.8 Estimated Systematic Uncertainty

The absolute size of the relative correction Fic ·Asin(φ+φS)
meas +Fis ·Asin(φ−φS)

meas for i = c, s obtained

from the Monte Carlo studies with the two unpolarised generators is used to estimate a

relative systematic uncertainty for the unweighted asymmetry amplitudes. This uncer-

tainty includes the influence of the extraction method and effects from the spectrometer

such as geometric acceptance and detector resolutions. The contributions from the two

sine modulations to the absolute size of the correction have opposite signs, i.e., Fcc and

Fss are positive while Fcs and Fsc are negative. Thus, for extracted Collins and Sivers am-

plitudes with like sign the resulting correction is smaller than ech of its two contributions.
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Figure 5.1.13: Elements of the relative correction matrix F for a DISNG produc-

tion with a misaligned spectrometer.
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Figure 5.1.14: Elements of the relative correction matrix F for the Ph⊥–weighted

asymmetry amplitudes extracted from a DISNG production.
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Therefore, for charged pions an uncertainty of 5 % was estimated. In case of the neu-

tral pions the extracted Collins and Sivers amplitudes have opposite sign in most of the

kinematic bins (see Figure 4.4.3) and the two contributions of the correction matrix add

up. Therefore, the systematic uncertainty of the π0 amplitudes is estimated as 7 %. No

studies were performed for the charged kaons but results similar to the charged pions are

expected regarding the acceptance and spectrometer effects. Since the 8×8 azimuthal

binning causes a higher binning effect of around 5 %, a relative systematic uncertainty of

7 % is applied to the kaon asymmetry amplitudes.

The studies performed with the two unpolarised Monte Carlo generators reveal only

part of the influences from the extraction method, radiative effects, and the HERMES

spectrometer, because the implemented amplitudes do not depend on any kinematic

quantity. While it would be also possible to implement asymmetry amplitudes with kine-

matic dependencies the correlation with the transverse quark momenta can only be

accounted for in a Monte Carlo generator including transverse–momentum dependent

DFs and FFs which will be described in the following section.

5.2 The Monte Carlo Generator gmc_trans

The unpolarised Monte Carlo generators do not include the transverse quark momentum

dependency of the distribution and fragmentation functions. Therefore, a new Monte

Carlo generator gmc_trans was developed
[

Mak03b
]

for the simulation of azimuthal dis-

tributions due to intrinsic transverse quark momenta. In this generator, a Gaussian ansatz

is used for the transverse momentum distributions with a factorised form of the x (z) and

p2
T (k2

T ) dependencies in the quark distribution (fragmentation) functions:

q(x, p2
T ) = q(x) · 1

π〈p2
T 〉
e
− p2

T
〈p2

T
〉 , (5.2.1)

D1(z, z
2k2

T ) = D1(z) ·
1

πz2〈k2
T 〉
e
− k2

T
〈k2

T
〉 . (5.2.2)

Using this same ansatz for the Sivers and Collins function as for the unpolarised functions:

f⊥q
1T (x, p2

T ) = f⊥q
1T (x) · 1

π〈p2
T 〉
e
− p2

T
〈p2

T
〉 , (5.2.3)

H⊥1 (z, z2k2
T ) = H⊥1 (z) · 1

πz2〈k2
T 〉
e
− k2

T
〈k2

T
〉 , (5.2.4)

and inserting all four functions (5.2.1) – (5.2.4) into the positivity limits (2.4.22) and (2.5.6),

the problem is encountered that the left–hand sides of the inequalities rise linearly with

|~pT | and |~kT |:
|~pT |
M

f⊥q
1T (x) < q(x) , (5.2.5)

|~kT |
Mh

H⊥1 (z) < D1(z) . (5.2.6)

Note that this problem does not appear for the transversity positivity limit (2.4.12) which

also holds for the p2
T –dependent DFs as it can be easily satisfied by |δq(x)| ≤ q(x).
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Figure 5.2.1: Comparison of the transverse momentum distributions between

the HERMES data on transversely polarised hydrogen and the po-

larised Monte Carlo generator gmc_trans in the HERMES accep-

tance. For the π0 distribution the dashed line shows the result from

an earlier Monte Carlo production neglecting smearing of the

photons (see text). Both histograms are normalised to unit area.

A solution for the Sivers and Collins functions is to modify Eq. (5.2.3) and (5.2.4) and to

use smaller widths for the transverse momentum distributions:

f⊥q
1T (x, p2

T ) = f⊥q
1T (x) · 1

π(1− Cs)〈p2
T 〉
e
− p2

T
(1−Cs)〈p2

T
〉 , (5.2.7)

H⊥1 (z, z2k2
T ) = H⊥1 (z) · 1

πz2(1− Cc)〈k2
T 〉
e
− k2

T
(1−Cc)〈k2

T
〉 , (5.2.8)

introducing the two parameters Cs and Cc (0 < Cs, Cc < 1). With this ansatz one avoids

unphysical cut–offs in the ~pT and ~kT distributions, which would further complicate the

analytical expression of cross sections.

Even though the Sivers function (5.2.7) fulfils the positivity limit (2.4.22), the sum of the

cross section components including the Sivers and transversity functions can still exceed

the unpolarised cross section. A more stringent requirement on the Sivers function takes

into account the contribution from other DFs, e.g., δqi
[

Bac04b
]

ii:

p2
T

M2

(

f⊥q
1T (x, p2

T )
)2
≤ q(x, p2

T )
[

q(x, p2
T )− 2|δq(x, p2

T )|
]

. (5.2.9)

The main reason for the Gaussian ansatz is the possibility to calculate the unweighted

and Ph⊥–weighted asymmetry moments analytically for the kinematics of each gener-

ated event. These values are stored in a table for the comparison of extracted and imple-

mented moments. This allows the systematic study of biases on the extracted asymmetry

moments from different sources, including the dependence on intrinsic transverse quark

momenta, in particular with respect to the limited Ph⊥ acceptance of the spectrometer.

In the gmc_trans generator, certain parameters can be adjusted for a good descrip-

tion of the data. Here, the two parameters Cs and Cc are set to a value of 0.25 which

iHere, other DFs than q(x, p2
T ), δq(x, p2

T ), and f
⊥q
1T (x, p2

T ) are set to 0.
iiA missing factor of 2 in the reference is added here.
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Figure 5.2.2: Comparison of the azimuthal angular distributions between HER-

MES data and the polarised Monte Carlo generator gmc_trans. All

histograms are normalised to unit area.

allows the generation of maximum absolute values for Sivers and Collins Ph⊥–weighted

moments. The mean values 〈p2
T 〉 and 〈K2

T 〉 = z2〈k2
T 〉, which are assumed to be the same

for all quark flavours, are chosen to be independent of x and z, respectively. These pa-

rameters were varied iteratively for a good description of hadron transverse momentum

distributions obtained from data. In Figure 5.2.1 the resulting distributions are plotted for

〈p2
T 〉 = 〈K2

T 〉 = 0.18 GeV2 (〈|~pT |〉 = 〈| ~KT |〉 = 0.38 GeV). To speed up the simulation of de-

tector events, the effects of tracking are parametrised with a new version of HSG, which

includes the smearing of photons, instead of the time consuming tracking using HMC.

The smearing of the photons is caused by the limited energy resolution of the calorimeter

which leads to an uncertainty in the determination of the impact position and photon

energies. The inclusion of the smearing results in an improved description of the π0 distri-

butions compared to earlier generators, which neglected the smearing of the photons.

In Figure 5.2.1, the distributions of neutral pions reconstructed from the smeared photons

(solid line) and from generated photons (dashed line) are compared in addition to HER-

MES data. The agreement for charged pions is better than for neutral pions and the rise

of the Ph⊥ distribution for π0 is better described by taking smearing into account also for

photons. Also the azimuthal angular distributions are well described by the Monte Carlo,

as can be seen in Figure 5.2.2. Here, the distribution of neutral pions reconstructed from

photons neglecting any smearing (with the kinematics at generator level) is virtually in-

distinguishable from the distribution for smeared photons and therefore not shown in the

figure. Note that neither the unpolarised cosine moments nor radiative effects are imple-

mented in gmc_trans while the influence from the transverse target magnet is simulated
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in the analysed Monte Carlo production.

5.2.1 Unweighted Asymmetry Amplitudes

In the Monte Carlo generator gmc_trans, leading order parametrisations of the unpo-

larised FFs
[

Kre00
]

and the unpolarised and helicity DFs
[

Glü96
]

, which are based on fits

to world data, are implemented as functions of x and z. Different models for the x and z

dependencies of the transversity, Sivers, and Collins functions are available for the event

generation. In most of the models a given moment of the DF or FF is proportional to q(x),

∆q(x), or D1(z). The model parameters were chosen such that the extracted asymme-

try amplitudes are comparable to the amplitudes observed in the data. The transversity

functions are proportional to the helicity DF:

δu(x) = 0.7 ·∆u(x) , (5.2.10)

δd(x) = 0.7 ·∆d(x) , (5.2.11)

δq(x) = 0.3 ·∆q(x) for q = ū, d̄, s, s̄ . (5.2.12)

In contrast, Sivers functions are modelled proportional to the unpolarised DF:

f⊥u
1T (x) = −0.3 · u(x) , (5.2.13)

f⊥d
1T (x) = 0.9 · d(x) , (5.2.14)

f⊥q
1T (x) = 0.0 for q = ū, d̄, s, s̄ . (5.2.15)

The parametrisation of the unpolarised FFs fulfil isospin and charge conjugation symmetry
[

Kre00
]

leaving three independent FFs: the favoured, disfavoured, and strange function

(cf. Section 2.5.1). In addition, disfavoured and strange FFs are equal in the parametrisa-

tion. The first moments of the Collins function are constructed proportional to the unpo-

larised FFs. The coefficient for the disfavoured FF is twice as large as for the favoured FF

but has the opposite sign:

H
⊥(1)
1,fav(z) = 0.65 ·D1,fav(z) , (5.2.16)

H
⊥(1)
1,dis (z) = −1.30 ·D1,dis(z) . (5.2.17)

Hence, on average favoured and disfavoured Collins function are of similar magnitude

but of opposite sign.

In each kinematic bin four different asymmetry amplitudes can be determined. One

amplitude can be extracted from the generated events (in the solid angle 4π) and

another one from the reconstructed events (in the HERMES acceptance) with the two–

dimensional fit procedure described in Chapter 4. Furthermore, for the reconstructed

and generated events, the implemented asymmetry amplitudes A
sin(φ±φS)
imp , which are

stored for each event j in a data table, can be averaged over all events in a kinematic

bin:

〈

A
sin(φ±φS)
imp

〉

rec
=

∑Nrec
j=0 A

sin(φ±φS)
imp,j

Nrec
,
〈

A
sin(φ±φS)
imp

〉

gen
=

∑Ngen

j=0 A
sin(φ±φS)
imp,j

Ngen
. (5.2.18)

The implemented asymmetry amplitudes are integrated over Ph⊥ and can therefore not

be compared to the extracted asymmetries in the individual Ph⊥ bins. In this case, the
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Figure 5.2.3: The implemented and extracted asymmetry amplitudes (upper

half) and the differences between implemented and extracted

amplitudes (lower half) for generated and reconstructed positive

pion events. The generated events cover the whole range of the

solid angle.
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Figure 5.2.4: The implemented and extracted asymmetry amplitudes (upper

half) and the differences between implemented and extracted

amplitudes (lower half) for generated and reconstructed negative

pion events. The generated events cover the whole range of the

solid angle.
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Figure 5.2.5: The implemented and extracted asymmetry amplitudes (upper

half) and the differences between implemented and extracted

amplitudes (lower half) for generated and reconstructed neutral

pion events. The generated events cover the whole range of the

solid angle.
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Ph⊥–dependent cross section ratios, which are also stored in the data table, are aver-

aged in the different Ph⊥ bins. In the upper halves of Figures 5.2.3 – 5.2.5, all four asym-

metry amplitudes are plotted dependent on the different kinematic variables x, z, Ph⊥, y,

and Q2 for the three different pion types. The extracted Sivers and Collins amplitudes are

shown as open symbols for generated and as closed symbols for reconstructed events.

The lines in these plots represent the implemented asymmetries averaged over the gen-

erated (dashed line) and the reconstructed events (solid line). The small differences be-

tween the implemented amplitudes for generated and reconstructed events are due to

the different phase spaces of the two event samples resulting in different kinematic mean

values 〈x〉, 〈z〉, 〈y〉, and 〈Q2〉. The values of the extracted amplitudes of the generated

events are corrected for the finite size of the 12 azimuthal bins by multiplication with 1.023

(see Section 5.1.2). In order to identify systematic deviations of the extracted amplitudes

from the implemented amplitudes, a large Monte Carlo data set of reconstructed events

was produced with around four times the statistics of the HERMES data set on transversely

hydrogen recorded in the years 2002 to 2004.

In the lower halves of the figures, the difference between implemented and extracted

asymmetry amplitudes:

∆2〈sin(φ± φS)〉UT = 2〈sin(φ± φS)〉imp − 2〈sin(φ± φS)〉ext , (5.2.19)

is shown for generated and reconstructed events. Additionally, the χ2 is given which is

determined as:

χ2 =

Nbins
∑

i=0

(

∆2〈sin(φ± φS)〉UT,i

σ
sin(φ±φS)
ext,i

)2

, (5.2.20)

where σ
sin(φ±φS)
ext,i is the uncertainty on the extracted amplitudes in each kinematic bin i.

For all three pion types, the extracted amplitudes of the generated events reproduce

the implemented amplitudes. In order to achieve this, the θγ∗h cut had to be omitted. For

a pure Monte Carlo data set on the generator level this cut is obsolete as the azimuthal

angles are not influenced by the limited spectrometer resolution in that case. The cut on

θγ∗h rejects events with low Ph⊥ contributing to the integration of the asymmetry over the

transverse hadron momentum. Since for the Gaussian ansatz the polarised cross sections

are proportional to Ph⊥
[

Bac04b
]

, the contribution from the low Ph⊥ events to the inte-

grated polarised cross section is lower than to the integrated unpolarised cross section.

Hence, the asymmetry increases with an applied cut on Ph⊥ or θγ∗h, respectively. The

effect is of the order of a couple of percent and compensates the effects of the finite

azimuthal bin size and of the spectrometer (the latter result in an asymmetry amplitude

which is around 5 % smaller, as described in Sections 5.1.2 and 5.1.3). This explains the nice

agreement of the extracted and implemented asymmetry amplitudes in case of the re-

constructed events where the cut on θγ∗h is applied and the results are not corrected

for the finite azimuthal bin size. However, the size of the effect of the θγ∗h cut is model

dependent and the finite bin size effect decreases with increasing number of azimuthal

bins so that the cancellation of the two effects is a mere coincidence.
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Figure 5.2.6: The implemented and extracted Ph⊥–weighted asymmetry am-

plitudes (upper half) and the differences between implemented

and extracted amplitudes (lower half) for generated and recon-

structed positive pion events. The generated events cover the

whole range of the solid angle.
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Figure 5.2.7: The implemented and extracted Ph⊥–weighted asymmetry am-

plitudes (upper half) and the differences between implemented

and extracted amplitudes (lower half) for generated and recon-

structed negative pion events. The generated events cover the

whole range of the solid angle.
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Figure 5.2.8: The implemented and extracted Ph⊥–weighted asymmetry am-

plitudes (upper half) and the differences between implemented

and extracted amplitudes (lower half) for generated and recon-

structed neutral pion events. The generated events cover the

whole range of the solid angle.
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5.2.2 Ph⊥–Weighted Asymmetry Amplitudes

For the Ph⊥–weighted asymmetry amplitudes, the studies with the unpolarised Monte

Carlo generators showed large acceptance effects which can be further investigated

with the gmc_trans generator. With the same settings for the DFs and FFs, implemented

and extracted asymmetry amplitudes of the generated and reconstructed events are

obtained. They are shown in Figures 5.2.6 – 5.2.8 for all pion types together with the differ-

ence between implemented and extracted amplitudes. For the charged pions, the ab-

solute values of the extracted Collins and Sivers amplitudes for the reconstructed events

are systematically lower in most of the kinematic bins. The deviation is larger in case of

the Collins amplitudes, as can be inferred from the reduced χ2 given in the figures. As the

only kinematic distribution, the Ph⊥ dependence is well reproduced because the integra-

tion over Ph⊥ is restricted to the rather small range within each bin. However, it is difficult to

interpret the results since the separation of DF and FF is not achieved with an incomplete

integration over Ph⊥. The nice reproduction of the amplitudes in the individual Ph⊥ bins in

contrast to the large deviations for the binning in the other kinematic variables suggests

that an insufficient integration over Ph⊥ causes the problem. The asymmetry amplitudes

of the neutral pions are well reproduced which is expected only in case of the Collins

amplitudes due to the small values for the implemented amplitudes.

For a correction of the Ph⊥–weighted asymmetry amplitudes, the acceptance func-

tion which depends on the five quantities x, z, Ph⊥, φ, and φS , has to be determined. In an

attempt to approximate the acceptance function by only three out of the five kinematic

quantities no improvements compared to the results shown in Figures 5.2.6 – 5.2.8 could

be achieved. Further progress will either require the determination of a five–dimensional

acceptance correction function or a new extraction method which is insensitive to ac-

ceptance effects. Such a new extraction method using an unbinned maximum likelihood

fit is under study
[

Mil05a, Mil05b
]

. The interpretation of Ph⊥–weighted asymmetry ampli-

tudes has to await the resolution of this issue.

5.3 Concluding Remarks

With the unpolarised Monte Carlo generators, the relative systematic uncertainty on the

unweighted asymmetry amplitudes could be estimated. The values of 5 % for charged

pions and 7 % for kaons and neutral pions include the influence of the extraction method

and effects from the spectrometer, e.g., detector resolutions and geometric accep-

tance. Since the implemented asymmetry amplitudes did not contain the correlation

with the transverse quark momenta, additional studies were performed with the Monte

Carlo generator gmc_trans which simulates azimuthal distributions due to intrinsic quark

transverse momenta. In case of the unweighted amplitudes, the implemented ampli-

tudes could be well reproduced and the systematic uncertainty did not have to be

increased. The large acceptance effects visible in the extracted Ph⊥–weighted ampli-

tudes were already indicated by the results of a study with the unpolarised Monte Carlo

generators. The interpretation of Ph⊥–weighted amplitudes will be possible either with a

correction of these effects or with a new extraction method which is not influenced by

the HERMES acceptance.
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Contribution from Exclusively

Produced Vector Mesons

The pion and kaon samples of semi–inclusive deep–inelastic scattering events detected

by the HERMES spectrometer contain decay particles of exclusively produced vector

mesons. For the interpretation of the measured asymmetry amplitudes in terms of quark

distribution and fragmentation functions, these events might be considered as back-

ground contributions. Certain fragmentation models, e.g., the LUND string fragmenta-

tion model (see Section 2.5.1), do not include exclusively produced vector mesons. In

contrast, in cross section models based on Feynman diagrams, exclusive vector meson

production contributes among other diagrams to the semi–inclusive deep–inelastic scat-

tering cross section. However, the applicability of these models becomes questionable as

soon as this process starts to dominate the cross section, for instance in certain kinematic

regimes.

In this chapter, the fraction of exclusively produced vector mesons is determined

with the help of the PYTHIA Monte Carlo generator. This contribution of exclusive vector

mesons cannot be excluded entirely from the analysis as the second (and or third) decay

particle is not observed in most of these events. The two possible sources of asymmetry

amplitudes of the decay hadrons are investigated. In addition, asymmetry amplitudes of

exclusively produced ρ0 mesons are extracted from the HERMES data, once for the kine-

matics of the reconstructed vector meson and once for its decay pions. Both asymmetry

amplitudes are consistent with zero. Furthermore, an asymmetry in the yield difference

of positive and negative pions is constructed in which the exclusive vector meson contri-

butions cancel. The significantly positive Collins and Sivers amplitudes in this asymmetry

prove that amplitudes extracted from the semi–inclusive pion samples are not predomi-

nantly caused by decay pions of exclusive vector mesons.

6.1 The Vector Meson Dominance Model

In the deep–inelastic scattering process, the exchanged virtual photon interacts with a

quark of the nucleon. Besides the so–called bare part of the photon, which couples to

the electromagnetic charge of the quarks, the virtual photon can also fluctuate into a
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Figure 6.1.1: The elastic (a), proton single diffractive (b), vector meson single

diffractive (c), and double diffractive (d) scattering processes for

vector meson production.

quark–antiquark pair. This pair can live long enough to create a cloud of gluons around

the quarks, such that the state develops into a hadronic state which then interacts with

the nucleon. This interaction of the hadronic part of the photon with the nucleon can be

described only phenomenologically in terms of models for hadron–hadron interactions.

The vector meson dominance (VMD) model
[

Sak69
]

, which describes the experimental

data over a wide energy range successfully, is the most prominent model. It is imple-

mented in the PYTHIA Monte Carlo generator described in Section 5.1. In the VMD model,

the hadronic part of the photon is interpreted as fluctuations into the vector mesons ρ0, ω,

and φ that carry the same quantum numbers as the photon. The scattering process then

factorises into the coupling of the virtual photon to the vector meson and the interaction

of the vector meson with the nucleon by exchange of a particle with quantum numbers

of the vacuum. It can be classified in elastic, single, and double diffractive scattering

processes which are sketched in Figure 6.1.1. In single diffractive processes either the

proton or the vector meson gives rise to a resonance or a number of final state particles

whose combined quantum numbers match the quantum numbers of the initial particle.

Processes in which both the proton and the vector meson break up are called double

diffractive. The term diffractive has its origin in the analogy to optical diffraction where

light waves give a characteristic intensity pattern behind an opaque obstacle of a size

comparable to the wave length. The maximum of the intensity pattern is observed on an

axis through the centre of the obstacle. Similar to optical diffraction, in diffractive hadron

scattering the final hadrons or fragments move approximately in the same direction as

the incident hadron because of only a small transverse momentum transfer.

Besides the hadronic part, the photon exhibits also a so–called anomalous part which

is a fluctuation into a quark–antiquark pair with a larger virtuality than the vector me-

son. Alternatively, this can be viewed as an excited higher resonance of a vector meson

which scatters from the nucleon into a vector meson. These states are taken into account

by the Generalised VMD (GVMD) model
[

Sak72
]

. In the PYTHIA generator the anomalous

or GVMD states are assigned to vector mesons of type ρ0, ω, and φ with a high virtuality. If

the mass difference between this highly virtual state and the corresponding ground state

vector meson exceeds a threshold, which can be set by parameter in the Monte Carlo,

these states fragment into other, lighter mesons. Otherwise they are forced to decay

isotropically into a two–body channel.
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6.2 Exclusively Produced Vector Mesons as Background Events

If the decay particles of exclusively produced vector mesons are treated as a back-

ground contribution to the semi–inclusive DIS sample, the measured asymmetry ampli-

tudes Ameas can be corrected for this contribution by:

Acor =
Ntot

Nsig
Ameas −

NVM

Nsig
AVM→h =

1

1− fVM
Ameas −

fVM

1− fVM
AVM→h , (6.2.1)

where the vector meson fraction fVM is defined as the number of hadrons from vector

meson decays NVM divided by the total number of hadrons Ntot. The difference between

Ntot and NVM is the number of hadrons Nsig which do not originate from an exclusively

produced vector meson. Two sources contribute to the amplitude AVM→h of the decay

particles. On the one hand, a Collins or Sivers type asymmetry amplitude AVM of the

vector meson is partially transferred to the hadron. On the other hand, the decay angular

distributions can introduce asymmetries in the detected hadron sample. In general, the

asymmetry amplitude of the decay particles can be expressed as:

AVM→h = T · AVM +Adecay , (6.2.2)

where the transfer coefficient T describes how much of the vector meson asymmetry

amplitude is transferred to its decay particles. Hence, for a correction of the measured

asymmetries, four quantities are needed: the vector meson fraction fVM, the transfer

coefficient T , the asymmetry amplitude AVM of the exclusively produced vector mesons,

and the asymmetry amplitude Adecay acquired in the decay process.

6.2.1 The Vector Meson Fraction

The fraction of elastic and diffractive vector meson events in the semi–inclusive DIS event

sample of a PYTHIA Monte Carlo production is calculated in each kinematic bin. In the

PYTHIA generator, the cross–section ratio between exclusive ω and ρ0 production is set

to approximately 0.1
[

Lie04
]

, while from HERMES data the exclusive ω cross section could

be estimated to be 15 % of the exclusive ρ0 cross section
[

Tyt01
]

. Therefore, all exclusive

ω events generated by PYTHIA are scaled by 0.15/0.10 to account for the cross–section

ratio measured at HERMES. The obtained vector meson fractions of the different meson

types and their dependence on the kinematic variables x, Ph⊥, and z can be found

in Fig. 6.2.1. The full symbols show the vector meson fraction for all mesons taken into

account (ρ0, ω, and φ). In addition, the open symbols give the main contribution in each

distribution. These are ρ0 meson decays for the charged pions, ω meson decays for the

neutral pion, and φ meson decays for the charged kaons. The vector meson fractions for

all kinematic bins used in the analysis can be found in Tables F.8 – F.12. For all hadron types,

an increase of the vector meson fraction with decreasing x is observed. This is equivalent

to decreasing Q2 due to the strong correlation of x and Q2 in the HERMES acceptance.

The fractions increase also with increasing z except for (positive) kaons. Especially for

the charged pions, the exclusive vector meson events dominate in the highest z region.

On average, every second detected π± with z close to 1 is a ρ0 decay particle. The

strong rise of the vector meson fraction for high z is caused by the boost from the vector

meson rest frame into the laboratory system which results in a low and high energetic
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Figure 6.2.1: Vector meson fractions for pion and kaon sample in semi–inclusive

DIS as functions of x, Ph⊥, and z. Note the different vertical scales

in the panels.

pion. However, the high z range is not included in the analysis of semi–inclusive hadrons

with 0.2 < z < 0.7. In the other kinematic bins and for the other hadron types, the fractions

stay below 10 %. The lowest amount of vector meson decays is seen in the K+ sample.

One possibility to decrease the large vector meson fractions in the charged pion sam-

ples is to raise the cut on Q2 because the vector meson production cross section is pro-

portional to Q−6 for large Q2
[

Tyt01
]

. In fact, a cut of Q2 > 2 GeV2 reduces the vector

meson fractions by a factor of somewhat less than 2. Yet this approach is not adopted

as at the same time more than 50 % of the overall data are rejected, mainly affecting the

low x region.

20 % of the ρ0 states contributing to the charged pion sample and 35 % of the φ states

contributing to the charged kaon sample are anomalous states. An even larger fraction

of ∼60 % of the ω mesons contributing to the neutral pion sample stem from the anoma-
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lous states, according to the PYTHIA Monte Carlo generator. Note, however, that the

PYTHIA generator has been tuned to HERMES data only for ρ0 and φ mesons
[

Lie04
]

. So

far, the ω meson has not been taken into account in the tuning process except for in the

additional scale factor of 0.15/0.10 mentioned above.

6.2.2 The Transfer Coefficients

Only part of a possible azimuthal asymmetry of the vector meson will be transferred to the

decay particles because in general their momentum vectors deviate from the direction

of the vector meson. In case of the simultaneous extraction of two asymmetry ampli-

tudes, besides the transfer of the individual amplitudes also a cross transfer can appear:

A vector meson Sivers amplitude can cause a Collins amplitude in the decay particle

sample and vice versa. The relation between the vector meson amplitudes AVM and the

decay hadron amplitudes Ah can be expressed by a transfer matrix T :

(

Ah,s

Ah,c

)

=

(

Tss Tcs

Tsc Tcc

) (

AVM,s

AVM,c

)

, (6.2.3)

where the characters c and s in the subscript indicate the Collins and Sivers type ampli-

tudes. Like the relative correction matrix (see Section 5.1.1), the transfer matrix can be

determined by means of an asymmetry amplitude scan. For exclusively produced vec-

tor mesons, asymmetry amplitudes are implemented using the azimuthal angle of the

vector meson φh=VM. From the azimuthal angles of the decay particles, the amplitudes

are extracted and fitted with a straight line dependent on the implemented amplitudes.

The obtained slopes correspond to the transfer (Tss, Tcc) and cross transfer coefficients

(Tcs, Tsc). The PYTHIA Monte Carlo generator for unpolarised nucleons is used for the

determination of T for exclusively produced ρ0 mesons which decay into a π+π− pair

at a branching ratio of almost 100 %
[

Eid04
]

. A good description of the experimentally

observed decay angular distributions for exclusive ρ0 mesons is achieved with this unpo-

larised generator
[

Lie04
]

. Due to the small cross section for ω production, the available

PYTHIA Monte Carlo productions do not have enough statistics to determine transfer co-

efficients for the ω decay. A second unpolarised Monte Carlo generator DIPSI
[

Arn97b
]

,

including only elastic but no single or double diffractive events, allows the estimate of

transfer coefficients for neutral pions. Also this generator provides a fair description of

the ω decay angular distributions on unpolarised targets
[

Tyt01
]

. The determination of

the transfer coefficients for exclusive φ mesons is impeded by the small amount of recon-

structed decay kaons in the PYTHIA Monte Carlo production. Also for the φ decay into

a K+K− pair, the DIPSI generator could be used. However, with the small vector meson

fractions for kaons and the present level of precision in the HERMES data for kaon produc-

tion, no attempt was made to determine transfer coefficients for exclusive φ mesons.

Transfer Coefficients of Exclusively Produced ρ0 Vector Mesons

For the determination of the transfer matrix of exclusive ρ0 mesons, a PYTHIA Monte Carlo

production with HSG is used which reproduces the HERMES data on charged pions at the

same level of precision as a fully tracked production (see Chapter 5). Again a 12×12
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Figure 6.2.2: Transfer matrix elements for charged pions from ρ0 decays in 4π

and in the HERMES acceptance, dependent on x and z.

azimuthal binning for the extraction of the pion asymmetry amplitudes is applied. The

amplitudes are calculated once for the generated pions in the complete 4π solid angle

and once for the reconstructed pions in the HERMES acceptance. The transfer coeffi-

cients Tcc and Tss and the cross transfer coefficients Tsc and Tcs are shown in Figure 6.2.2,

on the left–hand side for the different x bins and on the right–hand side dependent on

z. No cross transfer is present for the generated pion sample in 4π. Yet for the recon-
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Figure 6.2.3: Comparison of the transfer coefficients for reconstructed charged

pions (π+ on the left, π− on the right side) from ρ0 decays and from

all exclusively produced vector mesons dependent on x and z.
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structed events, the finite acceptance introduces a non–zero cross transfer. Furthermore,

the transfer coefficients are lower for pions generated in 4π than for the reconstructed

event sample. Pions with high z inherit a large energy fraction and hence are almost

collinear with the parent vector meson which causes the rise of the transfer coefficient

with increasing z. For the reconstructed decay pions, the transfer and cross transfer co-

efficients in all kinematic bins used in the analysis are listed in Tables F.2 and F.3.

The vector meson contribution originates mainly from ρ0 decays but also from other

vector meson and anomalous state decays. Model asymmetry amplitudes can be im-

plemented in the Monte Carlo for vector meson events. Transfer coefficients can then

be determined for pions originating from all states and not only from ρ0 mesons. In Figure

6.2.3, the obtained coefficients are compared for decay pions of ρ0 mesons and for pions

originating from elastic and diffractive vector meson production. The transfer values for all

vector meson events are slightly lower than the transfer values of exclusive ρ0 mesons. In

order to estimate the vector meson contribution to the measured asymmetry amplitudes

of the pion sample the assumption was made that the asymmetry amplitudes for the full

vector meson ensemble can be approximated by those of the exclusive ρ0 sample.

A measurement of asymmetry amplitudes of ρ0 decay pions is only possible for events

in which the ρ0 is identified, i.e., both pions are in the HERMES acceptance. However, in

most of the ρ0 events one of the pions escapes the spectrometer undetected. In the

subsample of events in which the ρ0 is detected, the transferred asymmetry amplitudes

can differ from the amplitudes for all decay pions. In fact, the determination of the trans-

fer values for the pion subsamples in which both of the ρ0 decay pions are identified by

the HERMES spectrometer, yields lower transfer values for the Sivers amplitudes for positive

and negative pions than for events where only one pion is detected (see Figure 6.2.4).

For negative pions both from the fully reconstructed ρ0 sample and all decay pions, the

same Collins moments are extracted. In contrast, for the positive pions, the amplitudes

extracted from the fully reconstructed sample are significantly larger in the high x bins.
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PYTHIA and DIPSI for charged and neutral pions produced in ω de-

cays. The histograms are normalised to unity.

Transfer Coefficients of Exclusively Produced ω Vector Mesons

The dominating decay channel of the ω meson is the decay into three pions π+π−π0 with

a branching ratio of around 89 %
[

Eid04
]

. A smaller fraction of roughly 9 % decays into a

neutral pion and a photon. The statistics of generated ω mesons with the PYTHIA Monte

Carlo generator is not large enough for the determination of the transfer coefficients. In-

stead, a vector meson Monte Carlo generator DIPSI is used, in which the generation of

different vector mesons can be selected individually. Unfortunately, the DIPSI generator

is only capable of the three–body decay of the ω while the two–body π0γ decay is not

implemented. In Figure 6.2.5, the z distributions of reconstructed pions from exclusively

produced ω mesons are compared for the two Monte Carlo generators. All histograms

are normalised to unity for the comparison of the distribution shapes. Since the energy of

the vector meson has to be distributed among three particles in the dominating decay
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Figure 6.2.6: Transfer values for charged and neutral pions coming from ω de-

cays in the HERMES acceptance dependent on x and z.
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channel, only a small number of pions is found at z values above 0.7. Due to the imple-

mentation of the two–body decay in PYTHIA, for neutral pions the z distributions differ at

large z.

The lack of events at high z prevents the transfer coefficient determination in the last z

bin. The obtained coefficients for the lower z bins and the x bins are shown in Figure 6.2.6

comparing all three pion types. In the HERMES acceptance, the π0 tends to have a larger

energy fraction than the charged pions (see Figure 6.2.5) resulting in higher transferred

asymmetry amplitudes in most of the x bins. For all three pion types, the transfer coeffi-

cients are larger than for the ρ0 two–body decay. In the HERMES data, the vector meson

contribution for neutral pions in the last z bin is mainly due to ω decays into π0γ. Like for

the ρ0 two–body decay, in this kinematic bin a transfer value of 1 can be assumed. The

obtained transfer values for neutral pions produced in exclusive ω decays can be found

in Table F.4 for all kinematic bins.

6.2.3 Asymmetry Amplitudes Acquired during the Decay Process

Apart from a Collins or Sivers type asymmetry amplitude for the vector meson, which is

transferred to the decay particles, also the decay angular distribution can exhibit az-

imuthal modulations which can contribute to the extracted Collins and Sivers moments.

Vector mesons carry a total angular momentum of J = 1 in their rest frame. Since angular

momentum is conserved, also in the decay particle system the sum of spin S and angu-

lar momentum L is J = S + L = 1. For ρ0, ω, and φ mesons with their dominant decays

into two or respectively three scalar mesons, the total angular momentum is completely

transferred into the angular momentum L of the decay system reflected in the angular

decay distribution of the scalar mesons.

γ∗

ρ0

π+

π−

recoiling

nucleon

θ∗ φ∗

Figure 6.2.7: Definition of the azimuthal and polar decay angles, φ∗ and θ∗, in

the centre–of–mass system of the ρ0 vector meson.

It is common to describe the angular decay distribution in the vector meson rest frame

using the so–called s–channel helicity system, in which the z–axis – the quantisation axis –

is pointing in the opposite direction of the outgoing nucleon. For a two–body decay, the

decay angles, φ∗ and θ∗, are defined as azimuthal and polar angles of one of the decay

mesons, which is the positive pion in case of ρ0 decay, as shown in Figure 6.2.7. In case of

a three–body decay, the decay angles are defined by the normal vector of the decay
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plane.

In the s–channel helicity system, the decay angular distribution W (cos θ∗, φ∗) can be

written as
[

Sch70, Fra74
]

:

dN

d cos θ∗ dφ∗
≡W (cos θ∗, φ∗)

=
3

4π

{

1

2

(

ρ̃++
VM + ρ̃−−VM

)

sin2 θ∗ + ρ̃ 00
VM cos2 θ∗−

sin2 θ∗
(

cos 2φ∗ · Re ρ̃+−
VM − sin 2φ∗ · Im ρ̃+−

VM

)

−

1√
2

sin 2θ∗
[

cosφ∗ · Re (ρ̃+0
VM + ρ̃ 0−

VM)− sinφ∗ · Im (ρ̃+0
VM + ρ̃ 0−

VM)
]

}

. (6.2.4)

The decay angular distribution depends on the elements ραβ
VM of the 3×3 spin density

matrix ρVM which describes the spin state of the vector meson. The indices α and β run

over the three helicity states +, 0, − of the vector meson. In the expression (6.2.4), the

elements of the matrix are normalised by the trace of the spin density matrix: ρ̃αβ
VM =

ραβ
VM/Tr ρVM.

The spin density matrix can be written in terms of s–channel helicity amplitudes f j′α′

jα

describing the transfer of the virtual–photon helicity α to the vector meson helicity α′ for

an initial nucleon helicity j = ± and a recoil nucleon helicity j′ = ±
[

Fra74
]

:

ρα′β′

VM =
∑

α,β;j′,j,k

eiφVM(α−β) · f j′α′

jα ρjk
N ρ

αβ
γ∗ f

j′β′∗
kβ . (6.2.5)

Here, φVM is the azimuthal angle φ of the vector meson in the target nucleon centre–of–

mass system, as defined in Figure 2.5.3. The 3×3 spin density matrix of the virtual photon

ργ∗ depends on the ratio of the longitudinal to transverse photon flux ǫ = (1 − y)/(1 − y +

y2/2), on Q2, and on the lepton beam helicity λ. The 2×2 spin density matrix of the target

nucleon ρN contains three polarisation parameters: the degree of transverse polarisation

in the production plane ζ1, the degree of polarisation normal to the production plane ζ2,

and the degree of longitudinal polarisation ζ3:

ρN =
1

2

(

1 + ζ3 ζ1 − iζ2
ζ1 + iζ2 1− ζ3

)

. (6.2.6)

The transverse polarisation parameters ζ1,2 are given by the azimuthal angles of the vec-

tor meson φVM and of the target spin vector φS :

ζ1 = cos(φVM − φS) , ζ2 = sin(φVM − φS) , (6.2.7)

assuming a target nucleon polarisation of 1.

In general, a decay angular distribution can be decomposed into unpolarised and

polarised terms:

W (cos θ∗, φ∗) =WUU(cos θ∗, φ∗) +WLU(cos θ∗, φ∗;λ) +WUL(cos θ∗, φ∗; ζ3)+

WLL(cos θ∗, φ∗;λ, ζ3) +WUT(cos θ∗, φ∗; ζ1, ζ2)+

WLT(cos θ∗, φ∗;λ, ζ1, ζ2) ,

(6.2.8)
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where the subscripts indicate the beam and target polarisation states like in the previous

chapters. The two contributions WUL and WLL vanish in the case of the ρ0 decay. Thus, no

new information is gained with a longitudinally polarised target compared to an unpo-

larised nucleon target. Furthermore, WLT becomes independent of ζ1. For the azimuthal

single–spin asymmetry calculation, only the term WUT is relevant in case of a transversely

polarised target. It contains 16 terms with different modulations in the decay angles θ∗

and φ∗ and in the azimuthal angles φρ0 and φS which are listed in Table C.1.

In order to identify contributions to the sine modulations of the Collins and Sivers ef-

fects, the azimuthal decay angle φ∗ has to be expressed in terms of the azimuthal and

polar angles of the ρ0 and the decay π+ in the nucleon rest frame (see Appendix C.1):

sinφ∗ ≈ p4(θπ+ , θρ0) sin(φρ0 − φπ+) ,

cosφ∗ ≈ p5(θπ+ , θρ0) cos(φρ0 − φπ+)− p6(θπ+ , θρ0) .
(6.2.9)

These expressions are valid under the assumption of small polar anglesi θρ0 , θπ+ ≪ π
2 . The

factors p4−6 and p1−3 used below contain the dependence on the polar angles:

p1 = sin2 θ∗ , p4 =
sin θπ+

√

1− cos2 θρ0 cos2 θπ+

,

p2 = cos2 θ∗ , p5 =
cos θρ0 sin θπ+

√

1− cos2 θρ0 cos2 θπ+

, (6.2.10)

p3 =
sin 2θ∗√

2
, p6 =

sin θρ0 cos θπ+

√

1− cos2 θρ0 cos2 θπ+

.

Since the decay pion is detected instead of the vector meson itself, the decay angu-

lar distribution can be integrated over the angle φρ0 . In the integrated decay angular

distribution, the sine modulations of the Collins and Sivers effects appear among other

modulations with the following amplitudes:

A
sin(φπ++φS)
W =

1

2
πp3(A15 −A7)(p4 − p5) + πp1p6(A3 − ǫA8)(p4 − p5) , (6.2.11)

A
sin(φπ+−φS)
W = πp3(A5p4 +A13p5)− 2πp1p6(A1p4 +A9p5) , (6.2.12)

where the amplitudes A1−16 are defined in Table C.1.

Since only a small transverse momentum is transferred in elastic and diffractive pro-

cesses, the momentum of the produced vector meson is almost collinear with the virtual–

photon direction, i.e., θρ0 ≈ 0. For a vanishing polar angle of the ρ0, the parameters p4 and

p5 both approach unity and p6 becomes small. In the limit of collinearity, the Collins am-

plitude (6.2.11) vanishes and only the sin 2θ∗ modulation of the Sivers amplitude (6.2.12)

remains. In order to check the influence of this Sivers modulation, it has been imple-

mented in the PYTHIA Monte Carlo production with amplitudes between -0.9 and 0.9. The

Collins and Sivers amplitudes are extracted for the ρ0 decay pions and from the ratio be-

tween implemented and reconstructed amplitudes the transfer values T sin 2θ∗

Collins and T sin 2θ∗
Sivers ,

respectively, are computed which are shown in Figure 6.2.8 on the left side. The transfer

iThe polar angle θρ0 is equivalent to the later used θγ∗ρ0 . For sake of consistency to the other angles, the

notation without the γ∗ is used in this section.
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of the implemented Sivers asymmetry amplitudes to the extracted Collins amplitudes is

very small and consistent with zero in most bins and the transfer to the Sivers amplitudes

remains below 20 % in all x bins. However, in the smallest and largest z bins, the fraction of

the amplitude transferred to the pion Sivers amplitude, becomes large, which is compen-

sated in the lower z bins by a vector meson fraction below 5 %. The larger transfer values

for positive pions compared to negative pions might be caused by the approximation of

small polar angles (see Appendix C.1) together with the arbitrary choice of the positive

pion for the definition of the decay angles, i.e., using the kinematics of the positive pion

for the implementation of the asymmetry amplitudes.

The reconstructed events of the PYTHIA Monte Carlo production do not reach the limit

of collinearity. Instead, the mean values of the parameters are p6 ≈ 0.4 and p4 ≈ p5 ≈ 0.9.

However, since the two parameters p4 and p5 are comparable, the Collins modulation still

vanishes. In the Sivers modulation, an extra term remains which is proportional to sin2 θ∗

and suppressed by p6.

The integration over the azimuthal angle φρ0 is incomplete because of the restricted

acceptance of the HERMES spectrometer. An asymmetry amplitude scan of a cosφρ0 ·
sin(φπ+ − φS) modulation shows indeed non–zero amplitude transfer values, which are

mostly below 10 %, as shown on the right–hand side of Figure 6.2.8. Before the integration

over φρ0 , the following modulations appear in the Collins and Sivers amplitudes of the

decay angular distribution for p5 ≈ p4:

A
sin(φπ++φS)
W =sinφρ0

1

4
p1(1− p6)A2 + cosφρ0(3 sin2 φρ0 − cos2 φρ0)4p2

4p1A10 +

cosφρ0

1

2

[

p2(A4 −A12) + p3p6(A14 +A16 −A6)−
1

2
p1(1− p2

6)A10

]

+ (6.2.13)

(sin2 φρ0 − cos2 φρ0)

[

1

2
p3p4(A5 −A13) + p1p4p6(A1 −A9)

]

,

A
sin(φπ+−φS)

W =
1

2
p3p4(A5 +A13)− p1p4p6(A1 +A9) + sinφρ04p1(p

2
6 − 1)A2 +

cosφρ0
1

2

[

p2(A4 +A12)− p3p6(A14 +A16 +A6) + (6.2.14)

8p1(1 + p2
4 + p2

6)A10

]

,

In order to estimate the effect on the extracted Sivers and Collins amplitudes of semi–

inclusive DIS events, information about the ρ0 spin density matrix for a transversely po-

larised target is necessary. So far, only measurements of ρ0 spin density matrix elements

for unpolarised targets exist
[

Tyt01, Pro99
]

. The decay angular distribution of an unpo-

larised target is implemented in the Monte Carlo and shows no influence on the Collins

and Sivers amplitudes of the ρ0 decay pions. Also the decay angular distribution of the

ω meson is described well with the unpolarised Monte Carlo generators and causes no

Collins and Sivers amplitudes in the decay pions.

In the Collins and Sivers amplitudes, (6.2.13) and (6.2.14), the modulations in φρ0 always

contain dependencies on θ∗ as well. The product of the two dependencies should result

in small transfer values of the asymmetry amplitudes of the order of a few percent. There-

fore, no large effect is expected for the extracted Collins amplitudes of ρ0 decay pions.

For the Sivers amplitudes, the decay angular distribution might affect only the extracted
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Figure 6.2.8: Transfer from implemented asymmetries with sin 2θ∗ sin(φπ+ − φS)

(left panels) and cosφρ0 sin(φπ+ − φS) (right panels) modulations to

Sivers and Collins amplitudes of decay pions.

amplitudes in the highest z bins outside the semi–inclusive range (z > 0.7). Furthermore,

all 16 amplitudes A1−16 vanish under the assumption of s–channel helicity conservation

and natural parity exchange (see Appendix C.2).

6.2.4 Asymmetry Amplitudes of Exclusively Produced ρ0

In the HERMES experiment, the clean identification of exclusively produced vector mesons

is limited to the detection of elastically produced vector mesons (see Figure 6.1.1(a)).

Since the target nucleon recoils outside the HERMES acceptance, single diffractive pro-

cesses in which the proton is transferred into an excited state (see Figure 6.1.1(b)) also

contribute to the measurement. For the selection of ρ0 candidate events, the same kine-

matic cuts are imposed on the scattered lepton as for the semi–inclusive analysis, listed in

Table 4.2.2. Several quantities are computed for each candidate event with exactly two

pions of opposite charge, which are identified by the RICH detector. Their invariant mass

Mππ is restricted to the range 0.6 GeV to 1.0 GeV around the ρ0 mass of 775.8±0.5 MeV
[

Eid04
]

. A second quantity,

∆E =
M2

X −M2
p

2Mp
, (6.2.15)

vanishes in exclusive events where the rest mass of the recoiling baryonic system MX is

equal to the target proton mass Mp. Accounting for the finite detector resolutions, an

upper cut of 0.6 GeV is applied on ∆E to enhance the exclusive event sample. In elastic

and diffractive processes only a small transverse momentum is transferred to the hadronic

vertex. For the selection of these processes, the transverse momentum transfer,

−t′ = −(t− t0) , (6.2.16)
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Figure 6.2.9: The ∆E and invariant mass total cross–section distributions for ρ0

candidate events from the 02 data production compared to a

PYTHIA Monte Carlo simulation.

is therefore restricted to values below 0.4 GeV2. Here, t is the squared four–momentum

transfer to the hadronic vertex and |t0| is the minimum kinematically allowed value of |t|.
Since in the hadron rest frame, the subtraction of t0 removes the longitudinal component

of the momentum transfer, t′ is a measure of the transverse momentum transfer.

In Figure 6.2.9, the ∆E distribution is shown for the 02 data production which was ex-

tracted once with the cut on the invariant mass only and once with the additional cut

on −t′. In addition, the invariant mass distribution is plotted with imposed ∆E and −t′
cuts. The distributions are compared to a PYTHIA Monte Carlo production whose yields

are decreased by 10 %. However, the lower cross sections found in the HERMES data are

consistent with the PYTHIA cross sections within the systematic uncertainty of the luminos-

ity constant (see Appendix B). Although the PYTHIA generator reproduces the exclusive ρ0

cross section on a 10 % level
[

Lie04
]

, the Monte Carlo using HSG does not completely re-

produce the broadening of the peak of exclusively produced ρ0 mesons around ∆E = 0,

which is caused by increased multiple scattering after the replacement of the threshold

Čerenkov counter by the RICH detector. Clearly visible in the HERMES data and the Monte

Carlo production is the reduction of background events using the cut on the transverse

momentum transfer while the exclusive peak stays almost unaffected. At lower invariant

mass, the PYTHIA MC distribution might exceed the data because of the event genera-

tion according to a non–relativistic Breit–Wigner shape whereas the HERMES data is better

described by a relativistic p–wave Breit–Wigner including a skewing parameter
[

Tyt01
]

.

A cut is imposed on the angle θγ∗h = θγ∗ρ0 like for the asymmetry amplitude extraction

in case of semi–inclusive pion and kaon production in order to reject events with misre-

constructed azimuthal angles (see Table 4.2.2 on page 58). However, the resolution in

the angle θγ∗ρ0 might differ for ρ0 vector mesons compared to charged hadrons. In the

combined three HERMES data productions, 1292 exclusive ρ0 candidate events are found

and filled into 8×8 azimuthal bins. Because most of the vector mesons are produced at

small angles, the number of events increases by roughly 67 % without the cut on θγ∗ρ0 .

The azimuthal asymmetry is formed according to Eq. (4.3.1) and fitted by the function:

AUT(φ, φS) = A
sin(φ+φS)
UT · sin(φ+ φS) +A

sin(φ−φS)
UT · sin(φ− φS) + C . (6.2.17)

The sin(φ±φS) amplitudes of the azimuthal asymmetry of exclusively produced ρ0 mesons
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ductions 02, 03, and 04 fitted with a skewed Breit–Wigner func-

tion (left plot) and ∆E distribution of the three productions com-

pared to a normalised DISNG Monte Carlo production (middle

plot) and the difference of the two distributions (right plot).

are not related to the Sivers and Collins function. Nevertheless, the terms Sivers and Collins

moments refer to the extracted moments 〈sin(φ ± φS)〉UT when used in the following. As

in the fit to the semi–inclusive pion asymmetries (cf. Eq. (4.3.2) on page 63), the constant

C vanishes for a correct luminosity normalisation of the azimuthal asymmetry AUT(φ, φS).

Two sources of background contributions exist in the exclusive ρ0 candidate sample.

These are non–resonant pion–pair events, which are exclusively produced π+π− pairs with

an invariant mass in the considered mass range around the ρ0 mass, and non–exclusive

ρ0 events, which are accompanied by particles leaving the HERMES spectrometer unde-

tected. These background fractions can be determined by means of the invariant mass

and the ∆E distributions, respectively. In the left plot in Figure 6.2.10, the invariant mass

spectrum which is obtained after the ∆E and −t′ cuts are applied, is plotted together

with a fit (solid line). The fit function is composed of a skewed relativistic Breit–Wigner func-

tion (dashed line) based on a phenomenological model by Ross and Stodolsky
[

Ros66
]

θγ∗ρ0 , θγ∗π > 0.02

〈x〉 〈z〉 〈−t′〉 [GeV2] fnr fne 2〈sin(φ+ φS)〉UT 2〈sin(φ− φS)〉UT

ρ0 0.086 0.98 0.19 0.05±0.09 0.11±0.05 -0.03±0.06 0.03±0.06

π+ 0.087 0.44 0.13 0.05±0.09 0.11±0.05 -0.01±0.07 -0.06±0.07

π− 0.089 0.44 0.13 0.05±0.09 0.11±0.05 0.03±0.08 0.07±0.07

no cut on θγ∗ρ0

〈x〉 〈z〉 〈−t′〉 [GeV2] fnr fne 2〈sin(φ+ φS)〉UT 2〈sin(φ− φS)〉UT

ρ0 0.085 0.98 0.13 0.07±0.05 0.09±0.04 0.00±0.04 0.03±0.05

Table 6.2.1: Background fractions and corrected asymmetry amplitudes inte-

grated over all kinematic variables for exclusively produced ρ0 and

the decay pions.
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and a constant (dotted line) for the non–resonant background estimate. The integrals of

the fit function and of the background contribution only in the range 0.6 GeV to 1.0 GeV

yield a non–resonant background fraction of fnr = 0.05±0.09 taking into account the

correlation of the different fit parameters. The middle plot of the figure shows the ∆E dis-

tribution with the cuts on the invariant mass and the transverse momentum transfer given

above. Superimposed in the plot is the same distribution from a DISNG Monte Carlo sim-

ulation that does not include exclusively produced vector mesons (see Section 5.1). The

Monte Carlo distribution is normalised to the data in the region 4.0 < ∆E < 8.0 GeV. Only

the exclusive peak around ∆E = 0 remains in the ∆E spectrum after subtraction of the

Monte Carlo distribution, which is shown in the right–hand panel of the figure. A back-

ground fraction of fne = 0.11±0.05 is obtained from the ratio of the integrated yields in

the Monte Carlo and the data in the region up to ∆E = 0.6 GeV.

Besides the background fractions fnr and fne also the background asymmetries of the

two sources Anr and Ane are necessary for the correction of the measured asymmetry

amplitudes Ameas:

Acor =
1

1− fne − fnr
Ameas −

fnr

1− fne − fnr
Anr −

fne

1− fne − fnr
Ane . (6.2.18)

The background asymmetry of non–resonant pion pairs can be determined from the

events in the side bands of the invariant mass peak. The two ranges [0.2,0.6] GeV and

[1.0,1.4] GeV are chosen for the extraction of the asymmetry amplitudes. The results of

both side bands agree within their uncertainties and are combined to yield the back-

ground amplitude Anr. As can be seen in the right plot of Figure 6.2.10, no exclusive

events contribute to the ∆E spectrum for ∆E > 4 GeV. The non–exclusive events in this

region can be used for the determination of the background asymmetry amplitude Ane.

Both background asymmetry amplitudes Anr and Ane are of the order of a few percent

and statistically consistent with zero. The corrected asymmetry amplitudes for exclusive

ρ0 events are listed together with some kinematic mean values and the two background

fractions in Table 6.2.1, once with imposed cut on the angle θγ∗ρ0 and once for the larger

statistics data sample without this cut. All amplitudes are consistent with zero and have

a statistical uncertainty of the order of a few percent. Among the kinematic average

values, only 〈−t′〉 seems to be influenced by the cut on θγ∗ρ0 , which is expected since t′

is a measure of the transverse momentum transfer. The extracted ρ0 Sivers moments of

the order of a couple of percents are consistent with a prediction based on generalised

parton distributions
[

Goe01
]

. The Collins moment is suppressed by 1/Q2 and is therefore

expected to be small
[

Die05a
]

.

Asymmetry amplitudes can be extracted also for the decay pions of the identified

exclusive ρ0 events. As in the analysis for semi–inclusive pion and kaon production, the

additional kinematic cuts on z and Ph listed in Table 4.2.2 are applied. 1510 π+ and

1514 π− remain after the additionally imposed cuts. These are more decay pions than

exclusive ρ0 events when applying the cut on θγ∗ρ0 since the cut on θγ∗π—now applied to

the pion kinematics—is less restrictive as the pions gain additional transverse momenta in

the decay. Also for the decay pions the amplitudes 2〈sin(φ± φS)〉UT, which can be found

in Table 6.2.1, are consistent with zero. The pion Sivers amplitudes are larger than the Sivers

amplitude of exclusive ρ0 events. The asymmetry amplitudes of the two different pions

have opposite signs which cannot be caused by the transferred ρ0 amplitude but only
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by an additional asymmetry amplitude acquired in the decay process. Nevertheless, the

differences between the three amplitudes are statistically not significant.
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In a next step, an attempt is made to bin the asymmetry amplitudes in the different

kinematic variables, using the bin limits listed in Table 4.3.1. Due to the lower event counts

in the individual bins, no background correction is possible. Furthermore, the amplitude

extraction fails in the highest x, Ph⊥, y, andQ2 bins. Yet, omitting the cut on the angle θγ∗ρ0 ,

an asymmetry amplitude extraction becomes possible also in the highest y bin. In exclu-

sive processes, all the energy of the virtual photon is transferred to the produced vector

mesons, resulting in values of z close to 1. Hence, a binning in z is not reasonable for ex-

clusive ρ0 events. The extracted ρ0 amplitudes are plotted in Figure 6.2.11 as functions of

x, Ph⊥, y, and Q2. Again results with and without a cut on the angle θγ∗h are compared.

No clear trend is visible in any of the kinematic dependencies. The amplitudes are rather

fluctuating around zero in the different kinematic bins.

Also the extracted amplitudes of the decay pions in Figure 6.2.12 do not show a trend

in any of the kinematic dependencies. The deviation from zero of both Collins and Sivers

amplitudes in some bins might be caused by the anti–correlation of the two amplitudes,

i.e., if a statistical fluctuation gives rise to a negative amplitude A
sin(φ−φS)
UT the amplitude

A
sin(φ+φS)
UT becomes positive and vice versa.

6.2.5 Interpretive Uncertainties

A measurement of the asymmetry amplitudes of the ω vector meson is not feasible with

the present level of statistics while the measured asymmetry amplitudes of the ρ0 vector

meson have large statistical uncertainties. Hence, estimates of these vector meson asym-

metry amplitudes are employed to determined the possible effect on the semi–inclusive

pion asymmetry amplitudes. The estimate of Collins (c) and Sivers (s) amplitudes can be

derived from the positivity limit, i.e., that the polarised cross section cannot exceed the
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unpolarised cross section:

|AVM,c ±AVM,s| ≤ 1 . (6.2.19)

Here, other sine and cosine modulations of the cross section are omitted. This absolute

limit results in a standard deviation σ = 1/
√

6 of each amplitude (see Appendix D).

With the obtained vector meson fractions, the transfer matrix, and the standard de-

viation of the vector meson asymmetry amplitudes, an interpretive uncertainty on the

semi–inclusive asymmetries due to exclusively produced vector mesons can be deter-

mined by

σπ
i =

fVM

1− fVM
(TicAVM,c + TisAVM,s) =

fVM

1− fVM

1√
6
(Tic + Tis) , (6.2.20)

with i = c, s. Furthermore the assumption is made that no asymmetry amplitudes are

acquired by the pions in the decay process, i.e., that s–channel helicity conservation

and natural parity exchange is valid in case of charged pions. Note that this estimate

yields an uncertainty on the interpretation of the experimental results in terms of Collins

and Sivers functions. The question whether or not to exclude exclusive vector meson

production events from the analysis is still under debate
[

Die05b
]

.

In Figure 6.2.13, the interpretive uncertainties of the Collins and Sivers amplitudes for

π+ and π− are shown in bins of x and z. The central panels show the results for the four

lowest z bins while the right panels show the full z range on a larger vertical scale. The ab-

solute amplitude uncertainties of the two highest z bins are larger than 5% and exceed

the measured asymmetries. Due to the lower vector meson fractions, the interpretive

uncertainties for neutral pions, which are plotted in Figure 6.2.14, are below 4 % in all kine-

matic bins. In the following section the possibility to reduce the interpretive uncertainties

by the suppression of the vector mesons is investigated.

6.3 Vector Meson Suppression

Instead of the correction for the vector meson contribution, the identification of decay

pions from exclusive vector mesons would allow the exclusion of these events already

before the asymmetry amplitude extraction. Without the complete detection of all final

state particles, the decay pion identification is not possible in principle. However, elas-

tically produced vector mesons can be suppressed by cuts on the event kinematics. A
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smaller vector meson fraction in the data sample decreases the interpretive uncertainty.

On the other hand, a poor efficiency of the suppression can cause a large increase of

the statistical uncertainty. With a successful vector meson suppression the larger statistical

uncertainty must be overcompensated by the smaller interpretive uncertainty.

6.3.1 Suppression of Exclusively Produced ρ0 Mesons

In a strategy for the suppression of the exclusive ρ0 vector mesons, the events have to be

treated differently dependent on the number of reconstructed pions. Events with more

than two pions cannot contain an exclusive ρ0 meson. In case of just two oppositely

charged pions in the detector, the invariant mass Mππ and ∆E can be computed and

events with Mππ close to the ρ0 mass and ∆E in the exclusive peak around zero can be

rejected. Events with exactly one pion can be included for the amplitude extraction

if the second decay pion from a potential exclusive ρ0 production would be inside the

HERMES acceptance. With the knowledge of the energy Eπ1 and the momentum ~Pπ1 of

the reconstructed pion, the energy Eπ2 and the momentum ~Pπ2 of the potential second

decay pion can be calculated. For the determination of the four unknowns (Eπ2, ~Pπ2),

four constraints are necessary:

1: The rest mass of the second pion is the pion mass Mπ2 = Mπ.

2: The invariant mass of the two pions is the ρ0 meson mass Mππ = Mρ0 .

3: The missing mass is the proton mass MX = Mp, corresponding to ∆E = 0.

4: Estimate the squared four–momentum transfer t to the hadronic vertex by its kine-

matically allowed maximum, t0, which can be computed from the three other con-

straints.

In reality, the constraints 2 and 3 are inequalities because the invariant mass is distributed

around the ρ0 mass according to the decay width, and the detector resolution smears

the missing mass around the proton mass. Yet, taking into account the ρ0 decay width

and the finite detector resolution would go beyond the practical applicability of this

method, so that both of these values are therefore treated as zero.

The four constraints result in the absolute value of the momentum |~Pπ2| and the cosines

of two angles α and β, where α (β) is the angle between the sought–after pion and the

α
β~Pπ2 ~Pπ1

~q

~Pπ1

~q

α

β

~Pπ2

Figure 6.3.1: The two possible solutions (which are mirror symmetric) for a vector
~Pπ2 with a given absolute value and the two angles α and β.
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Figure 6.3.2: The dependence of the angles α and β on −t and zπ1 for Q2 =

2.4 GeV2, ν = 15 GeV, and θγ∗h = 0.02 rad. α is set to 0, if it is not

calculable due to an argument of the arc cosine function outside

its definition range [–1,1]. In that case, a single detected pion

cannot result from an exclusive ρ0 decay event.

virtual photon ~q (the detected pion ~Pπ1). This yields two solutions for the orientation of the

momentum vector of the second pion as sketched in Figure 6.3.1. Only if both solutions

fall inside the detector acceptance the detected single pion event cannot originate

from an exclusive ρ0 meson decay and is included in the analysis.

Furthermore, constraint 4 is only an approximation because the squared momentum

transfer t is the sum of t0 and t′ and deviates from the kinematically allowed maximum

t0. However, the transverse momentum transfer t′ is small in elastic and diffractive vector

meson events. In most of the events, the value of t′ is between –0.4 and 0 GeV2 (see

Section 6.2.4). Hence, the search for the second pion has to cover the range t0− 0.4 GeV

< t < t0. Figure 6.3.2 shows the behaviour of the angles α and β dependent on −t and

the energy fraction of the detected hadron zπ1 for the mean values of the data in Q2 and

ν. The value of θγ∗h is set to the lower limit of 0.02 rad in the analysis. Because of the small

absolute values of t, t0, and t′, the plotted range of −t between 0.0 and 0.6 GeV2 covers

the complete range of t0− 0.4 GeV2 < t < t0.

The angles α(t) and β(t) increase with increasing −t (decreasing t), which entails that

in events with t0 + t′ < t < t0 the second potential pion is closer to the direction of the

detected pion than in events with t = t0 + t′ and therefore more likely in the detector ac-

ceptance. Hence, for single pion events, a check on the direction of a possible second

pion for t = t0 + t′ = t0− 0.4 GeV2 does already include the check for t′ > − 0.4 GeV2.

Both functions α(t) and β(t) also depend on the kinematic variables Q2, ν, and zπ1.

The angle α(t) contains in addition the cosine of the angle between the virtual photon

and the detected pion θγ∗h. In order to check if the functions α(t) and β(t) decrease

monotonically with increasing t within the ranges covered by the kinematic variables,

the derivatives of α(t) and β(t) with respect to t are computed for energy transfers 0

< ν < 27.5 GeV, four–momentum transfers 1 < Q2 < 13 GeV2 (cf. Figure 4.2.5), pion energy

fractions 0 < zπ1 < 1, and photon–pion angles 0.02 < θγ∗h < 0.4 rad (cf. Figure 4.2.6). In

the entire kinematic range and for 0 > t > –0.6 GeV2 dα
dt < 0 and dβ

dt < 0 so that the angles
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Figure 6.3.3: Dilution of the charged pions with and without the suppression of

ρ0 vector mesons.

are monotonically decreasing in that range. Therefore, it is sufficient to check t = t0−
0.4 GeV2 instead of t0− 0.4 GeV2 < t < t0 also for values of Q2, x, and θγ∗h that differ from

the values used to plot the functions α(zπ1, t) and β(zπ1, t) in Figure 6.3.2.

The efficiency of the suppression of exclusive ρ0 vector mesons is investigated with

the help of a fully tracked PYTHIA Monte Carlo production. In case of one–pion events,

t′ is varied in six steps of 0.1 GeV2 between –0.5 GeV2 and zero. For the check of two–

pion events, the invariant mass window is set to [0.6, 1.0] GeV and the upper ∆E limit to

0.6 GeV. Too wide cuts cause a large amount of discarded non–exclusive events and

in turn an increase of the vector meson fraction. Figure 6.3.3 shows the obtained vector

meson fractions for charged pions with and without applying the ρ0 suppression for values

of t′ of –0.4 GeV2 and –0.1 GeV2. For all six values of t′, the largest reduction in fVM is found

at small x. Here, a lower t′ value improves the suppression efficiency. In the two highest z

bins where the vector meson fraction is more than 40 %, a reduction is obtained only for

t′ ≥ –0.3 GeV2. The smallest values of fVM in these two bins are obtained for t′ = –0.1 GeV2.

Since the event samples are dominated by one–pion events the check of the two–

pion events has less influence on the resulting dilutions. Small variations of the ∆E limit

cause only minor differences in the dilutions and the total amount of rejected events.

The remaining exclusive vector meson events, which still dilute the charged pion samples,

contain ρ0 mesons which were not rejected by the method described above because

of the neglected ρ0 decay width and detector smearing, and the fixed values for t′ and

∆E.

The improvement of reduced vector meson fractions is counteracted by an enlarge-

ment of the statistical uncertainties due to the event rejection by the suppression method.

In Table 6.3.1, the fractions of discarded events in the Monte Carlo and in the data pro-

ductions are listed for one and two–pion events as well as for the full event sample. The
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t′ = –0.4 GeV2 t′ = –0.1 GeV2

02 – 04 data 02 – 04 data
Monte Carlo

productions
Monte Carlo

productions

1 pion events 69.11±0.05 % 65.96±0.09 % 42.31±0.05 % 39.04±0.09 %

2 pion events 3.13±0.03 % 2.89±0.06 % 3.13±0.03 % 2.89±0.06 %

all events 43.45±0.08 % 42.82±0.13 % 26.52±0.09 % 27.69±0.16 %

Table 6.3.1: Fractions of discarded semi–inclusive DIS events for the different

event classes in the range 0.2 < z < 1.2, performing ρ0 suppression.

The fractions are given for two different values of t′.

amount of rejected pion events is comparable in the Monte Carlo and real data produc-

tions for all event classes. The remaining small deviations could be further decreased by

an improved PYTHIA tune for the exclusive ρ0 production. The inflation of the interpretive

uncertainty without suppression can be expressed in terms of the vector meson fractions

only,

σintpr

σsup
intpr

=
fVM(1− f sup

VM)

f sup
VM(1− fVM)

, (6.3.1)

because the transfer values and vector meson asymmetry values cancel. The increase

of the statistical uncertainty σsup
stat/σstat when suppressing ρ mesons can be determined for

Collins and Sivers amplitudes. All three uncertainty ratios are plotted in Figure 6.3.4 for

the different x and z bins. For t′ = –0.4 GeV2, the interpretive uncertainty ratio becomes
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sion for t′ = –0.4 GeV2 (left panels) and t′ = –0.1 GeV2 (right pan-

els).
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Figure 6.3.5: Total uncertainty with and without ρ0 suppression for the Sivers and

Collins asymmetries. The transverse momentum transfer t′ is set to

–0.1 GeV2.

even smaller than 1 in some z bins, i.e., the interpretive uncertainty is smaller without the

attempt to suppress the ρ0 vector mesons. In all x bins, the relative increase of the inter-

pretive uncertainty without the suppression is at least compatible to the relative increase

of the statistical uncertainty due to the suppression.

However, the change of the total uncertainty,

σtot =
√

σ2
stat + σ2

intpr , (6.3.2)

is not only determined by the uncertainty ratios but also by the absolute values of the

uncertainties. In particular, for a large statistical uncertainty the total uncertainty can

increase despite of the relative change in the interpretive uncertainty being bigger than

the relative change of the statistical uncertainty. Figure 6.3.5 shows that only a small

improvement of the total uncertainty can be achieved for the present statistics in the first

x and in the last z bin. The total uncertainties are computed for the value –1 GeV2 for

t′ which results in the smallest vector meson fractions in the highest z bins. In the latter,

however, the total uncertainties still exceed the measured Collins and Sivers asymmetry

amplitudes.

Even with the enhanced statistics in the full experimental data set including the data

recorded in the year 2005, the suppression of ρ0 vector mesons will reduce the total un-

certainty only for the lower x and higher z bins. In the two highest z bins where exclusive

vector meson production is the dominating scattering process, the suppression method

described above is still not able to decrease the vector meson fraction to values that re-

sult in interpretive uncertainties smaller than the measured Collins and Sivers amplitudes

themselves.
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Figure 6.3.6: The classification of π0 events dependent on the number of ad-

ditional charged pions Nπ± and photons Nγ . For further explana-

tions see text.

6.3.2 Suppression of Exclusively Produced ω Mesons

The two main decay branches of the ω vector meson, ω → π+π−π0 and ω → π0γ, give

rise to either two pions and two photons, or three photons, respectively. No attempt

is made to suppress the contribution of ω mesons in the charged pion samples as it is

small compared to the contribution of ρ0 mesons (see Section 6.2.1). For the neutral pion

sample figure 6.3.6 shows the different π0 event classes which have to be considered for

the ω suppression. Events with more than two charged pions or more than one photon

detected together with the π0 cannot be exclusive ω events. Also events with exactly

one photon and at least one charged pion in addition to the π0 do not have to be

checked for a possible exclusive ω event. The remaining four event classes are single π0

events without any additional pion or photon (light–grey field) and events in which the

π0 is accompanied by one photon or one or two charged pions (mid–grey fields). Two

of these four classes allow a complete reconstruction of the ω vector meson, i.e., the

calculation of the invariant mass and ∆E: For events with one π0 and one additional

charged pion, the kinematics of a potential third pion from a ω decay can be computed

with the same method as described in the previous section. Unfortunately, the largest

part of the data sample belongs to the single π0 event class which cannot be checked

for a possible exclusive ω event as not enough information is available to constrain the

kinematics of the other decay particles in the three–body decay. Hence, all the single π0

events can either be discarded or included in the analysis.

The efficiency of both suppression methods is determined in the same way as for the ρ0

Monte Carlo 02 – 04 data productions

with single π0 event rejection 21.92±0.27 % 46.44±0.31 %

without single π0 event rejection 2.79±0.32 % 3.89±0.47 %

Table 6.3.2: Fractions of discarded events in the range 0.2 < z < 1.2, with and

without the rejection of single π0 events in the ω suppression.
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Figure 6.3.7: Dilution of the neutral pion sample with and without the suppres-

sion of ω vector mesons.

mesons with a fully tracked PYTHIA Monte Carlo production. A slightly wider cut on −t′ =
0.5 GeV2 and on ∆E = 1.0 GeV and a more narrow invariant mass window between 0.72

and 0.88 GeV is used, taken from a previous analysis of exclusively produced ω mesons
[

Tyt01
]

. The width of the invariant mass window is determined by the longer life time of

the ω meson compared to the ρ0 meson. The reason for the wider −t′ and ∆E cuts is the

worse energy resolution for photons as compared to charged particles. In Table 6.3.2,

the fractions of discarded events in the Monte Carlo and in the combined experimental

data set are listed for the two suppression methods, i.e., with and without the rejection of

single π0 events.

The disagreement of the values is enormous in particular for the case of single π0

rejection. One possible explanation might be combinatorial background events in the

experimental data but not in the Monte Carlo simulation. However, the combinatorial

background ratios of the HERMES data analysed with and without ω suppression are com-

patible and hence cannot explain the large discrepancy. Alternatively the large con-

tribution of anomalous states to the vector meson fraction in the neutral pion sample

seems questionable as the PYTHIA generator has not been tuned to match HERMES data

for exclusive ω production (cf. Sections 6.1 and 6.2.1).

The vector meson fractions with and without ω suppression are compared in Figure
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sion (left panels) and the total uncertainty with and without ω sup-

pression (right panels). Single π0 events are not rejected.
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6.3.7. With the inclusion of single π0 events, the fractions decrease slightly in the highest

z bins, whereas they even increase somewhat if all single π0 events are rejected. This

can be understood if more semi–inclusive events than exclusive vector meson events are

discarded. Although the vector meson fractions become slightly smaller using one of

the suppression methods, the resulting relative and total uncertainties with this method

are not reduced, as can be seen in Figure 6.3.8. Even after a successful optimisation

of the PYTHIA generator for exclusive ω production in the HERMES kinematic region, the

ω suppression will probably not be efficient enough for the justification of its application.

Neither of the suppression methods described here has consequently been applied in

the analysis.

6.4 Amplitudes of the Pion–Yield–Difference Asymmetry

Another approach to exclude pions from exclusively produced ρ0 vector mesons is to

form an asymmetry with the difference in the count rates of positive and negative pions.

Disregarding the restriction of a finite detector acceptance, the number of ρ0 decay

pions is equal in the two count rates and cancels. In the HERMES acceptance, the re-

maining vector meson fraction in the count rate difference can be determined from the

vector meson count numbers in the individual pion samples of a PYTHIA Monte Carlo

production by:

fVM =
NVM→π+ −NVM→π−

Nπ+ −Nπ−
. (6.4.1)

Figure 6.4.1 shows that also in the HERMES acceptance the vector meson contribution to

this yield difference is consistent with zero. Consequently, asymmetries derived from this

pion–yield difference are unaffected by potential vector meson biases. The moments of

the pion–yield–difference asymmetry are defined as

〈sin(φ± φS)〉ππ
UT =

∫

dφS d2 ~Ph⊥ sin(φ± φS) [d6σπ+

UT − d6σπ−

UT]
∫

dφS d2 ~Ph⊥ [d6σπ+

UU − d6σπ−

UU]
, (6.4.2)

where the definitions of the differential cross sections d6σUT and d6σUU can be found

in Section 2.5.2. In order to obtain these asymmetry moments, the following azimuthal
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Figure 6.4.1: Vector meson fractions for the amplitudes of the pion–yield–

difference asymmetry.
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Figure 6.4.2: Sivers and Collins amplitudes of the pion–yield–difference asym-

metry dependent on x, z, and Ph⊥.

asymmetry is formed with the count numbers of positive and negative pions:

Aππ
UT(φ, φS) =

1

〈P 〉
[L↓N↑

π+(φ, φS)− L↑N↓
π+(φ, φS)]− [L↓N↑

π−(φ, φS)− L↑N↓
π−(φ, φS)]

[L↓N↑
π+(φ, φS) + L↑N↓

π+(φ, φS)]− [L↓N↑
π−(φ, φS) + L↑N↓

π−(φ, φS)]

=
1

〈P 〉
L↓∆N↑(φ, φS)− L↑∆N↓(φ, φS)

L↓∆N↑(φ, φS) + L↑∆N↓(φ, φS)
, (6.4.3)

where ∆N = Nπ+ − Nπ− . As for the individual pion asymmetries, the amplitudes are ex-

tracted by a two–dimensional fit with the function (4.3.2). Figure 6.4.2 shows the obtained

pion–yield–difference amplitudes. They are significantly positive which proves that the

extracted asymmetry moments for the individual pions are not predominantly caused by

decay pions of exclusive ρ0 mesons. A second evidence in case of the Sivers effect is that

the Sivers K+ amplitudes are significantly positive while the K+ sample has a negligible

contribution from exclusive vector mesons (see Figures 4.4.8 and 6.2.1).

6.5 Correction for the Vector Meson Contribution

Based on the above results for the small decay pion asymmetries (see Section 6.2.4) and

on the significantly positive amplitudes for the pion–yield–difference as well as for the K+

asymmetries, one can safely assume that exclusively produced vector mesons do not

significantly bias the extracted Collins and Sivers amplitudes. The decay hadrons from

vector meson production processes rather dilute the semi–inclusive hadron samples. This

dilution can be corrected for by scaling both the extracted asymmetry moments and

their statistical uncertainties by 1/(1 − fVM).

These corrected asymmetry amplitudes for charged and neutral pions are compared

to the uncorrected amplitudes in Figure 6.5.1. Only in the last two z bins, where the vector
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meson fractions of the charged pion samples exceed 10 %, a change of the amplitudes

is visible. In all the other kinematic bins, the small vector meson fraction does not influ-

ence the measured amplitudes significantly. Also for the charged kaons, the measured

amplitudes are not affected by the vector meson correction because of the even smaller

vector meson fractions. The systematic uncertainty of the corrected amplitudes which is

not shown in the plot, has to be increased by a 15 % relative systematic uncertainty on the

vector meson fractions which is based on the description of the measured cross sections

of exclusive vector meson production by the PYTHIA Monte Carlo generator
[

Lie04
]

.



Separation of the Photon–Axis

Asymmetry Moments

The asymmetry moments (2.5.21) are defined for particles polarised with respect to the

virtual–photon direction. Experimentally, however, the particle spin is oriented with re-

spect to the lepton beam while the virtual–photon direction changes in every scattering

event. Longitudinal and transverse spin asymmetry moments defined with respect to the

virtual–photon direction, in the following referred to as photon–axis asymmetry moments

〈sin(φ ± φS)〉qUT, contribute to the measured so–called lepton–axis asymmetry moments

〈sin(φ ± φS)〉lUT introduced in Chapter 4. They also appear in the measurement on a

longitudinally polarised target with respect to the lepton beam. This chapter presents

the separation of the individual cross–section contributions in a frame where the target

polarisation is defined with respect to the direction of the virtual photon.

7.1 Spin Components in the Two Reference Systems

As shown in Figure 2.5.3, a nucleon transversely polarised with respect to the incoming

lepton beam has a dominant transverse spin component
[

Die05a
]

:

ST =
cos θγ∗

√

1− sin2 θγ∗ sin2 φS

, (7.1.1)

where θγ∗ is the polar angle between the momenta of incoming lepton and the virtual

photon. The small longitudinal spin component,

SL =
sin θγ∗ cosφS

√

1− sin2 θγ∗ sin2 φS

, (7.1.2)

is not indicated in Figure 2.5.3. For sufficiently high beam momenta, the angle between

the incoming lepton and the virtual photon is small and sin2 θγ∗ can be neglected. The

components can then be approximated by ST ≈ cos θγ∗ and SL ≈ sin θγ∗ cosφS where the

longitudinal component can be as large as 15 % at HERMES kinematics (see Tables F.5 –

F.7). When integrated over φS the longitudinal spin component vanishes and the resulting
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x

y

z

φ~Ph

~Ph⊥

~ST

~l

~l′

~q
θγ∗

~S

Figure 7.1.1: Configuration of angles and spin components in case of a longi-

tudinally polarised target.

longitudinal polarisation for all scattering events is zero. However, the polarised cross

section d6σUL contains a sinφ modulation (see Table 2.5.1) which couples to the cosφS

modulation of the longitudinal spin component since sinφ cosφS = 1
2 [sin(φ + φS) + sin(φ −

φS)]. Hence, the longitudinal twist–three cross–section term contributes to the measured

Collins and Sivers moments:

〈sin(φ± φS)〉lUT = cos θγ∗〈sin(φ± φS)〉qUT +
1

2
sin θγ∗〈sinφ〉qUL . (7.1.3)

For a target which is polarised longitudinally with respect to the lepton beam, also a

small transverse spin component exists, as indicated in Figure 7.1.1. In this case, however,

the azimuthal angle φS of the transverse component is constant for all scattering events

and the sine modulations of the Collins and Sivers effect occur as sinφ contributions:

〈sinφ〉lUL = cos θγ∗〈sinφ〉qUL − sin θγ∗

[

〈sin(φ+ φS)〉qUT + 〈sin(φ− φS)〉qUT

]

, (7.1.4)

where the minus sign results from the fact that φS = π. The three measured lepton–axis

azimuthal moments can be related to the three corresponding photon–axis moments by

a matrix, dependent on the angle θγ∗ :







〈sinφ〉lUL

〈sin(φ− φS)〉lUT

〈sin(φ+ φS)〉lUT






=







cos θγ∗ − sin θγ∗ − sin θγ∗

1
2 sin θγ∗ cos θγ∗ 0
1
2 sin θγ∗ 0 cos θγ∗













〈sinφ〉qUL

〈sin(φ− φS)〉qUT

〈sin(φ+ φS)〉qUT






,

(7.1.5)

valid up to corrections of order sin2 θγ∗

[

Die05a
]

.

7.2 The Reviewed Analysis of the Longitudinal Data

During the years 1996 and 1997, the HERMES experiment took data with a longitudinally

polarised hydrogen target. Azimuthal asymmetry moments extracted from these data
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can be used for the separation of the photon–axis moments together with the measured

asymmetry moments presented in Chapter 4. Different kinematic bins and cuts were used

for the publications
[

Air00, Air01
]

of the longitudinal spin asymmetry moments requiring

a reanalysis of the data with the same kinematic cuts and the same binning as in the

analysis of the transverse spin asymmetry moments, listed in Tables 4.2.2 and 4.3.1. For the

data of the years 1996 and 1997, the threshold Čerenkov detector was used to identify

charged pions (see Section 3.3.2). For clean identification, the pions are required to have

a momentum well in between the two threshold momenta yielding a cut on the pion

momentum of 4 GeV < Pπ < 13.8 GeV. In addition, the signal in the threshold Čerenkov

counter must be larger than 0.5 photo electrons.

Similar to the extraction of the Sivers and Collins amplitudes, the sinφ amplitude of the

luminosity normalised azimuthal asymmetry,

AUL(φ) =
1

〈P 〉
N→(φ)L← −N←(φ)L→

N→(φ)L← +N←(φ)L→
, (7.2.1)

is extracted by a fit. Here, 〈P 〉 is the averaged longitudinal target polarisation which can

be found in Table 3.2.1, and → (←) indicates the target polarisation state antiparallel

(parallel) to the beam momentum. L⇆ are the luminosities in each target spin state and

N⇆(φ) are the hadron count numbers in each target spin state and φ bin. The events are

filled in 8 equidistant φ bins, i.e., a one–dimensional azimuthal binning is applied. The fit

function,

AUL(φ) = Asin φ
UL · sinφ+Asin 2φ

UL · sin 2φ+ C , (7.2.2)

includes—besides the sinφ amplitude and a constant—also the leading twist sin 2φ cross

section term (cf. Table 2.5.1) as a fit parameter. In the former analysis, a different ap-

proach was used for the extraction of the sinφ moment by weighting the events with

sinφ. This method is affected by the mixing of the two cross–section sine modulations

which the extracted moments have been corrected for.

For the published results on neutral pions
[

Air01
]

, the combinatorial background is ac-

counted for in the systematic uncertainty whereas a correction is applied in the present

reanalysis like it is done for the π0 asymmetry moments of the transversely polarised target.
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0 0.1 0.2 0.3
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reanalysis
publication
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0 0.1 0.2 0.3
x

π–

0 0.1 0.2 0.3
x

π0

Figure 7.2.1: Comparison of the published asymmetry amplitudes of the longi-

tudinally polarised hydrogen data
[

Air00, Air01
]

and the results of

the reanalysis of the two data productions. Shown are the ampli-

tudes as a function of x.
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The cut on the number of photons per event is lowered to Nγ ≤ 5 in order to obtain com-

binatorial background fractions which are similar to the fractions obtained in the years

2002 to 2004.

In Figure 7.2.1 the published asymmetry amplitudes are compared to the amplitudes

obtained in this reanalysis. For the comparison the same x binning and the same kine-

matic cuts as in the publication are applied and the neutral pions are not corrected for

combinatorial background. The general behaviour of the extracted amplitudes using

Eq. (7.2.2) and the published results is consistent. The differences are mainly due to the

reproductions of the 1996 and 1997 data samples which include, among others, a new

calibration of the detectors and an improved reconstruction algorithm for the photon

position on the calorimeter front. In addition, the published results are corrected both

for acceptance effects and mixing between the sinφ and sin 2φ modulations. The latter

correction is not necessary for the fit that extracts both modulations at the same time.

The acceptance effects on the asymmetry amplitudes obtained in the reanalysis are es-

timated to be 5 % which is the observed effect for a two–dimensional azimuthal binning.

It can be used as an upper limit for the effects in case of the one–dimensional azimuthal

binning. The uncertainty of the target polarisation measurement yields a 4.2 % scale un-

certainty.

7.3 The Subleading–Twist Cross Section Component

Inverting to Eq. (7.1.5), the photon–axis twist–three asymmetry moment 〈sinφ〉qUL can be

written as function of the measured lepton–axis asymmetry moments:

〈sinφ〉qUL = cos θγ∗〈sinφ〉lUL + sin θγ∗

[

〈sin(φ+ φS)〉lUT + 〈sin(φ− φS)〉lUT

]

, (7.3.1)

where the deviation from unity of cos θγ∗ is of the order of a few tenths of a percent for

the HERMES kinematics and can therefore be neglected. From the inclusive quantities x,

Q2, and y, sin θγ∗ can be evaluated as:

sin θγ∗ =
2xM

Q

√

1− y − y2x2M2/Q2

1 + 4x2M2/Q2
. (7.3.2)

The transformation into the photon–axis reference system is only an approximation be-

cause the cross sections are integrated over the kinematic variables and an average

value of sin θγ∗ is used instead of the actual value for each event.

Also the transversely polarised hydrogen data has to be reanalysed using the hadron

momentum cuts of the pion identification with the threshold Čerenkov counter instead

of the RICH. Otherwise, the kinematic mean values in the individual bins differ slightly.

A tighter restriction of the momentum range causes lower hadron count numbers and

larger statistical uncertainties. However, the extraction of 〈sinφ〉qUL is clearly dominated

by the statistical uncertainty of the longitudinally polarised hydrogen data set due to the

kinematic suppression of the moments 〈sin(φ± φS)〉lUT and thus their statistical uncertain-

ties by sin θγ∗ .

The obtained photon–axis asymmetry amplitudes 2〈sin φ〉qUL are shown in Figure 7.3.1

together with the measured lepton–axis amplitudes for the two perpendicular target po-

larisations. Solving Eq. (7.3.1) for 〈sinφ〉lUL yields the two components in the measurement
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Figure 7.3.1: The measured lepton–axis asymmetry amplitudes on a longitudi-

nally polarised target (open triangles) and their two contributions:

the photon–axis asymmetry amplitudes in case of a longitudinally

polarised target (closed circles) and the kinematically suppressed

lepton–axis amplitudes for a transversely polarised target (open

squares).

on a longitudinally polarised target. The transverse spin component is the sum of the

measured Collins and Sivers amplitudes multiplied by − sin θγ∗ which is also plotted in Fig-

ure 7.3.1. The measurement on a longitudinally polarised target is dominated by the

subleading–twist term in the longitudinal cross section. Therefore, the twist–three am-

plitude 2〈sin φ〉qUL shows the same behaviour as the measured asymmetry amplitude on

the longitudinally polarised target, i.e., the term is positive for positive and neutral pions

and compatible with zero in case of the negative pions. The systematic uncertainty of

the extracted twist–three term is negligible compared to the statistical uncertainty. The

results of the photon–axis and lepton–axis 〈sin φ〉UL moments dependent on the various

kinematic quantities together with statistical and systematic uncertainties can be found

in the Tables F.5 – F.7. Note that the x dependence is influenced by the Q2 dependence

due to the strong correlation of x and Q2 in the HERMES acceptance.
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The mean asymmetry amplitudes 2〈sinφ〉qUL in the range 0.023 < x < 0.04 and

0.2 < z < 0.7 are 0.031 ± 0.005 ± 0.002 for positive pions, -0.007 ± 0.006 ± 0.001 for neg-

ative pions, and 0.035 ± 0.013 ± 0.003 for neutral pions. They are obtained by averaging

over the x bins. The first uncertainty value given arises from the statistics and the second

one is the systematical uncertainty.

Several contributions appear in the subleading–twist cross section term (cf. Table 2.5.1),

yielding a photon–axis asymmetry moment:

〈sinφ〉qUL =− |~SL|
(2− y)√1− y

1− y + y2

2

M

Q







∫

d2 ~Ph⊥I
[

P̂h⊥·~kT
Mh

(

Mh
zM ∆qG⊥ + xhLH

⊥
1

)]

q D1
+

∫

d2 ~Ph⊥I
[

P̂h⊥·~pT
M

(

Mh
zM h⊥1LH̃ − xf⊥L D1

)]

q D1







.

(7.3.3)

Here, the summation over quark flavours and the x, z, p2
T , and k2

T dependencies of the

DFs and FFs are implied. The integral I[. . . ] over ~kT and ~pT is defined in Eq. (2.5.16). The

extracted asymmetry amplitudes 2〈sin φ〉qUL allow no statement about the size of the in-

dividual contributions. Yet, the significantly positive amplitudes for π+ and π0 show that

subleading–twist terms can be large at HERMES kinematics and that an interpretation of

azimuthal asymmetry moments solely in terms of leading–twist functions is not appropri-

ate in all cases. Some of the DFs and FFs in Eq. (7.3.3) appear also in other azimuthal

asymmetry moments. The DF h⊥1L is present in the sin 2φ moment of the longitudinally

polarised target (cf. Table 2.5.1), which is extracted by the fit (7.2.2) together with the

sinφ modulation. For HERMES kinematics this moment is found to be compatible with zero.

Nevertheless, a recent measurement in a different kinematic region by the CLAS experi-

ment yielded non–vanishing 〈sin 2φ〉lUL moments
[

Ava04a
]

. The FF G⊥ in conjunction with

the unpolarised DF is present in the cross section for a longitudinally polarised beam and

an unpolarised target
[

Bac04c
]

. Non–zero values of this beam spin asymmetry moment

were reported by CLAS
[

Ava04b
]

and HERMES
[

Ave04a
]

, but also here additional twist–

three DFs or FFs contribute. Like the Sivers function, the T–odd DF f⊥L was thought to be

forbidden and therefore neglected for a long time. At the moment, no firm information

about any of the subleading–twist functions in 〈sinφ〉qUL exists.
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Figure 7.3.2: The x dependence of the photon–axis asymmetry amplitudes ap-

proximately corrected for the 1/Q dependence by multiplication

with
√

〈Q2〉.
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In an attempt to gain more information from the measured asymmetries by separat-

ing their x and Q2 dependencies a simple study was performed. For this, the asymmetry

moments were multiplied with the average Q ≈
√

〈Q2〉 in each x bin. In Figure 7.3.2

the resulting x dependence of the asymmetries can be seen, showing a clear hint for

a rise towards larger x. However, whether this is due to the explicit x dependence of

some of the terms in Eq. (7.3.3) or due to the x dependence of the DFs cannot be con-

cluded. Speculating, the term involving f⊥L could produce the measured x dependence

if both the unpolarised DF q(x) (denominator of the asymmetry) and f⊥L (numerator) de-

pend similarly on x. As both occur in 〈sinφ〉qUL in combination with the same FF, the latter

would—in first approximation—cancel and only the relative size of f⊥L would matter be-

sides the contribution from the convolution integral.

7.3.1 Exclusively Produced Vector Meson Contribution

Also in case of the 〈sinφ〉qUL moments, the contribution from the decay of exclusively pro-

duced vector mesons to the analysed pion sample causes a possible uncertainty in the

interpretation in terms of DFs and FFs. Since no sinφ modulation for the vector meson pro-
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Figure 7.3.3: The photon–axis amplitudes 2〈sin φ〉qUL uncorrected and corrected

for the vector meson contribution.
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duction or its decay distribution is expected in case of a longitudinally polarised nucleon

with respect to the virtual photon
[

Fra74
]

, their contribution can be treated as a dilution.

For an estimate of such an effect, the correction for the vector meson contribution is ap-

plied by dividing the asymmetry amplitudes by 1 − fVM. The vector meson fractions fVM

are determined for the tighter hadron momentum cut and can be found in Tables F.5 –

F.7. They differ only slightly from the values obtained for the full RICH momentum range

shown in Figure 6.2.1. The comparison between corrected and uncorrected amplitudes

is plotted in Figure 7.3.3. Differences between corrected and uncorrected amplitudes

are only visible for kinematic bins with a significantly large vector meson fraction like in

the highest z bins. Hence, the vector meson dilution does not significantly influence an

interpretation of 〈sinφ〉qUL in terms of Eq. (7.3.3) in the semi–inclusive range 0.2 < z < 0.7.

7.4 Contribution to the Lepton–Axis Collins and Sivers Amplitudes

The small longitudinal target spin component that contributes to the measured lepton–

axis Collins and Sivers amplitudes presented in Chapter 4, is proportional to the extracted
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Figure 7.4.1: Comparison of photon–axis and lepton–axis Sivers amplitudes for

all three pion types dependent on x, z, and Ph⊥.
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subleading–twist terms (see Eq. (7.1.5)):

〈sin(φ± φS)〉lUT = cos θγ∗〈sin(φ± φS)〉qUT +
1

2
sin θγ∗〈sinφ〉qUL . (7.4.1)

Again, the kinematic factor cos θγ∗ ≈ 1. Using the 〈sinφ〉qUL moments from above, the

photon–axis Collins and Sivers amplitudes can be determined for the momentum range

of the threshold Čerenkov counter. They can be compared to the lepton–axis ampli-

tudes in the same momentum range as shown in Figure 7.4.1. For the comparison neither

the twist–three component 〈sinφ〉qUL nor the measured amplitudes for the transversely po-

larised target are corrected for the vector meson contribution. The differences between

the results in the two reference systems are negligible. Therefore, in order to recover the

full statistics of the RICH momentum range, the assumption,

〈sin(φ± φS)〉lUT ≈ 〈sin(φ± φS)〉qUT ≡ 〈sin(φ± φS)〉UT , (7.4.2)

is used in the following and the superscript is omitted.

A measurement of kaon asymmetry amplitudes with a longitudinally polarised hydro-

gen target does not exist due to the poor kaon identification with the threshold Čerenkov

detector. The separation of photon–axis and lepton–axis asymmetry moments can thus

not be performed for kaons. However, supported by the results for pions and by a mea-

surement with a longitudinally polarised deuterium target that gave similar amplitudes for

positive pions and kaons
[

Air03
]

, also the photon–axis and lepton–axis kaon asymmetry

amplitudes are assumed to be equal.
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Interpretation of the

Asymmetry Moments

When the measured asymmetry moments are interpreted in terms of distribution and

fragmentation functions, a relation between the moments of the three pion types can be

derived which is investigated for Monte Carlo and HERMES results. The measured Collins

and Sivers amplitudes are discussed and compared to model predictions and to fits of

the results for charged pions. The ratio of the disfavoured to the favoured Collins frag-

mentation functions can be constrained by the extracted Collins amplitudes to negative

values with a most probable value of about –1. A first extraction of the Sivers function

is attempted which yields a negative u quark and a positive d quark function. In order

to extract the transversity distribution functions from the results, the Collins fragmentation

function needs to be known. This quantity could be measured by the BELLE experiment,

for instance. The concept of such a measurement is outlined and discussed. Also other

possibilities to access transversity and the Sivers function in current and future experiments

are discussed as an outlook.

8.1 The Makins Relation

For a closer look at the measured Collins asymmetry moments, the following minimal

assumptions are made:

• The transverse polarisations of the strange quarks, δs/s and δs̄/s̄, are negligible in the

kinematic range of the HERMES experiment like the longitudinal polarisations, ∆s/s

and ∆s̄/s̄
[

Air05a
]

.

• Charge conjugation and isospin symmetry are assumed to hold so that only the

two independent favoured and disfavoured FFs have to be considered (cf. Section

2.5.1).

With these assumptions, the Ph⊥–weighted Collins moments (2.5.27) of the three pion

types can be written as:

〈

Ph⊥
zMh

sin(φ+ φS)

〉π+

UT

= K
(4δu + δd̄)H

⊥(1)
1,fav + (δd + 4δū)H

⊥(1)
1,dis

(4u+ d̄)D1,fav + (d+ 4ū)D1,dis
, (8.1.1)
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〈

Ph⊥
zMh

sin(φ+ φS)

〉π−

UT

= K
(4δu + δd̄)H

⊥(1)
1,dis + (δd + 4δū)H

⊥(1)
1,fav

(4u+ d̄)D1,dis + (d+ 4ū)D1,fav
, (8.1.2)

〈

Ph⊥
zMh

sin(φ+ φS)

〉π0

UT

= K
(4δu + δd̄+ δd+ 4δū)(H

⊥(1)
1,fav +H

⊥(1)
1,dis )

(4u+ d̄+ d+ 4ū)(D1,dis +D1,fav)
, (8.1.3)

where K is a kinematic factor common to all of the asymmetry moments and the x and

z dependencies are omitted. Introducing the quantities

r ≡ d+ 4ū

u+ 1
4 d̄

, δr ≡ δd + 4δū

δu+ 1
4δd̄

, η ≡ D1,dis

D1,fav
, ηH ≡

H
⊥(1)
1,dis

H
⊥(1)
1,fav

, (8.1.4)

two relations can be obtained for the moment ratios of negative and positive pions and

of neutral and positive pions, respectively:
〈

Ph⊥
zMh

sin(φ+ φS)
〉π−

UT
〈

Ph⊥
zMh

sin(φ+ φS)
〉π+

UT

· 4η + r

4 + rη
=

4ηH + δr

4 + δrηH
, (8.1.5)

〈

Ph⊥
zMh

sin(φ+ φS)
〉π0

UT
〈

Ph⊥
zMh

sin(φ+ φS)
〉π+

UT

·
(

1 +
4η + r

4 + rη

)

− 1 =
4ηH + δr

4 + δrηH
. (8.1.6)

In these ratios the kinematic factor K cancels. From Eq. (8.1.5) and (8.1.6) follows directly

that the asymmetry moments are correlated which leads to a constraint on the asymme-

try moments, the so–called Makins Relation
[

Mak03a
]

:

MRPh⊥ sin(φ+φS) ≡
〈

Ph⊥
zMh

sin(φ+ φS)

〉π+

UT

+ C

〈

Ph⊥
zMh

sin(φ+ φS)

〉π−

UT

−

(1 + C)

〈

Ph⊥
zMh

sin(φ+ φS)

〉π0

UT

= 0 ,

(8.1.7)

including only the unpolarised quantity C:

C =
4η + r

4 + rη
. (8.1.8)

More general, the Makins Relation is valid for any single–spin or double–spin asymme-

try in semi–inclusive DIS at twist–two and twist–three and in leading and next–to–leading

order in αs when C is replaced by the unpolarised cross–section ratio for semi–inclusive

negative and positive pion production: C = σπ+

UU/σ
π−

UU

[

Die05c
]

. The Makins Relation is

therefore also valid for the Ph⊥–weighted Sivers moments. Besides the factorisation of

the semi–inclusive cross section only the following isospin relation between the FFs F for

quarks and antiquarks is required for the validity of the Makins Relation:

Fq→π0
=

1

2

(

Fq→π+
+ Fq→π−

)

. (8.1.9)

The validity of the Makins Relation is unaffected by a convolution integral over the trans-

verse quark and pion momenta so that it also holds for the unweighted Collins and Sivers

moments:

MRsin(φ±φS) ≡ 〈sin(φ± φS)〉π+

UT + C〈sin(φ± φS)〉π−

UT − (1 + C)〈sin(φ± φS)〉π0

UT = 0 . (8.1.10)
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In a first step, the Makins Relation is checked on the same gmc_trans Monte Carlo

production used for the studies discussed in Section 5.2 since all requirements for the

validity of the Makins Relation are implemented in the generator. The Makins Relation can

be evaluated for the extracted overall amplitudes of the generated and reconstructed

events, where the overall amplitudes are obtained by averaging the amplitudes over the

individual x bins. The following values of the Makins Relation are found for generated

(gen) and reconstructed (rec) events:

MRsin(φ+φS)
gen = 0.0013 ± 0.0006 , MRsin(φ+φS)

rec = -0.002 ± 0.003 ,

MRsin(φ−φS)
gen = 0.0004 ± 0.0006 , MRsin(φ−φS)

rec = -0.002 ± 0.003 .
(8.1.11)

The quantity C was evaluated using parametrisations of the unpolarised DFs
[

Pum02
]

and

FFs
[

Kre00
]

. Although the obtained values are very small, this study yields a deviation from

zero by 2σ for the generated Collins amplitudes. However, for other gmc_trans produc-

tions with similar statistics smaller deviations are found, indicating that the 2σ deviation of

the Collins amplitudes is a statistical fluctuation.

Despite the fact that the Ph⊥–weighted asymmetry amplitudes are subject to large

acceptance effects (cf. Section 5.2.2), not only the asymmetries for the generated events

but also for the reconstructed events fulfil the Makins Relation within 1.25σ in the worst

case:

MRPh⊥ sin(φ+φS)
gen = 0.003 ± 0.007 , MRPh⊥ sin(φ+φS)

rec = 0.007 ± 0.027 ,

MRPh⊥ sin(φ−φS)
gen = 0.000 ± 0.001 , MRPh⊥ sin(φ−φS)

rec = -0.005 ± 0.004 .
(8.1.12)

For the combined three data productions, the overall unweighted and Ph⊥–weighted

amplitudes can be found in Tables 8.1.1 and 8.1.2. An additional scale uncertainty of

6.6 % given by the target polarisation measurement has not been included. Adding the

systematic and statistical uncertainties quadratically, the values of the Makins Relation

read:

MRsin(φ+φS) = 0.024 ± 0.013 , MRsin(φ−φS) = -0.030 ± 0.014 ,

MRPh⊥ sin(φ+φS) = 0.257 ± 0.125 , MRPh⊥ sin(φ−φS) = -0.035 ± 0.017 ,
(8.1.13)

〈z〉 〈x〉 〈Ph⊥〉 [GeV] 2〈sin(φ+ φS)〉UT 2〈sin(φ− φS)〉UT

π+ 0.36 0.096 0.40 0.019±0.005±0.001 0.042±0.005±0.002

π− 0.35 0.091 0.40 -0.026±0.005±0.002 0.003±0.005±0.001

π0 0.37 0.089 0.42 -0.028±0.013±0.003 0.059±0.014±0.004

K+ 0.37 0.100 0.42 -0.001±0.016±0.008 0.108±0.015±0.009

K− 0.33 0.096 0.39 0.002±0.030±0.015 0.016±0.027±0.009

Table 8.1.1: Kinematic mean values 〈z〉, 〈x〉, and 〈Ph⊥〉 and overall unweighted

moments 〈sin(φ±φS)〉UT of the combined HERMES data productions

together with their statistical and systematic uncertainties in the

semi–inclusive range 0.2 < z < 0.7.
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〈y〉 〈Q2〉 [GeV2] 2
〈

Ph⊥
zMh

sin(φ+ φS)
〉

UT
2
〈

Ph⊥
zM sin(φ− φS)

〉

UT

π+ 0.53 2.43 0.138±0.045±0.006 0.052±0.006±0.001

π− 0.54 2.35 -0.252±0.054±0.009 0.007±0.008±0.001

π0 0.58 2.49 -0.321±0.135±0.016 0.071±0.018±0.003

K+ 0.51 2.50 -0.041±0.044±0.018 0.138±0.022±0.010

K− 0.52 2.40 -0.001±0.087±0.038 0.022±0.040±0.013

Table 8.1.2: Kinematic mean values 〈y〉 and 〈Q2〉 and overall Ph⊥–weighted mo-

ments
〈

Ph⊥
zM(h)

sin(φ± φS)
〉

UT
of the combined HERMES data produc-

tions together with their statistical and systematic uncertainties in

the semi–inclusive range 0.2 < z < 0.7. The acceptance effect is

not included in the systematic uncertainty.

showing a 2σ deviation from zero for both Collins and Sivers amplitudes. For the interpre-

tation of this apparent violation of the Makins Relation note that the extracted Collins

and Sivers moments are strongly anti–correlated. Furthermore, the unweighted and Ph⊥–

weighted moments are correlated so that a statistical fluctuation necessarily influences

all four results in (8.1.13) simultaneously. Hence, these observed deviations from zero might

all arise from the same statistical fluctuation. As a cross check, the sum of the Makins rela-

tions for the two unweighted moments is indeed consistent with zero: -0.006±0.014, where

the anti–correlation has been taken into account in the computation of the combined

uncertainty. The different mass factors M and Mπ entering the moments prevent the sim-

ple summation in case of the Ph⊥–weighted amplitudes. The results of the Makins Relation

are not influenced by the combinatorial background correction of the neutral pions. The

absolute values of the relation and their uncertainties are smaller without the correction

but they still deviate from zero by 2σ.

Another possible explanation of the deviation could be the contribution from exclu-

sively produced vector mesons since the Makins Relation does not hold for exclusive pro-

duction channels. In case that the contribution from vector meson production can be

treated as a dilution, a correction of the measured amplitudes for the vector meson frac-

tion (see Figure 6.2.1 on page 112) does not change the results of the Makins Relation.

The asymmetry amplitudes of decay pions from exclusive ρ0 production are consistent

with zero within the semi–inclusive range (cf. Table 6.2.1 on page 123). Allowing non–zero

asymmetry amplitudes of the neutral decay pions from exclusive ω mesons, large am-

plitudes of the order of unity are required to fulfil the Makins Relation for both Sivers and

Collins amplitudes. Although the Sivers amplitudes of exclusive ω mesons are predicted to

be of the order of 10 % and hence larger than the ρ0 amplitudes
[

Goe01
]

, it seems very

unlikely that the neutral decay pions acquire an amplitude at their positivity limit. The

Collins amplitude is suppressed by 1/Q2 and therefore not expected to be larger than

the Sivers amplitude. Thus, the vector meson contribution with an asymmetry amplitude

in the decay pions is very unlikely to cause the violation of the Makins Relation.

Furthermore, exclusive π+ production, which is the only possible exclusive pion pro-

duction in electron–proton scattering, violates the Makins Relation. However, exclusive



153

-0.05

0

0.05

M
R

 s
in

(φ
-φ

s 
  

  
  

  
  

  
 

)

reconstructed
generated

-0.05

0

0.05

0 0.1 0.2 0.3
x

M
R

 s
in

(φ
+

φ s 
  

  
  

  
  

  
 

)

-0.05

0

0.05

M
R

 s
in

(φ
-φ

s 
  

  
  

  
  

  
 

)

reconstructed
generated

-0.05

0

0.05

0 0.1 0.2 0.3
x

M
R

 s
in

(φ
+

φ s 
  

  
  

  
  

  
 

)

0.2 0.4 0.6 0.8 1
z

0.2 0.4 0.6 0.8 1
z

0.25 0.5 0.75 1
Ph⊥  [GeV]

0.25 0.5 0.75 1
Ph⊥  [GeV]

Figure 8.1.1: Makins Relation for Sivers and Collins unweighted amplitudes of

the gmc_trans Monte Carlo production dependent on x, z, and

Ph⊥.
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the combined three data productions dependent on x, z, and
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pions have an energy fraction z = 1 and even taking into account smearing they do not

contribute to the semi–inclusive range 0.2 < z < 0.7.

The Makins Relation can also be evaluated in the individual kinematic bins, e.g., in the

x, z, and Ph⊥ bins. These results are shown for the unweighted asymmetry amplitudes in

Figures 8.1.1 and 8.1.2 for the Monte Carlo and the combined HERMES data productions,

respectively. The kinematic dependencies of the Makins Relation for the Ph⊥–weighted

amplitudes are shown in Figures E.4 and E.5. Reflecting the deviation of the overall ampli-

tudes of the HERMES data, the values of the Makins Relation in the different kinematic bins

are systematically above or below zero for the Sivers or Collins amplitudes, respectively.

Although the measured unweighted Collins and Sivers amplitudes violate the Makins

relation, the interpretation of the amplitudes in terms of DFs and FFs is assumed to be

valid since the violation might be caused by a single statistical fluctuation in the azimuthal

asymmetry of the neutral pions. Due to the large statistical uncertainty of the amplitudes

for the neutral pion compared to the amplitudes for the charged pions, the π0 amplitudes

have only a small impact on the estimate of the ratio of the favoured to disfavoured

Collins functions and on the results of the extracted Sivers functions which both will be

presented in the following.

8.2 Virtual–Photon Asymmetry Moments

In the measured asymmetry amplitudes (2.5.26) and (2.5.28), a dependence on the frac-

tional energy transfer y is contained which has to be eliminated for the extraction of the

DFs. Since the amplitudes are integrated over a certain range in y in each kinematic

bin, the events had to be weighted with the reciprocal of the corresponding y depen-

dence in the numerator and denominator separately. For practical reasons, a different

approach is used where the kinematic factors A(y)/(xy2) and B(y)/(xy2) are moved out

of the integral and approximated by A(〈y〉)/(〈x〉〈y〉2) and B(〈y〉)/(〈x〉〈y〉2). The latter ap-

proximation results in a small bias of less than 4 % due to the finite bin size
[

Mil04
]

, whereas

the weighting procedure is complicated by the statistical correlations of the kinematic

factors in numerator and denominator.

The kinematic factors cancel in case of the Sivers amplitude when they are approx-

imated by their mean values in each kinematic bin. The Collins amplitude and its un-

certainty have to be multiplied by A(〈y〉)/B(〈y〉) in order to remove the y dependence.

In analogy to the depolarisation factor C(y)/A(y) in case of the double–spin asymmetry

(2.5.32), also B(y)/A(y) is called depolarisation factor and A(〈y〉)/B(〈y〉)〈sin(φ + φS)〉UT is

called virtual–photon asymmetry moment. The factors C(y)/A(y) and B(y)/A(y) give the

circular and linear polarisations of the transverse virtual photons, respectively.

The expressions of the kinematic factorsA(y), B(y), C(y), andD(y), given in Eq. (2.5.17),

are valid only in the Bjorken limit when R → 0 and γ2 → 0. Taking into account mass cor-

rections of the order γ2 ∼ 1/Q2 in the leptonic tensor, the kinematic factors read
[

Bac06
]

:

A(y) =
y2

2
+

(

1− y − y2γ2

4

)

1

1 + γ2
, B(y) =

(

1− y − y2γ2

4

)

1

1 + γ2
,

C(y) =
1

√

1 + γ2
y
(

1− y

2

)

, D(y) =
2(2 − y)
1 + γ2

√

1− y − y2γ2

4
.

(8.2.1)
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Corrections of the same order (1/Q2) are not taken into account in the hadronic tensor

since the quark–quark–correlation matrix is only known up to twist–three so far, i.e., up to

the order 1/Q.

Higher order contributions in αs, resulting in a non–vanishing R, change the factor A(y)

of the unpolarised cross–section terms to:

A(y,R) =
y2

2
+

(

1− y − y2γ2

4

)

1 +R(x,Q2)

1 + γ2
. (8.2.2)

The equivalent higher order corrections in the kinematic factors B(y) and A(y) are un-

known in case of the cross–section terms for a transversely polarised target. Although

the ratio R of the photo–absorption cross sections of longitudinal and transverse pho-

tons could depend on the produced hadron type in semi–inclusive DIS events, the only

parametrisations available are based on fits to world data on inclusive DIS
[

Abe99
]

. So

far, R has not been measured in semi–inclusive DIS.

The values ofA(〈y〉, R)/A(〈y〉) and A(〈y〉, R)/B(〈y〉) in the different kinematic bins for the

calculation of the Sivers and Collins virtual–photon asymmetry moments can be found in

Tables F.8 – F.12. In the following, no higher order corrections are applied to the Sivers

amplitudes, i.e., the cancellation of the kinematic factors is assumed, and the Collins

amplitudes are multiplied by the factor A(〈y〉, R)/B(〈y〉) only in the comparison to model

predictions for virtual–photon asymmetry moments later on (cf. Figure 8.3.6).

8.3 The Collins Moments

The unweighted Collins amplitudes for charged and neutral pions and charged kaons

are shown in Figure 8.3.1 dependent on the five kinematic variables. Numerical values of

the amplitudes and their statistical and systematic uncertainties can be found in Tables

F.8 – F.12. In the figure and the tables, the systematic uncertainty does not include the

6.6 % scale uncertainty from the target polarisation measurement. The large systematic

uncertainties in the higher bins of the kaon asymmetries are dominated by the contribu-

tion from the kaon identification with the RICH detector (cf. Section 4.4.6).

Because of the u quark dominance in DIS, which is caused by the quark–charge fac-

tor e2q in the summation over the quark flavours, one could naïvely expect the amplitudes

for positive pions and kaons to be similar. However, the amplitudes for the K+ are sys-

tematically lower than the π+ amplitudes in all kinematic bins even though the overall

amplitudes have overlapping error bars (cf. Table 8.1.1). Like in the case of the unpo-

larised FFs, the Collins function may differ for fragmentation of u into K+ and u into π+. In

contrast to the positive pions and kaons, the π− and K− amplitudes are not expected to

be similar, not only because of different Collins functions but also since the K− is a sea

object, i.e., it contains only sea–quark flavours of the proton.

As predicted for a valence–quark object, the maxima of the transversity DFs and

hence the Collins amplitudes are at large x values. The transversity distribution of sea

quarks is expected to be small since the contribution of the gluons, from which their arise,

vanishes (see Section 2.4.1). Transversity is then dominated by valence quarks which have

momentum fractions around x = 0.16. No Q2 dependence is expected for leading–twist

cross–section terms. The clear trend which is visible for negative pions and positive kaons
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Figure 8.3.1: Unweighted Collins amplitudes for all five hadron types as func-

tions of x, z, Ph⊥, y, and Q2. An additional 6.6 % scale uncertainty

from the target polarisation measurement is not included in the

shaded systematic uncertainty bands.

is caused by the strong correlation of Q2 and x within the HERMES acceptance. The visible

rise of the amplitudes with Q2 is related to an increase of 〈x〉 in each Q2 bin.

As the right–hand sides of Eq. (8.1.5) and (8.1.6) are equal, they cannot be solved to

yield unambiguous solutions for δr and ηH but only a relation between the two quantities.
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This relation can be deduced either from the π− to π+ moment ratio or from the π0 to π+

moment ratio and is unambiguous if the Makins Relation is fulfilled. A large set of relation-

ships between δr and ηH can be constructed by Gaussian sampling of the asymmetry

amplitudes of the three pion types, i.e., by three sets of randomly chosen amplitudes dis-

tributed according to Gaussians. The measured amplitudes are used as mean values of

the Gaussian distributions while their widths are the statistical uncertainties of the ampli-

tudes. The accumulation of these trajectories provides a distribution of likelihood in terms

of δr and ηH .

Due to the strong influence of the acceptance on the Ph⊥–weighted amplitudes, the

Gaussian sampling is performed with the overall unweighted Collins amplitudes (listed

in Table 8.1.1) under the assumption that the kinematic factors cancel in the moment

ratios. The (1)–moments of the disfavoured and favoured Collins functions in ηH are then

replaced by the (1/2)–moments (cf. Eq. 2.5.26 and 2.5.27 on page 28). Figure 8.3.2 shows

the likelihood distributions obtained from the two unweighted Collins amplitude ratios.

The distribution for the π− to π+ ratio (π0 to π+ ratio) is plotted on the left–hand side (the

right–hand side). Since the three asymmetry amplitudes violate the Makins Relation by

2σ, the two likelihood distributions differ. Nevertheless, both distributions favour a negative

ratio ηH of disfavoured and favoured Collins functions.

Since the interpretation of such distributions is only reasonable for a fulfilled Makins Re-

lation, the likelihood distributions are also obtained with the requirement that Eq. (8.1.10)

is satisfied. This is obtained by shifting the three sampled amplitudes by a certain frac-

tion of their statistical uncertainty. To avoid biases in favour of a particular amplitude, the

fractions were chosen the same for all three amplitudes and were restricted to absolute

values below 1. On the left–hand side of Figure 8.3.3 the obtained likelihood distribution

for ηH as a function of δr is shown which is now identical for both amplitude ratios. In the

middle and right panels the sampled Gaussian distributions of the Collins amplitudes are

plotted for the three pion types as open histograms. The shaded histograms show the dis-
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/π+
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Figure 8.3.2: Likelihood distribution of ηH as a function of δr obtained from the

two asymmetry ratios π− to π+ and π0 to π+. The contour scale is

linear in likelihood. The values of δr for the non–relativistic assump-

tion δq(x) = ∆q(x) and the Soffer limit δq(x) = (∆q(x) + q(x))/2 are

indicated as dotted and solid lines, respectively.
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Figure 8.3.3: Left panel: Likelihood distribution on condition that the Makins Re-

lation is satisfied. The contour scale is linear in likelihood. The values

of δr for the non–relativistic assumption δq(x) = ∆q(x) and the Sof-

fer limit δq(x) = (∆q(x) + q(x))/2 are indicated as dotted and solid

lines, respectively. Middle and right panels: Distributions of the

sampled Collins amplitudes (open histograms) and of the shifted

amplitudes which fulfil the Makins Relation (shaded histograms).

tributions of the shifted amplitudes which are bound to satisfy the Makins Relation. Since

the statistical uncertainties of the charged pions are much smaller than the uncertainty

of the neutral pion, their distributions are hardly affected while the amplitude distribution

of the neutral pion is shifted to zero and its width decreases. This decrease is caused by

the rejection of part of the sampled amplitudes because a shift within 1σ is not enough

to fulfil the Makins Relation. The obtained likelihood distribution contains therefore mainly

the information of the measured amplitudes for the charged pions.

In the likelihood distributions in Figures 8.3.2 and 8.3.3, two values for δr are indicated

by a dotted and a solid line. These are the values for the non–relativistic assumption δq(x)

= ∆q(x) and the Soffer limit δq(x) = (∆q(x) + q(x))/2. For the determination of these values,

parametrisations of ∆q(x)
[

Blü02
]

and q(x)
[

Pum02
]

were used. Note that the value of δr

computed from the Soffer limits of the individual quark flavours does not limit the range

of δr as δr is a ratio of different flavours. The likelihood distribution in Figure 8.3.3 does not

constrain the quantity δr, but it favours negative values of ηH . Independent of δr, the

most likely value of the ratio of disfavoured to favoured Collins functions is about –1, i.e.,

the disfavoured Collins function seems to be of comparable size as the favoured Collins

function but has the opposite sign.

In all available model calculations for the Collins function, a simple model for the frag-

mentation process in lowest order of αs (α0
s) is used, based either on pseudo–scalar or

on pseudo–vector pion–quark coupling. The calculation of the Collins function, however,

requires the calculation of the imaginary parts of one–loop corrections which are of the

order α1
s. Here, either pion or gluon loop corrections are considered yielding four possible

combinations of the two different couplings with the two different one–loop corrections
[

Bac01, Bac02a, Gam03, Bac03a
]

. Recently a review of the four model calculations was
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Figure 8.3.4: Unweighted Collins amplitudes of the positive pion as a function

of z compared to predictions of different model calculations for

the Collins function
[

Amr05
]

. For details see text.

presented
[

Amr05
]

. The results for the π+ Collins amplitudes are shown in Figure 8.3.4 for

pseudo–scalar (PS) and pseudo–vector (PV) pion–quark coupling. In the calculations,

pion and gluon loop corrections were summed up. Both kinds of coupling are investi-

gated for two different values of µ (0.7 GeV and 1.0 GeV), where µ2 is the cut–off on the

fragmenting quark virtuality resulting in a cut–off in the K2
T integration of the FFs. The

non–relativistic assumption is used for the transversity DF. All four curves decrease with in-

creasing z for z > 0.4 and do not model the increase of the measured amplitudes. The

lower z region could be described by a pseudo–vector coupling with a cut–off between

0.7 GeV and 1.0 GeV. However, the amplitudes above z ≈ 0.6 will be negative in con-

tradiction to the measured value which is significantly positive. It should be noted that

none of the models considers the disfavoured fragmentation function, which appears to

be large and negative from the present analysis. The failure of the models to correctly

describe the data might be an indication for a non–vanishing contribution from the dis-

favoured Collins function.

A physically attractive explanation of the Collins effect based on the string–fragmen-

tation model (cf. Section 2.5.1) was suggested by Artru in 1993
[

Art93
]

(see also
[

Art97
]

)

and is illustrated in Figure 8.3.5(a) – (c). The first chart (a) shows the absorption of the vir-

tual photon by the struck quark which on average reverses the quark–polarisation com-

ponent in the lepton scattering plane
[

Col94
]

. When the string that connects the struck

quark and the nucleon remnant breaks (see Figure 8.3.5(b)), a quark–antiquark pair is

produced with vacuum quantum numbers JP = 0+, i.e., in a 3P0–state. Since the posi-

tive parity of this state requires aligned spins of quark and antiquark, an orbital angular

momentum of L = 1 has to compensate the spins. This non–zero orbital angular momen-

tum creates a transverse momentum of the produced pseudo–scalar meson. Hence, the

outgoing meson is deflected with respect to the virtual–photon direction, indicated by

an open arrow in Figure 8.3.5(c).

In the special case of a u quark in a proton with δu > 0, most of the u quarks have their
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Figure 8.3.5: Collins effect in the string fragmentation model by Artru
[

Art93
]

for a transversely polarised nucleon with its spin orientation in (left

panels) and perpendicular (right panels) to the lepton scattering

plane (see text).

spins aligned with the proton spin. If the azimuthal target spin angle φS = 0, as shown in

Figure 8.3.5(a), the spin of the u quark is reversed by the photoabsorption. The creation

of a d–d̄ pair yields a π+ pseudo–scalar meson which is deflected upwards with respect

to the page, i.e., φ = π/2 (see chart (c)). For a target spin perpendicular to the scattering

plane (φS = π/2, Figure 8.3.5(d)) the spin of the u quark does not flip and the produced

pion is deflected to the left–hand side of the target spin when looking in the direction

of the virtual photon, so that φ = 0, as illustrated in charts (e) and (f). For both target

spin orientations, the azimuthal modulation of the Collins effect sin(φ + φS) = sin(π/2)

is therefore positive and consistent with the measured Collins moment for π+, which is

dominated by scattering off u quarks.

The Artru model yields the correct sign for the π+ Collins moment under the condition

of a positive transversity DF for u quarks which is predicted by all models for transver-

sity, e.g., by the chiral quark soliton model
[

Efr05, Wak01
]

and the light–cone quark–

spectator–diquark model
[

Ma02
]

. Both models give a negative transversity DF for the

d quark. Lattice QCD calculations
[

Aok97
]

yield a positive (negative) first moment of the

valence u (d) quark transversity distributions consistent with δu > 0 and δd < 0. A per-

turbative QCD based analysis
[

Ma02
]

results also in δu > 0 but the d quark transversity

becomes positive for large x & 0.4.

In Figure 8.3.6, predictions for virtual–photon asymmetry amplitudes from the chiral

quark soliton model
[

Efr05
]

are compared to the measured Collins amplitudes multiplied

by the kinematic factor A(〈y〉, R)/B(〈y〉), as described in Section 8.2. For the good de-

scription of the charged pion amplitudes, the ratio of the disfavoured to the favoured
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plitudes obtained from the chiral quark soliton model for transver-

sity and 〈H⊥1,dis〉 = –1.2〈H⊥1,fav〉 < 0
[

Efr05
]

.

Collins functions had to be set to –1.2. For the favoured Collins function a value ob-

tained from an analysis of DELPHI data
[

Efr99
]

was taken. Since the prediction satisfies the

Makins Relation, the predicted amplitudes for neutral pions have smaller absolute values

than the measured amplitudes.

Results of a fit to the unweighted Collins amplitudes of charged pions with parametri-

sations for the transversity and Collins functions
[

Vog05
]

are shown in Figure 8.3.7. The

parametrisations are based on the Soffer limit in case of transversity and are proportional

to the unpolarised favoured FF for favoured and disfavoured Collins functions. A good
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Figure 8.3.7: Unweighted Collins amplitudes of all pion types together with the

results of a fit to the charged pion amplitudes
[

Vog05
]

.
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description like in Figure 8.3.7 of the charged pion amplitudes is also achieved with a

parametrisation of the Collins functions in terms of the unpolarised favoured and dis-

favoured FFs which have different z dependencies. In both cases, the absolute ampli-

tudes for the neutral pions computed with the obtained fit parameters are smaller than

the measured amplitudes. The fit and the prediction of the chiral quark soliton model in

Figure 8.3.6 give almost identical x dependencies of the unweighted Collins amplitudes.

In summary, model calculations which do not take into account the disfavoured

Collins FF are not able to reproduce the measured unweighted Collins amplitudes for

positive pions. Predictions from the chiral quark soliton model describe the measured

amplitudes for charged pions well when the disfavoured Collins function is set to a value

of similar size but opposite sign compared to the favoured Collins function. This is also the

result of a fit to the unweighted Collins amplitudes of the charged pions. These results

can be used to predict the unweighted amplitudes of the neutral pions resulting in val-

ues of smaller absolute size than the measured amplitudes. The underestimation of the

absolute size of the neutral pion amplitudes, which is also present in the predictions from

the chiral quark soliton model, is the consequence of the Makins–Relation violation of the

measured amplitudes. Both the predictions from the chiral quark soliton model and the

parametrisations used in the fit satisfy Eq. (8.1.9) and hence the Makins Relation.

8.4 The Sivers Moments

The unweighted Sivers amplitudes as functions of x, z, Ph⊥, y, and Q2 are plotted in Figure

8.4.1 for charged and neutral pions and charged kaons. Also the Sivers amplitudes are

listed in Tables F.8 – F.12 together with their statistical and systematic uncertainties. In

the latter, the 6.6 % scale uncertainty due to the target polarisation measurement is not

included.

Since the Sivers function is combined with the unpolarised FF and because of u quark

dominance, the Sivers amplitudes of positive pions and kaons are expected to be similar.

However, the kaon amplitudes are twice as large as the pion amplitudes. While it might

be important to consider the Sivers function of sea quarks for an explanation of the large

difference between the kaon and pion amplitudes the Sivers function had to be much

larger for s quarks than for u quarks. In the absence of other known mechanisms, the fact

that the kaon Collins amplitudes are smaller than the pion Collins amplitudes (cf. Figure

8.3.1) together with the anti–correlation of the extracted Collins and Sivers functions might

indicate that part of the difference is caused by a statistical fluctuation although the real

causes are presently not understood. In addition, the unweighted amplitudes contain a

kinematic factor dependent on the mean values of ~pT and ~kT (cf. Section 2.5.2) which in

principle could be flavour dependent. Like the Collins amplitudes for the negative kaons

also the Sivers amplitudes are consistent with zero.

Figure 8.4.2 shows the comparison of the measured unweighted Sivers amplitudes with

a model estimate in which the Sivers function is calculated in a spectator model of the

nucleon with scalar and axial–vector diquarks
[

Bac04e
]

. The gauge link that is necessary

to generate the T–odd Sivers function (cf. Section 2.4.3) is approximated by an one–gluon

exchange. The obtained Sivers function for d quarks has the opposite sign and a much

smaller size compared to the u quark Sivers function. The asymmetry amplitudes esti-
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Figure 8.4.1: Unweighted Sivers amplitudes for all five hadron types as functions

of x, z, Ph⊥, y, and Q2. An additional 6.6 % scale uncertainty from

the target polarisation measurement is not included in the shaded

systematic uncertainty bands.

mated from this model describe the order of magnitude of the positive and neutral pion

amplitudes. For the negative pions, however, a Sivers amplitude similar to the amplitude

of the positive pions is calculated which is in contradiction to the measurement.

Two fits to the amplitudes of the charged pions have been performed so far. A simple
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Figure 8.4.4: Sivers amplitudes of pions and kaons compared to a fit to the un-

weighted amplitudes of charged pions
[

Ans05, Pro05
]

.

parametrisation of the Sivers function with only one free parameter is used in the fit shown

in Figure 8.4.3
[

Vog05
]

. For u and d quarks, the (1/2)–moment of the Sivers function is

modelled as N · x(1 − x) · u(x). It is assumed to vanish for all other quark and antiquark

flavours. A more complex parametrisation with three parameters based on the individual

unpolarised DFs is implemented in the fit in Figure 8.4.4. Here, also ū and d̄ antiquarks are

considered besides the u and d valence quarks. Both fits describe the amplitudes of the

charged pions well and give similar ratios of the d to u quark Sivers functions. The fit in

Figure 8.4.3 yields a negative Sivers function for the u quark and f⊥d
1T ≈ −2 · f⊥u

1T . The

second fit shown in Figure 8.4.4 results in the relation f⊥dv
1T ≈ −1.5 · f⊥uv

1T for the valence

quarks.

From the obtained parametrisations, it is possible to predict the amplitudes of the neu-

tral pions. The amplitudes of the charged kaons can be estimated neglecting s quarks,

i.e., f⊥s
1T = f⊥s̄

1T = 0. Since the measured Sivers pion amplitudes violate the Makins Relation

by 2σ, the measured π0 amplitudes are above the predicted curves of both parametri-

sations. Kaon amplitudes are only given for the second fit in Figure 8.4.4. Here, the neg-

ative kaons are described well but the measured amplitudes of the positive kaons are

larger than the results obtained from the parametrisation which does not include strange

quarks.
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Figure 8.4.5: Impact parameter distribution functions of unpolarised u and d

quarks in a transversely polarised nucleon for x = 0.3 (left and mid-

dle panels). Shifted quark DFs for observed quark momenta xobs

smaller and larger than the quark momentum xq (right panel).

A descriptive picture of the relation between the orbital angular momentum of the

quarks and the Sivers effect can be obtained when the quark DFs are expressed in im-

pact parameter space
[

Bur02
]

so that the unpolarised DF can be written as:

q(x) =

∫

d2~bT q(x,~bT ) , (8.4.1)

with the impact parameter ~bT = (bx, by). The reference point for the impact parameter is

the transverse centre of the longitudinal momentum, i.e., the sum over the transverse po-

sitions ~rT,i of all quarks, antiquarks, and gluons in the target weighted by their momentum

fractions xi:
~RT =

∑

q,q̄,g

xi~rT,i . (8.4.2)

The impact parameter dependent DF q(x,~bT ) of unpolarised quarks is axial symmetric

for unpolarised nucleons and nucleons with their spins aligned with the momentum di-

rection (z–axis), i.e., longitudinally polarised nucleons. In case of transversely polarised

nucleons, the distribution of unpolarised quarks qX(x,~bT ) is distorted perpendicular to the

spin and the momentum of the nucleon. This distortion vanishes when there is no quark

orbital angular momentum parallel to the nucleon spin. Even though the mathematical

description of the distortion is model–independent, models for the impact parameter de-

pendencies have to be used in order to visualise these distortions. An example for the

distributions of unpolarised u and d quarks in a transversely polarised nucleon is shown in

the left two panels of Figure 8.4.5 for a momentum fraction of x = 0.3. The nucleon spin is

in the x–direction, i.e., pointing to the right, and the virtual–photon direction is along the

negative z–axis, i.e., pointing into the page. The signs of the distortions in Figure 8.4.5 are

fixed by the signs of the anomalous magnetic moments of the proton and the neutron.

In a semi–classical picture, the superposition of translational and orbital motion of the

quarks can be identified as the cause of the distortion of the distribution function. For

quarks with an orbital angular momentum parallel to the nucleon spin in the x–direction,

i.e., pointing to the right in case of the distributions plotted in Figure 8.4.5, the orbital
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Figure 8.4.6: Illustration of the scattering process off a u quark in the semi–

classical picture with the production of a π+ meson.

momentum adds to the quark momentum in the top and subtracts in the bottom. Hence,

a quark with a given momentum fraction xq is probed by the virtual photon at a higher

momentum fraction xobs > xq in the top and a smaller fraction xobs < xq in the bottom.

In the top the unpolarised DF is therefore shifted towards higher x values while in the

bottom it is shifted to smaller x values as shown in the right panel of Figure 8.4.5. Since the

unpolarised DF decreases with increasing values of x in the valence region, the increase

of the momentum on one side of the nucleon spin results in a larger number of quarks for

a certain observed momentum fraction xobs at this side. At the opposite side, less quarks

are observed at xobs due to the decrease of the quark momentum, resulting in a distortion

of the DF at xobs towards the top. For quarks with antialigned orbital angular momentum,

the DF is distorted towards the bottom. This semi–classical picture thus yields a positive

orbital angular momentum for u quarks and a negative orbital angular momentum for d

quarks.

In Figure 8.4.6 the scattering process is schematically illustrated for a nucleon spin

orientation perpendicular to the scattering plane, i.e., φS = π/2. For a positive orbital

angular momentum of the u quarks, the u quark density is enhanced in the left hemi-

sphere of the nucleon when looking along the virtual–photon direction so that it will be

absorbed more likely by a u quark in that region. After the absorption, final–state inter-

actions (FSI) (cf. Section 2.4.3) bend the quark towards the centre. The FSI are attractive

since struck quark and the spectators—the remaining quarks from the nucleon—form a

colour antisymmetric state. The outgoing positive pion that contains the struck quark is

therefore observed on the right–hand side of the nucleon spin, i.e., φ = π. Thus, the de-

scription of the quark DFs in the impact parameter space yields a positive Sivers moment

sin(φ − φS) = sinπ > 0 for u quarks fragmenting into π+. This is consistent with the positive

Sivers amplitudes for π+ in the HERMES data which are dominated by the scattering off u

quarks. In case of π− production, both u and d quarks have to be taken into account

because of the quark–charge factor e2q and the results cannot be interpreted solely in

terms of d quark scattering. Scattering from d quarks alone would yield a negative Sivers

moment so that the two quark flavours contribute with opposite sign to the Sivers moment

and their contributions might cancel.
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8.5 Extraction of the Quark Distribution Functions

8.5.1 Sivers Distribution Function

Moving the kinematic factors out of the integrals, using the definition of the purities in

Eq. (2.5.30), and assuming Gaussian distributions for the quark transverse momenta, the

unweighted Sivers moment (2.5.28) of a hadron type h in a certain x bin i can be written

asi:

〈sin(φ− φS)〉hUT(xi, 〈Q2〉) = − 1
√

1 + 〈K2
T 〉/(〈z〉2〈p2

T 〉)
1 +R(xi, 〈Q2〉)

1 + γ2

∑

q,q̄

Ph
q (xi)

f
⊥(1/2)q
1T (xi)

q(xi)

= −CT Ci
∑

q,q̄

Ph
q (xi)

f
⊥(1/2)q
1T (xi)

q(xi)
. (8.5.1)

The additional kinematic factor Ci = (1 + R(x,Q2))/(1 + γ2) arises from the determination

of the purities using parametrisations for the unpolarised DFs. Technically, the parametri-

sations are obtained by fits to the world data on F2. In order to relate the functions to the

structure function F1, this additional factor has to be applied (cf. Eq. (2.1.20))
[

Ack99
]

.

The kinematic factor CT is identical for the different hadron types since the mean values

of the quark transverse momenta are assumed to be independent of the quark flavours.

Eq. (8.5.1) can be expressed as a matrix equation for m hadron types and n quark

flavours:
~A(xi) = −Ci · P (xi) ~Q(xi) , (8.5.2)

with the vectors,

~A =







〈sin(φ− φS)〉h1
UT(xi)

...

〈sin(φ− φS)〉hm
UT(xi)






, ~Q =











CT f
⊥(1/2)q1
1T

q1
(xi)

...

CT f
⊥(1/2)qn
1T

qn
(xi)











, (8.5.3)

and the purity matrix:

P =







Ph1
q1

(xi) . . . Ph1
qn

(xi)
...

. . .
...

Phm
q1

(xi) . . . Phm
qn

(xi)






. (8.5.4)

The Sivers polarisations f
⊥(1/2)q
1T (x)/q(x) multiplied by the kinematic factor CT can be

obtained for n ≤ m by minimising the figure–of–merit function:

χ2 = ( ~A+ Ci · P ~Q)T V
−1
A ( ~A+ Ci · P ~Q) . (8.5.5)

Here, VA denotes the covariance matrix of the set of asymmetry moments. For a first

attempt to extract the Sivers polarisations, the systematic uncertainties as well as the

statistical correlations of the asymmetry moments are neglected. The off–diagonal el-

ements of the covariance matrix then vanish and the diagonal elements are given by

i|~ST | ≈1 since the measured azimuthal asymmetry is normalised by the target polarisation and the angle

between incoming lepton and virtual photon is small.
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Figure 8.5.1: Extracted Sivers polarisations for flavour and valence decomposi-

tion and the assumption of a symmetric sea polarisation.

the squared statistical uncertainty. The figure–of–merit function was implemented in a fit

program based on MINUIT.

Six quark and antiquark flavours have to be taken into account for HERMES kinematics

where the u and d quarks can be split up into valence quarks, uv and dv , and sea quarks,

us and ds. However, asymmetry moments are measured only for five hadron types. There-

fore, a symmetric sea polarisation is assumed:

f
⊥(1/2)qs

1T (x)

qs(x)
≡ f

⊥(1/2)us

1T (x)

us(x)
=
f
⊥(1/2)ū
1T (x)

ū(x)
=
f
⊥(1/2)ds

1T (x)

ds(x)

=
f
⊥(1/2)d̄
1T (x)

d̄(x)
=
f
⊥(1/2)s
1T (x)

s(x)
=
f
⊥(1/2)s̄
1T (x)

s̄(x)
.

(8.5.6)

Different combinations of the three remaining valence u–quark, valence d–quark, and

sea–quark distributions can be extracted. Two of these are the flavour decomposition:

CT
f
⊥(1/2)u
1T + f

⊥(1/2)ū
1T

u+ ū
, CT

f
⊥(1/2)d
1T + f

⊥(1/2)d̄
1T

d+ d̄
, CT

f
⊥(1/2)s
1T + f

⊥(1/2)s̄
1T

s+ s̄
, (8.5.7)

and the valence decomposition:

CT
f
⊥(1/2)uv

1T

uv
= CT

f
⊥(1/2)u
1T − f⊥(1/2)ū

1T

u− ū , CT
f
⊥(1/2)dv

1T

dv
= CT

f
⊥(1/2)d
1T + f

⊥(1/2)d̄
1T

d+ d̄
,

CT
f
⊥(1/2)qs

1T

qs
.

(8.5.8)

For both decompositions the elements of the purity matrix P are combinations of the

purities of the individual quark and antiquark flavours, which are shown in Figure E.1.

The expressions for the elements of the purity matrices in case of flavour and valence

decomposition can be found in
[

Bec00
]

.

Figure 8.5.1 shows the extracted Sivers polarisations for the flavour and the valence

decomposition. In the Sivers asymmetry moments, no higher order αs corrections are

applied to the kinematic factor A(y) of the unpolarised cross section, i.e., the y depen-

dence of the Sivers and the unpolarised cross–section terms cancel (cf. Section 8.2). The

reduced χ2 of the fit is close to 1 in the lowest and the two highest x bins. The second and
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third x bins with their large K+ amplitudes have worse values of the reduced χ2 above

5. However, the systematic uncertainties and the statistical correlations are not yet in-

cluded in the extraction and the assumption of the symmetric sea polarisation might not

be appropriate.

A larger sensitivity in the extraction of the sum of quark and antiquark distributions,

i.e., in the flavour decomposition, than in the extraction of their differences is visible, as

it was already found in case of the helicity distribution function
[

Dür98
]

. The obtained

flavour symmetric sea polarisation is consistent with zero and hence the u and d quark

Sivers polarisations for flavour and valence decompositions are comparable. The Sivers

polarisation of the u quark is negative in contrast to the positive d quark polarisation.

Since the unpolarised DF for u quarks is about twice as large as for d quarks, the extracted

Sivers functions for u and d quarks are of similar size. Furthermore, a negative (positive)

Sivers function corresponds to a net motion of the struck quark to the right (left) when

looking along the direction of the virtual photon if the proton spin is upwards
[

Bac04a
]

. In

this case the semi–classical picture described in the previous section suggests a positive

(negative) orbital angular momentum for u (d) quarks. The Sivers polarisations still contain

the kinematic factor CT which is around 0.7 in the case of 〈k2
T 〉 ≈ 〈p2

T 〉. For 〈K2
T 〉 ≈ 〈p2

T 〉 and

z ≈ 0.36, CT is around 0.3.

8.5.2 Transversity

As shown earlier, the HERMES data alone restrict the ratio of the disfavoured and the

favoured Collins functions. However, they do not allow to separate the transversity DFs. To

gain information about δq(x), the Collins function has to be measured, e.g., in electron–

positron annihilation with the production of a quark–antiquark pair that fragments into

hadrons (cf. Figure 2.6.1(c) on page 31). Since there is a non–zero probability that quarks

have their spins aligned transversely to the lepton beams, the Collins function causes

the correlation of the transverse momenta of the produced hadrons. This leads to an

azimuthal modulation in the cross section of inclusive two–hadron production. This mod-

ulation can be expressed either by one azimuthal angle φ0, defined with respect to the

momentum of one of the produced hadrons, or by two azimuthal angles φ1 and φ2, de-

φ′2 = φ2 − π

φ′2 φ1φ0

θ0 θ1
~Ph1

~Ph2

~Ph2 ~Ph1

e+

e−

e+

e−
thrust axis

Figure 8.5.2: Definition of the azimuthal angles for two–hadron production in

electron–positron annihilation.
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fined with respect to the measured thrust axis which is an approximation of the quark–

antiquark axis. These two definitions are depicted in Figure 8.5.2.

In both reference systems, the azimuthal asymmetry contains a cosine modulation:

cos 2φ0 or cos(φ1 + φ2), respectively. The amplitudes of these modulations are proportional

to the product of quark and antiquark Collins functions
[

Boe97
]

:

Acos 2φ0 =
sin2 θ0

1 + cos2 θ0

1

M1M2

F
[

H⊥q
1 (z1)H

⊥q̄
1 (z2)

]

Dq
1(z1)D

q̄
1(z2)

, (8.5.9)

Acos(φ1+φ2) =
sin2 θ1

1 + cos2 θ1

H
⊥[1]q
1 (z1)H

⊥[1]q̄
1 (z2)

Dq
1(z1)D

q̄
1(z2)

, (8.5.10)

where F is a convolution integral over transverse quark and hadron momenta, M1 and

M2 are the masses of the two hadrons, and z1 and z2 are their energy fractions. In contrast

to the (1/2)–moment in Eq. 2.5.4 where the integration is over ~kT , the [1]–moment of the

Collins FF contains the integral over |~kT |:

H
⊥[1]
1 (z) =

∫

d|~kT |
|~kT |
Mh

H⊥1 (z, z2k2
T ) . (8.5.11)

The polar angle θ0 (θ1) is defined between the hadron momentum (the thrust axis) and

the electron momentum (cf. Figure 8.5.2) and determines the transverse polarisation of

the quark–antiquark pair: sin2 θ0/1/(1 + cos2 θ0/1).

A first measurement of azimuthal asymmetries in the production of charged–pion

pairs in electron–positron annihilation was performed with the BELLE detector
[

Aba02
]

at an asymmetric electron–positron collider, the KEKB accelerator in Tsukuba City, Japan.

Both asymmetry amplitudes were found to be significantly positive for pions with energy

fractions between 0.2 and 1.0
[

Abe05
]

. Yet, the extraction of the Collins function from

these promising data is only possible with assumptions on the ratio of the disfavoured to

favoured Collins function. The restriction on this ratio derived from the HERMES data will

provide helpful information for a first attempt of the Collins FF extraction. In addition, fu-

ture measurements for the production of neutral–pion pairs will allow the determination

of this ratio.

8.6 Other Options to Measure the Transversity and Sivers Functions

8.6.1 Possibilities at HERMES

Two–Hadron Production in Semi–Inclusive DIS

An alternative process to access the transversity function is the semi–inclusive production

of two hadrons in DIS. In this process, the transverse spin of the quark inside a transversely

polarised nucleon can be correlated to the transverse momentum of the hadron pair,

instead of the transverse momentum of a single hadron. This allows to probe transversity

without the inclusion of partonic transverse momenta. The study of such two–hadron

fragmentation processes was already proposed in 1993
[

Col94
]

and 1998
[

Jaf98
]

.

The differential cross section for semi–inclusive two–hadron production in DIS on a

transversely polarised target, integrated over the transverse momentum of the hadron
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x
y

z

φS

φR⊥~Ph

~P1
~P2

~ST

~l

~l′

~q θ

~P1

~P2

~Ph in the
target rest frame

Figure 8.6.1: Definition of the azimuthal angle φR⊥ (left) and the polar angle θ

(right) for two–hadron production in DIS. The latter is defined in the

two–hadron centre–of–mass system.

pair, is
[

Bac03b, Bac04d
]

:

d7σUT

dxdy dz dφS dφR⊥dcos θ dM2
ππ

= (8.6.1)

− α2

2πsxy2

∑

q,q̄

e2qB(y)|~ST |
|~R|
Mhh

sin(φR⊥ + φS) sin θ δq(x)
[

H∢sp
1 (z,M2

hh) + cos θH∢pp
1 (z,M2

hh)
]

,

where z is the energy fraction of the hadron pair and Mhh its invariant mass. For two

hadrons with equal mass Mh, |~R| = 1
2

√

M2
hh − 4M2

h . The azimuthal angle φR⊥ and the

polar angle θ are defined in Figure 8.6.1. The transversity DF appears in conjunction with

a combination of two–hadron FFs that describe the interference of different production

channels of the hadron pair. The chiral–odd and T-odd FFs H∢sp
1 (z,M2

hh) and H∢pp
1 (z,M2

hh)

are related to the interference between the s–wave and p–wave channels and between

two p–wave channels, respectively. The index q → hh is omitted for clarity. As for one–

hadron production, two terms exist in the Ph⊥–dependent cross section that include the

Sivers function and a two–hadron FF, equivalent to the Collins function for one–hadron

production. However, these two terms vanish when the cross section is integrated over

the transverse momentum of the hadron pair.

The advantages of such a measurement are the independent access to transversity—

different FFs than for one–hadron production are involved—and that DF and FF are not

embedded in a convolution integral. The disadvantage is a significantly smaller count

number of hadron pairs compared to single hadron events; about five times less π+π−

pairs than single π+ events can be identified in the HERMES data on a transversely po-

larised target. Nevertheless, the high statistics of the 2002–2004 combined data produc-

tions allows the determination of the azimuthal asymmetry for semi–inclusive π+π−–pair

production. The azimuthal amplitude of interest is extracted by a two–dimensional fit

dependent on φR⊥ + φS and θ and found to be significantly positive
[

vdN05
]

:

A
sin(φR⊥+φS) sin θ
UT = 0.040± 0.009 (stat.)± 0.003 (syst.) . (8.6.2)

This azimuthal asymmetry can be evaluated even in four different invariant mass bins

between 0.25 and 2.0 GeV, yielding four positive asymmetry moments as shown in Figure
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Figure 8.6.2: Asymmetry amplitude A
sin(φR⊥+φS) sin θ
UT for semi–inclusive π+π−–pair

production as a function of the invariant mass Mππ of the pion pair.

8.6.2. This result is clearly inconsistent with a sign change at the mass of the ρ0 vector

meson, predicted in a two–meson phase shift analysis
[

Jaf98
]

. The asymmetry moments

rather show a maximum around the ρ0 mass, as predicted, e.g., in
[

Rad05
]

.

Also for the two–hadron production, measurements of the interference FFs by the BELLE

collaboration will allow the extraction of the transversity DF. Even though the statistical

precision and the number of kinematic bins with sufficient statistics are limited, such a

measurement provides an alternative access to transversity, requiring no assumption on

the distributions of the quark transverse momenta.

Polarimetry of the Final–State Hadron

So far, only the production of spin–zero mesons has been considered. However, also the

analysis of semi–inclusive production of spin–1
2 or spin–1 hadrons can provide information

about transversity. The production of transversely polarised hadrons on a transversely po-

larised target is sensitive to the transversity DF. Like in the case of two–hadron production,

the interpretation of this cross–section term in terms of DF and FF is not hampered by the

convolution over quark transverse momenta. The challenge of such a measurement is

the determination of the polarisation of the produced hadrons. In case of a two–particle

decay of the produced hadron, this can be achieved through the analysis of the decay

angular distributions.

For spin–1
2 hadrons, like the Λ0 baryon, the transversity function and the conjunct twist–

two FF H1 exhibit a cos(φS + φSh) modulation where φSh is the azimuthal angle between

the transverse Λ0 polarisation axis and the lepton scattering plane
[

Boe98
]

. The azimuthal

modulation cos(φS − φSh) is proportional to the Sivers function, yet the DF and FF require

the inclusion of transverse quark momenta and are embedded in a convolution integral.

Unfortunately, the small acceptance for Λ0 baryons in the HERMES experiment together

with the complex decay angular distribution analysis will not allow the extraction of the

azimuthal asymmetries amplitudes from the complete HERMES data sample on a trans-
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versely polarised target, i.e., including the data recorded in the year 2005.

Higher statistics are available for the analysis of semi–inclusive vector mesons, i.e., spin–

1 hadrons, especially in the case of the ρ0 meson decaying into a pion pair. As for the

two–hadron production, the amplitude of the sin(φR⊥ + φS) modulation is proportional

to transversity
[

Bac02b
]

. Even though a large amount of semi–inclusive ρ0 mesons are

present in the data, a huge background of non–resonant pion pairs will probably inhibit

such an analysis.

Subleading–Twist Components

For the semi–inclusive production of a single spin–zero hadron, the transversity DF appears

not only together with the Collins function but also in conjunction with the twist–three FF

H̃(z, z2k2
T ) in the differential cross section dσUT (see Table 2.5.1 on page 26). The latter

combination is part of the twist–three cross–section term that exhibits a sinφS modulation.

The sinφS moment of the cross section,

〈 sinφS〉UT(x, y, z) = |~ST |
M

Q

1
xy2D(y)

2 1
xy2A(y)

∑

q,q̄ e
2
q q(x)D

q
1(z)
× (8.6.3)

∑

q,q̄

e2q

∫

d2 ~Ph⊥I
[

xfTD1 −
Mh

Mz
δqH̃ − ~pT · ~kT

2MMh

{

x(hT − h⊥T )H⊥1 +
Mh

Mz

(

f⊥1T D̃
⊥ − g1T G̃

⊥
)

}

]

,

contains besides the product δq · H̃ a term proportional to ~pT · ~kT /(2MMh) and the prod-

uct of the unpolarised FF and the twist–three DF fT . After performing the convolution

integral over the transverse momenta of the initial and final quarks and the produced

hadron,
∫

d2 ~Ph⊥I[. . . ] (cf. Section 2.5.2), only the two terms proportional to the FFs D1 and

H̃ remain because the third term is odd in both quark transverse momenta. Since the

gauge–link (cf. Section 2.4.3) contributes to the quark–quark–correlation function only for

~pT –dependent DFs where ξT 6= 0, T–odd DF that are independent of ~pT are expected

to be zero. So far, no mechanism has been found which could create non–zero ~pT –

independent DF that are T–odd like the twist–three DF fT . Hence, Eq. (8.6.3) reduces

to:

〈sinφS〉UT(x, y, z) = −|~ST |
Mh

Qz

1
xy2D(y)

∑

q,q̄ e
2
q δq(x)H̃

q(z)

2 1
xy2A(y)

∑

q,q̄ e
2
q q(x)D

q
1(z)

. (8.6.4)

In contrast to the twist–two Collins moment, the convolution integral over the product

of transversity and the FF H̃ resolves without any assumption on the quark transverse

momenta simplifying the interpretation in terms of DF and FF.

With the two–dimensional fit function (4.3.2) (see page 63), the sinφS moment is ex-

tracted from the azimuthal asymmetries together with the Sivers and Collins moments

and found to be significantly negative in case of the negative pions, as can be seen

in Figure 4.4.4. For the final 〈sinφS〉UT extraction, the influence of possible biases on the

moment extraction has to be studied which will require the implementation of the sinφS

moment in the Monte Carlo generator gmc_trans (see Section 5.2).

So far, no experimental information about the twist–three FF H̃ exists that would allow

the extraction of transversity from the sinφS moment. The function H̃ has been introduced

in 1993
[

Jaf93
]

i and is—like the Collins function and the interference FF—accessible in

iHere, H̃ is called ê1̄.



8.6.2 Other Semi–Inclusive DIS Experiments 175

electron–positron annihilation, e.g., in the BELLE experiment. However, since H̃ is sup-

pressed by Q and at BELLE Q =
√
s is 10.52 GeV in contrast to a mean Q of around 1.5 GeV

at HERMES, the expected small values of the asymmetries might require a very large data

set to make such a measurement feasible. A measurement at a lower centre–of–mass en-

ergy of about 4 GeV could be performed with the BES experiment at the BEPC electron–

positron collider in Beijing, China, which will be upgraded to yield higher luminosities.

Another subleading–twist component can in principle be used to measure transversity
[

Jaf93
]

. This component exhibits a cosφS modulation in the cross section for a longitudi-

nally polarised lepton beam and a transversely polarised target
[

Mul96
]

. Like the sinφS

moment (8.6.3), the moment 〈cosφS〉LT contains terms involving different combinations

of subleading–twist DFs or FFs which partially vanish when integrated over transverse mo-

menta. After integration one term remains in addition to the product of transversity and

the twist–three FF Ẽ:

〈cos φS〉LT(x, y, z) = −|~ST |
M

Q

2y
√

1−y
xy2

∑

q,q̄ e
2
q

(

Mh
Mz δq(x)Ẽ

q(z) + xgq
T (x)Dq

1(z)
)

2 1
xy2A(y)

∑

q,q̄ e
2
q q(x)D

q
1(z)

. (8.6.5)

This term contains the T–even twist–three DF gT which is not constrained to zero by time–

reversal symmetry arguments like the T–odd function fT . In fact, gT is linked to the sum

of the structure functions g1 and g2 (cf. Eq. (2.4.24) on page 21) which both have been

shown to be non–zero at least for certain ranges in x (cf. Figure 2.1.4 and
[

Ant03
]

). An

isolation of this contribution of transversity to 〈cosφS〉LT will therefore be more difficult than

for 〈sinφS〉UT.

8.6.2 Other Semi–Inclusive DIS Experiments

The COMPASS Experiments

Like the HERMES experiment, the COMPASS experiment
[

Mal04
]

at CERN in Geneva, Switzer-

land, can measure azimuthal asymmetry amplitudes for semi-inclusive hadron production

in DIS. Instead of positrons, muons with an energy of 160 GeV are scattered off an alter-

nating transversely and longitudinally polarised solid state target. The COMPASS collabo-

ration probes the structure of the deuteron with a fixed solid state 6LiD target.

For positive and negative hadrons, the Sivers and Collins moments were found to be

consistent with zero
[

Ale05
]

. This is not in contradiction with the significantly non–zero

HERMES results, as was shown in a calculation of the asymmetry moments for the deuteron
[

Vog05, Ans05
]

. In this calculation the results for the DFs and FFs of the fits to the HERMES

data shown in Figures 8.3.7 and 8.4.3 were used.

The high luminosity of the COMPASS experiment will allow a significant improvement

in the present level of precision of the Sivers and Collins moments. Furthermore, future

results for azimuthal asymmetries in two–hadron production and transversely polarised Λ0

production are expected
[

Bra05
]

.

The CLAS Experiments

The CLAS experiment in Hall B of the Jefferson Lab, Newport News, USA uses the 6 GeV

electron beam provided by the CEBAF accelerator. The strength of the CLAS experi-
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ment is its very good geometric coverage. Single–spin asymmetries on a longitudinally

polarised solid state proton (NH3) target have been presented for neutral and charged

pions
[

Ava05
]

. Measurements of Collins and Sivers as well as subleading–twist amplitudes

with high statistics at larger Q2 values will be possible with the proposed upgrade of the

accelerator to 12 GeV and the installation of a transversely polarised solid state target.

8.6.3 Hadron–Hadron Scattering Experiments

The RHIC Spin Program

RHIC is the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory in Upton,

USA. RHIC cannot only be operated with stored heavy ion beams but also with proton

beams. They collide with an average centre–of–mass energy up to 500 GeV. The suc-

cessful acceleration of longitudinally or transversely polarised proton beams opened the

possibility of spin related measurements at RHIC. Four experiments participate in the RHIC

spin program: PHENIX, STAR, BRAHMS, and PP2PPii .

The first data, colliding a transversely polarised with an unpolarised proton beam, were

taken in the years 2001 and 2002. Single–spin asymmetries in inclusive neutral–pion and

charged–hadron production were measured at STAR and PHENIX
[

Aid04, Fat04
]

. Yet, the

measured asymmetries do not allow the distinction between Sivers, Collins, and twist–

three effects. In the year 2006, additional data with transversely polarised protons will be

taken which will increase the precision of the existing results.

Transversity measurements using the Drell–Yan process (see Figure 2.6.1(b)) require

transverse polarisation of both proton beams due to chirality conservation. They are

sensitive to the product of a quark and an antiquark transversity DF, i.e., the product

of a valence–quark and a sea–quark transversity function. For the proton, sea–quark

transversity is expected to be small because the gluons which split up into the sea quark–

antiquark pairs do not exhibit a transversity distribution (see Section 2.4.1). Hence, only

small double–spin asymmetries for the Drell–Yan process are predicted in proton–proton

scattering and a very high luminosity is therefore necessary for such a measurement.

More promising are the prospects of measuring the Sivers function in Drell–Yan as here

the valence–quark Sivers function can be combined with the unpolarised sea–quark DF

which increases for small x. Also other possibilities to access the Sivers function have been

discussed recently
[

Boe04
]

.

The PAX Proposal

The proposed PAX experiment plans to use an asymmetric proton–antiproton collider in-

cluding the approved High Energy antiproton Storage Ring (HESR) at the GSI in Darm-

stadt, Germany, to access the transversity DF. In polarised proton–antiproton scattering,

larger Drell–Yan asymmetries are predicted compared to proton–proton scattering since

two valence–quark distributions enter the cross section. As in the RHIC spin program, also

the Sivers function can be accessed in the PAX experiment. Provided the PAX proposal is

accepted, the start of the data taking with polarised protons and antiprotons is forseen

for the year 2015
[

Bar05
]

.

iiThe PP2PP experiment investigates elastic proton–proton scattering.
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In the year 2001 a transversely polarised hydrogen target was installed in the HERMES

experiment which allowed the individual measurements of azimuthal asymmetry ampli-

tudes in semi–inclusive deep–inelastic scattering that contain the transversity and the

Sivers distribution functions. For this thesis, the data taken with the transversely polarised

target in the years 2002 through 2004 were analysed. Unweighted and Ph⊥–weighted

Collins and Sivers amplitudes were extracted for charged and neutral pions and charged

kaons by a two–dimensional fit of the azimuthal single–spin asymmetry. In studies sys-

tematic influences on these results from various experimental sources, like spectrometer

acceptance and resolution, particle misidentification, knowledge of the beam and tar-

get polarisations, and the extraction method itself, were investigated. To enable these

studies, Collins and Sivers amplitudes were implemented in an unpolarised Monte Carlo

data sample by weighting events dependent on a randomly assigned target spin state.

Furthermore, a new Monte Carlo generator, gmc_trans, was developed which simulates

azimuthal distributions due to transverse–momentum dependent quark distribution and

fragmentation functions. Unweighted asymmetry amplitudes implemented into this gen-

erator could be reproduced well after the simulated event reconstruction in the HERMES

detector. For Ph⊥–weighted amplitudes, the incomplete integration over Ph⊥ within the

HERMES acceptance strongly affects the reconstructed amplitudes.

Besides mesons from semi–inclusive DIS, the analysed data samples contain a con-

tribution of decay mesons from exclusively produced vector mesons. It is currently still

under debate whether or not this contribution has to be treated as a background. The

fractions of mesons which stem from exclusive vector mesons were determined for the

different hadron samples with the PYTHIA Monte Carlo generator which includes the ex-

clusive production of vector mesons. The largest vector–meson decay fractions—up to

10 % in the kinematic domain used in the analysis—are contained in the charged–pion

samples. These fractions, which are dominated by exclusive ρ0 decays, even increase

to values about 50 % for z > 0.7, which is outside of the kinematic range regarded in

this analysis. Neutral pions and charged kaons have contributions of less than 4 % in the

range 0.2 < z < 0.7. The decay particles from exclusive vector mesons do not only dilute

the extracted amplitudes but they can also exhibit Collins and Sivers type amplitudes.

These amplitudes can either arise from an amplitude of the exclusively produced vector

mesons which is transferred to the decay mesons or they can be acquired in the de-
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cay process. With the help of the PYTHIA and the DIPSI Monte Carlo generators, transfer

coefficients for charged pions coming from exclusive ρ0 decays and neutral pions from

exclusive ω decays were determined. Moreover, the statistics of the HERMES data allowed

the extraction of Collins and Sivers type amplitudes for exclusive ρ0 mesons. The ampli-

tudes were extracted for the kinematics of both the ρ0 vector meson and its decay pions.

In both cases the obtained amplitudes were small (of the order of a few percent) and

statistically consistent with zero. For the estimate of the amplitudes acquired in the de-

cay process, the decay angular distribution of ρ0 mesons was investigated. It could be

shown that the acquired Collins and Sivers amplitudes are also expected to be small in

the semi–inclusive range. The same result is expected from the domination of natural par-

ity exchange and the rather small violation of s–channel helicity conservation observed

in HERMES data.

A method to suppress the exclusive ρ0 and ω events based on the event kinemat-

ics was investigated but not implemented as the small reduction in the vector meson

fractions was outweighed by a severe reduction of the event sample due to kinematic

requirements. Furthermore, significantly positive amplitudes were extracted from the az-

imuthal asymmetry in the yield difference of positive and negative pions which has no

contribution from exclusive vector mesons. This result proves that the Collins and Sivers

amplitudes in the semi–inclusive pion samples are not predominantly caused by decay

pions of exclusive vector mesons.

In the years 1996 and 1997, the HERMES experiment took data with a longitudinally

polarised hydrogen target. As the spins of the nucleons were aligned with respect to

the lepton beam momentum, a small target spin component transverse to the direc-

tion of the virtual photon resulted. Hence, besides a subleading–twist component of the

cross section for longitudinal polarised nucleons the measured azimuthal asymmetries

also contain the Collins and Sivers amplitudes. The extracted Collins and Sivers ampli-

tudes from the measurement on the transversely polarised target were used to separate

the subleading–twist amplitude from the measurement on a longitudinally polarised tar-

get. Significantly positive amplitudes for positive and neutral pions were found which

show that, at the kinematics of the HERMES experiment, the interpretation of azimuthal

asymmetry amplitudes solely in terms of leading–twist functions is not appropriate in all

cases. The transversely polarised target, which was used for the measurement of the

Collins and Sivers amplitudes, has in addition to the dominant transverse spin compo-

nent also a small spin component longitudinal to the direction of the virtual photon. The

subleading–twist contributions to the measured Collins and Sivers amplitudes evaluated

for this small longitudinal component were found to be negligible, however.

Based on all the studies performed one can conclude that the significantly positive

unweighted Sivers amplitudes for the positive pions and kaons and the neutral pions are

the first signal of a non–zero T–odd distribution function in semi–inclusive DIS. Furthermore,

the product of the T–odd Collins fragmentation function and the transversity distribution

function causes significantly positive (negative) unweighted Collins amplitudes for posi-

tive (negative) pions.

The interpretation of the azimuthal asymmetry amplitudes in terms of distribution and

fragmentation functions allows the derivation of a relation between the three pion ampli-

tudes. Experimentally, this relation is violated by 2σ for both Collins and Sivers amplitudes.

Yet, these two amplitudes are strongly anti–correlated because of their simultaneous ex-
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traction and the sum of the two amplitudes satisfies the relation which suggests that the

observed violation might arise from a statistical fluctuation. By Gaussian sampling of the

overall unweighted Collins amplitudes of the three pion types, a likelihood distribution

of the ratio of the disfavoured to favoured Collins functions can be determined as a

function of the ratio of transversity for different quark flavours. In the most likely sce-

nario, the disfavoured Collins function is of similar size as the favoured Collins function

but has the opposite sign. The obtained most likely ratio of the disfavoured to favoured

Collins functions will facilitate the extraction of the Collins function from a measurement

of azimuthal asymmetries in the production of charged–pion pairs in electron–positron

annihilation by the BELLE experiment. An explanation of the Collins effect based on the

string–fragmentation model results in a positive sign of the Collins function for positive pi-

ons which is consistent with the measurement. A first extraction of the Sivers function from

the measured unweighted Sivers amplitudes yielded a negative function for u quarks and

a positive function for d quarks. In a semi–classical model this implies a positive orbital an-

gular momentum for u quarks and a negative orbital angular momentum for d quarks.

The HERMES experiment continued data taking in the year 2005 and was able to more

than double the statistics of the combined data of the years 2002 through 2004. In the fu-

ture, an enhanced energy calibration of the calorimeter will improve its resolution which

will result in an even more efficient neutral–pion identification and therefore a smaller un-

certainty of the neutral–pion amplitudes. In addition, the higher statistics might allow the

determination of the fraction of signal events in each azimuthal bin and spin state. A

background subtraction can then be performed before forming the azimuthal asymme-

try. Furthermore, a new amplitude extraction method with an unbinned maximum likeli-

hood fit was proposed. This fit is less sensitive to acceptance effects and might enable

the analysis of the Ph⊥–weighted amplitudes, which allows the interpretation in terms

of distribution and fragmentation functions without further assumption on the transverse

momentum distributions inside the nucleon.
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Appendix A

Conventions

The following metric tensor is used

gµν =











1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1











, (A.1)

where the Greek indices run over 0, 1, 2, 3. In contrast, Latin indices are used for 1, 2, 3.

The normalisation of the Levi–Civita tensor is defined by:

ǫ0123 = 1 = −ǫ0123 . (A.2)

The Einstein summation convention is applied unless noted otherwise.

A.1 Light–cone Vectors

x0

x3

x+
x−

Figure A.1: The light–cone axes x±.

A four–vector with Cartesian contravariant com-

ponents aµ = (a0, ai) can be written as a Light–

cone vector:

aµ = [a−, a+,~aT ] ,

=

[

a0 − a3

√
2

,
a0 + a3

√
2

, a1, a2

]

, (A.3)

where the ± components are along the light–

cone axes x± (see Figure A.1). The scalar product

of two light–cone vectors reads:

a · b = a+b− + a−b+ − ~aT ·~bT . (A.4)

In the Bjorken limit (Q2 →∞, ν →∞, x const.) the

four–momentum vectors of the proton and the virtual photon can be parametrised in

light-cone coordinates as:

Pµ =

[

M2

2P+
, P+,~0

]

(A.5)

qµ =

[

Q2

2xP+
,−xP+,~0

]

. (A.6)
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This parametrisation is valid in any collinear frame, i.e., in any frame of reference in which

the virtual–photon direction is antiparallel to the x3 axis. For all collinear frames P+ is the

dominant variable in a 1/Q expansion. In the infinite momentum frame the plus compo-

nent of the nucleon is of the order of Q.

A.2 Dirac Matrices

The Dirac matrices γµ in the chiral representation are defined by means of the Pauli ma-

trices σi:

γ0 =

(

0 11

11 0

)

, γi =

(

0 −σi

σi 0

)

, (A.7)

where 11 is the 2×2 unit matrix. The product,

γ5 = iγ0γ1γ2γ3 =

(

11 0

0 −11

)

, (A.8)

anticommutes with all four γ–matrices: γ5γµ = −γµγ5. As for any other Lorentz vector, the

Dirac matrices γµ can be expressed in the light–cone coordinates with γ± = (γ0± γ3)/
√

2.



Appendix B

The Luminosity Constants for the Year

2002

The luminosity L is the ratio of the measured scattering rate R and the effective cross

section σ of a scattering process. For a fixed target experiment, it can be related to the

beam current I and the mean target area density ρ̄T

L =
R
σ

=
ρ̄T I

e
, (B.1)

with the elementary charge e. In the HERMES experiment the luminosity is measured by the

luminosity monitor (cf. Section 3.3.3) using the electron positron scattering as reference

scattering. With the knowledge of the effective cross section of this reference process

σref the luminosity can be calculated from the luminosity monitor coincidence rateRLUMI

using the following relation:

L =
RLUMI

σref
= CLUMI · RLUMI , (B.2)

introducing the luminosity constant CLUMI. Integrated luminosities are obtained by in-

tegrating the luminosity monitor rate over the relevant time period. The effective cross

section and hence the luminosity constant depends on the beam settings and the align-

ment of the luminosity monitor
[

Els01
]

. Therefore the ‘constant’ can vary within the differ-

ent periods of data taking. Values of CLUMI for the different periods until the year 2000 are

given in
[

Els02
]

and
[

HDQa
]

. Furthermore, the different numbers of nucleons per number

of shell electrons for different target gases have to be taken into account when relating

the measured coincidence rates at the luminosity monitor to the luminosity.

Due to the installation of the transverse target magnet before the start of the data

taking in 2002, the alignment of the luminosity monitor with respect to the target cell has

changed. Furthermore, also the transverse target field influences the effective cross sec-

tion of the reference scattering. For the polarised data of the year 2002 a measurement

of the area density by the target group of ρ̄T = 1.1·1014 nucleons
cm2

[

Air04
]

could be used to

calculate the luminosity constant:

CLUMI =
Iρ̄T

RLUMIe
. (B.3)

The mean ratio RLUMI
I = 0.630 could be extracted from the data and yields a luminos-

ity constant CLUMI = 1090/mb. The relative uncertainty of this quantity is around 10 %,
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dominated by the measurement of the area density. It is larger than the 6 % systematic

uncertainty of the luminosity constants determined with help of a Monte Carlo simulation
[

Els01
]

.

During the unpolarised data taking the luminosity measurement is not influenced by

the transverse target field and therefore the luminosity constant differs. A different ap-

proach was used to determine the constant C2002unpol
LUMI of these periods. For all different

data takings in the years before 2002 the ratios of the number of DIS events and the

integrated luminosity were compared to the ratio of DIS events and the integrated lu-

minosity monitor rate for the unpolarised data taking periods in the year 2002. From this

comparison a luminosity constant C2002unpol
LUMI = (538±48)/mb was obtained.



Appendix C

Angular Decay Distribution for

Exclusive ρ0 Production

C.1 The Decay Angles

The decay angles are defined in the centre–of–mass system of the ρ0 vector meson as

azimuthal and polar angle of the decay π+ (see Figure 6.2.7). In order to express the

decay angles in terms of azimuthal and polar angles in the nucleon rest–mass system,

the momentum vectors have to be transformed from the nucleon to the ρ0 rest system. In

the nucleon rest–mass system with the virtual–photon momentum as z–axis, the ρ0 vector

meson is produced with the angles θρ0 and φρ0 , the momentum Pρ0 , and the energy

Eρ0 . The positive pion from the ρ0 decay is emitted with the angles θπ+ and φπ+ , the

momentum Pπ+ , and the energy Eπ+ . By rotation about the z–axis one obtains a system

where the vector meson is produced in the z–x plane and the π+ momentum three–

vector reads:

~Pπ+ = Pπ+







sin θπ+ cos(φπ+ − φρ0)

sin θπ+ sin(φπ+ − φρ0)

cos θπ+






. (C.1)

The vector meson momentum can be chosen colinear with the z–direction by an addi-

tional rotation about the y–axis:

~P ′π+ =







cos θρ0 0 − sin θρ0

0 1 0

sin θρ0 0 cos θρ0







~Pπ+

=Pπ+







cos θρ0 sin θπ+ cos(φπ+ − φρ0)− sin θρ0 cos θπ+

sin θπ+ sin(φπ+ − φρ0)

sin θρ0 sin θπ+ cos(φπ+ − φρ0) + cos θρ0 cos θπ+






.

(C.2)
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For the transfer into the ρ0 rest frame, this vector must be boosted along the z–direction:










γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 γ











(

Eπ+

~P ′π+

)

=

Pπ+













γEπ+

Pπ+
− γβ sin θρ0 sin θπ+ cos(φπ+ − φρ0)− γβ cos θρ0 cos θπ+

cos θρ0 sin θπ+ cos(φπ+ − φρ0)− sin θρ0 cos θπ+

sin θπ+ sin(φπ+ − φρ0)

−γβEπ+

Pπ+
+ γ sin θρ0 sin θπ+ cos(φπ+ − φρ0) + γ cos θρ0 cos θπ+













. (C.3)

Here, γ =
√

1− β2 with β =
Pρ0

Mρ0
and Mρ0 is the rest mass of the ρ0 meson. The x– and

y–components of the pion momentum are unaffected by the Lorentz boost. They yield

the cosine and sine of the azimuthal decay angle:

sinφ∗ ≈
sin θπ+ sin(φπ+ − φρ0)
√

1− cos2 θρ0 cos2 θπ+

, (C.4)

cosφ∗ ≈ cos θρ0 sin θπ+ cos(φπ+ − φρ0)− sin θρ0 cos θπ+

√

1− cos2 θρ0 cos2 θπ+

, (C.5)

where the approximation of small polar angles θρ0, θπ+ ≪ π
2 is made.

C.2 The Terms of the Angular Decay Distribution

The different terms of the angular decay distribution of exclusively produced ρ0 vector

mesons on a transversely polarised nucleon target with an unpolarised lepton beam de-

pend on the two nucleon polarisation parameters ζ1,2 defined in Eq. (6.2.7), on the decay

angles φ∗ and θ∗, on the azimuthal production angle φρ0 of the ρ0, and on the helicity am-

plitudes f j′α′

jα . Here, the virtual–photon helicity is α, the ρ0 helicity is α′, and the initial and

final nucleon helicities are j and j′. The helicity amplitudes can be split up into two terms
[

Fra74
]

:

f j′α′

jα = nj′α′

jα + uj′α′

jα , (C.6)

which correspond to the exchange of natural and unnatural parities in the t–channel for

high energies. In case of the ρ0 vector meson, the natural parity exchange helicity am-

plitude nj′α′

jα can be further split up into the contribution dα conserving s–channel helicity

and amplitudes aj′α′

jα , which violate helicity conservation,

nj′α′

jα = dα · δα′αδj′,j + aj′α′

jα . (C.7)

At HERMES, the violation of s–channel helicity conservation is found to be small
[

Tyt01
]

.

The amplitudes |aj′α′

jα | are therefore expected to be much smaller than the terms |dα|. In

the domain of small momentum transfer, the unnatural parity exchange amplitudes can

be identified with the amplitudes of one–pion exchange:

uj′α′

jα = pj′α′

jα . (C.8)
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angular modulation amplitude · 4/3πB Tr ρρ0

ζ1 sin2 θ∗ (sin 2φ∗ − ǫ sin 2φρ0) A1 = −2 Im (d+p
++∗
−− )

ζ1 sin2 θ∗ sinφ∗ sin(φρ0 + φ∗) A2 = −4
√

ǫ(1 + ǫ) Im (d+p
++∗
−0 )

ζ1 sin2 θ∗ sin 2(φρ0 + φ∗) A3 = 2ǫ Im (d+p
++∗
−+ )

ζ1 cos2 θ∗ sinφρ0 A4 = −4
√

ǫ(1 + ǫ) Im (d0p
+0∗
−+ )

ζ1 sin 2θ∗/
√

2 sinφ∗ A5 = 2 Im (d+p
+0∗
−+ − 2ǫd0p

++∗
−0 )

ζ1 sin 2θ∗/
√

2 sin(φρ0 + φ∗) A6 = 2
√

ǫ(1 + ǫ) Im (d0p
++∗
−+ )

ζ1 sin 2θ∗/
√

2 sin(2φρ0 + φ∗) A7 = −2ǫ Im (d+p
+0∗
−+ )

ζ2 sin2 θ∗ 1 + ǫ sin 2(φρ0 + φ∗) A8 = 2 Im (d+a
++∗
−+ )

ζ2 sin2 θ∗ cos 2φ∗ + ǫ cos 2φρ0 A9 = −2 Im (d+a
++∗
−− )

ζ2 sin2 θ∗ cosφ∗ cos(φ∗ − φρ0) A10 = −4
√

ǫ(1 + ǫ) Im (d+a
++∗
−0 )

ζ2 cos2 θ∗ A11 = 4 Im (d+a
+0∗
−0 )

ζ2 cos2 θ∗ cosφρ0 A12 = −4
√

ǫ(1 + ǫ) Im (d0a
+0∗
−+ )

ζ2 sin 2θ∗/
√

2 cosφ∗ A13 = 2 Im (d+a
+0∗
−+ + 2ǫd0a

++∗
−0 )

ζ2 sin 2θ∗/
√

2 cos(φρ0 + φ∗) A14 = 2
√

ǫ(1 + ǫ) Im (d0a
++∗
−− )

ζ2 sin 2θ∗/
√

2 cos(2φρ0 + φ∗) A15 = 2ǫ Im (d+a
+0∗
−+ )

ζ2 sin 2θ∗/
√

2 cos(φ∗ − φρ0) A16 = −2
√

ǫ(1 + ǫ) Im (d+a
+0∗
−0 + d0a

++∗
−+ )

Table C.1: The decay angular distribution WUT(cos θ∗, φ∗; ζ1, ζ2) of exclusively produced

ρ0 mesons on a transversely polarised target. Table taken from
[

Fra74
]

.

The 16 terms of the decay angular distribution for an unpolarised beam and a transversely

polarised target WUT(cos θ∗, φ∗; ζ1, ζ2) are listed in Table C.1. In the left column the angular

modulations and in the right column the amplitudes are given. They depend on the ratio

of the longitudinal to transverse photon flux ǫ = (1−y)/(1−y+y2/2) and on the parameter

B = m2
eQ

2(1 − ǫ)/(4πα) with the electron mass me. The amplitudes are normalised by the

trace of the ρ0 spin density matrix ρρ0 . Natural parity exchange dominates the exclusive ρ0

production at HERMES
[

Tyt01
]

, resulting in small amplitudes pj′α′

jα . All 16 amplitudes vanish

under the assumption of s–channel helicity conservation and natural parity exchange.
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Appendix D

Asymmetry Estimate Using Positivity

Limits

Ac

As
1

-1

1-1

A

Figure D.1: Asymmetry distribution

in the two dimensional case.

An unknown asymmetry amplitude can be esti-

mated by its standard deviation from zero, assum-

ing the amplitude is distributed uniformly between

–1 and 1. These limits ensure a positive cross sec-

tion, i.e., that the polarised cross section does not

exceed the unpolarised cross section. The squared

standard deviation of an amplitude A is defined as:

σ2 =

∫ 1

−1
A2f(A) dA , (D.1)

where f(A) is the distribution function of A which for

a uniform distribution is constant, f(A) = 1/l, with

the integration length l = 2.

Figure D.1 shows the uniform distribution of two

asymmetry amplitudes in a diamond shape which are subject to the positivity limit:

|Ac ±As| ≤ 1 . (D.2)

For each amplitude, the standard deviation can be calculated performing a two dimen-

sional integration of the squared amplitude, weighted with the distribution function:

σ2
i =

∫ ∞

−∞

∫ ∞

−∞
A2

i f(Ac, As) dAc dAs , (D.3)

with i = c, s. Here, the two dimensional distribution function f(Ac, As) is the reciprocal of

the diamond shaped area A = 2 for values of Ac and As inside the diamond and zero

otherwise:

f(Ac, As) =

{

1/A , |Ac +As| ≤ 1

0 ,else
. (D.4)

Splitting the integration over the active area into the upper triangle for positive ampli-

tudes As and the lower triangle for negative As, the standard deviations for the two am-
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plitudes are obtained by:

σ2
i =

1

2

∫ 1

0

∫ 1−Ac

−1+Ac

A2
i dAc dAs +

1

2

∫ 0

−1

∫ 1+Ac

−1−Ac

A2
i dAc dAs =

1

6
. (D.5)

Both amplitudes have the same standard deviations of σ = 1/
√

6 which are smaller than

the standard deviation in the one dimensional case of σ = 1/
√

3.



Appendix E

Additional Figures
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Figure E.1: Purities for pions and kaons and the three lightest quarks and antiquarks. The

purities of the s and s̄ quarks are scaled for better visibility.
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Figure E.2: Difference of the cosine moments extracted from data and a PYTHIA Monte

Carlo simulation 2〈cosφ〉meas − 2〈cos φ〉MC for all three pion types. In addition

a calculation within the QCD parton model is shown for the x and z depen-

dence of the charged pions
[

Ans05, Pro05
]
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Figure E.3: Difference of the cosine moments extracted from data and a PYTHIA Monte

Carlo simulation 2〈cos 2φ〉meas − 2〈cos 2φ〉MC for all three pion types.
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Figure E.4: Makins Relation for Sivers and Collins Ph⊥–weighted amplitudes of the

gmc_trans Monte Carlo production as functions of x, z, and Ph⊥.

-0.1

0

0.1

M
R

  
  

  s
in

(φ
-φ

s 
  

  
  

  
  

  
 

)
P
h

⊥
  

  
  

  
  

  
  

  
 

-1

0

1

0 0.1 0.2 0.3
x

M
R

  
  

  s
in

(φ
+

φ s 
  

  
  

  
  

  
 

)
P
h

⊥
  

  
  

  
  

  
  

  
 

0.2 0.4 0.6 0.8 1
z

0.25 0.5 0.75 1
Ph⊥  [GeV]

Figure E.5: Makins Relation for Sivers and Collins Ph⊥–weighted amplitudes of the three

HERMES data productions as functions of x, z, and Ph⊥.
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Appendix F

Additional Tables

Combinatorial background fit parameters, transfer values and azimuthal asymmetry mo-

ments are listed in the following tables. In Tables F.5 – F.7 (F.8 – F.12), the 4.2 % (6.6 %) scale

uncertainty from the target polarisation measurement is not included in the systematic

uncertainty.

x bins Ph⊥ bins

Ntot/Nsig Mπ0 [MeV] σ [MeV] Ntot/Nsig Mπ0 [MeV] σ [MeV]

1 1.355±0.011 134.0±0.1 11.3±0.1 1.561±0.020 133.6±0.1 11.6±0.2

2 1.352±0.010 134.4±0.1 11.3±0.1 1.396±0.012 133.9±0.1 11.3±0.1

3 1.350±0.013 134.5±0.1 11.6±0.1 1.309±0.011 134.4±0.1 11.1±0.1

4 1.385±0.022 134.5±0.2 11.3±0.2 1.222±0.009 134.9±0.1 11.3±0.1

5 1.373±0.029 134.7±0.3 11.4±0.3 1.122±0.011 135.5±0.2 12.2±0.2

y bins Q2 bins

Ntot/Nsig Mπ0 [MeV] σ [MeV] Ntot/Nsig Mπ0 [MeV] σ [MeV]

1 1.197±0.022 134.7±0.3 12.1±0.3 1.339±0.010 134.3±0.1 11.4±0.1

2 1.305±0.017 135.1±0.2 11.6±0.2 1.352±0.011 134.3±0.1 11.4±0.1

3 1.340±0.012 134.5±0.1 11.3±0.1 1.359±0.013 134.2±0.1 11.4±0.1

4 1.373±0.011 134.2±0.1 11.4±0.1 1.400±0.020 134.4±0.2 11.3±0.2

5 1.380±0.011 133.8±0.1 11.2±0.1 1.384±0.040 134.2±0.4 11.4±0.4

z bins

Ntot/Nsig Mπ0 [MeV] σ [MeV]

1 1.592±0.017 134.3±0.1 11.7±0.1

2 1.350±0.011 134.5±0.1 11.0±0.1

3 1.199±0.007 134.3±0.1 11.2±0.1

4 1.115±0.007 133.4±0.2 12.1±0.1

5 1.051±0.008 133.4±0.2 12.7±0.2

6 1.0 134.9±0.4 13.3±0.3

Table F.1: Parameters of a fit with the free parameters Mπ0 and σ to the invariant mass

spectra of photon pairs, including combinatorial background. In the last z bin,

only a Gaussian is fitted to the distribution.
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z bins

Tcc Tcs Tss Tsc

1 0.264 ± 0.006 -0.120 ± 0.006 0.195 ± 0.006 -0.123 ± 0.006

2 0.289 ± 0.007 -0.130 ± 0.007 0.265 ± 0.007 -0.108 ± 0.007

3 0.457 ± 0.006 -0.130 ± 0.006 0.437 ± 0.006 -0.118 ± 0.006

4 0.525 ± 0.005 -0.018 ± 0.006 0.501 ± 0.005 -0.021 ± 0.005

5 0.675 ± 0.004 -0.032 ± 0.005 0.683 ± 0.004 -0.019 ± 0.005

6 0.841 ± 0.007 -0.017 ± 0.007 0.854 ± 0.006 -0.001 ± 0.007

x bins

Tcc Tcs Tss Tsc

1 0.506 ± 0.005 -0.080 ± 0.005 0.460 ± 0.006 -0.117 ± 0.005

2 0.364 ± 0.005 -0.126 ± 0.005 0.372 ± 0.005 -0.083 ± 0.005

3 0.326 ± 0.008 -0.084 ± 0.008 0.318 ± 0.007 -0.065 ± 0.007

4 0.361 ± 0.013 0.064 ± 0.012 0.350 ± 0.011 -0.025 ± 0.012

5 0.556 ± 0.019 0.065 ± 0.021 0.588 ± 0.018 -0.100 ± 0.019

Ph⊥ bins

Tcc Tcs Tss Tsc

1 0.285 ± 0.006 -0.103 ± 0.006 0.224 ± 0.006 -0.120 ± 0.006

2 0.350 ± 0.005 -0.101 ± 0.006 0.293 ± 0.005 -0.091 ± 0.005

3 0.610 ± 0.006 -0.043 ± 0.007 0.550 ± 0.006 -0.066 ± 0.006

4 0.626 ± 0.008 -0.079 ± 0.009 0.679 ± 0.008 -0.037 ± 0.009

5 0.941 ± 0.012 0.005 ± 0.016 0.864 ± 0.015 -0.103 ± 0.015

y bins

Tcc Tcs Tss Tsc

1 0.166 ± 0.014 -0.029 ± 0.014 0.284 ± 0.013 0.071 ± 0.013

2 0.223 ± 0.009 -0.009 ± 0.009 0.225 ± 0.008 0.010 ± 0.008

3 0.307 ± 0.007 -0.034 ± 0.007 0.302 ± 0.006 -0.033 ± 0.006

4 0.439 ± 0.005 -0.090 ± 0.006 0.442 ± 0.006 -0.081 ± 0.006

5 0.536 ± 0.006 -0.099 ± 0.006 0.566 ± 0.007 -0.068 ± 0.008

Q2 bins

Tcc Tcs Tss Tsc

1 0.441 ± 0.004 -0.070 ± 0.005 0.351 ± 0.005 -0.124 ± 0.004

2 0.379 ± 0.006 -0.110 ± 0.006 0.365 ± 0.005 -0.064 ± 0.006

3 0.430 ± 0.008 -0.085 ± 0.008 0.385 ± 0.008 -0.128 ± 0.008

4 0.536 ± 0.012 -0.034 ± 0.013 0.487 ± 0.012 -0.089 ± 0.013

5 0.461 ± 0.023 -0.185 ± 0.029 0.724 ± 0.024 -0.601 ± 0.025

Table F.2: Elements of the transfer matrix T for positive pions produced in ρ0 decays.
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z bins

Tcc Tcs Tss Tsc

1 0.228 ± 0.006 -0.103 ± 0.006 0.169 ± 0.006 -0.085 ± 0.006

2 0.385 ± 0.007 -0.158 ± 0.007 0.289 ± 0.007 -0.167 ± 0.007

3 0.426 ± 0.007 -0.090 ± 0.006 0.399 ± 0.006 -0.085 ± 0.007

4 0.526 ± 0.005 -0.035 ± 0.005 0.539 ± 0.005 -0.032 ± 0.005

5 0.679 ± 0.004 -0.015 ± 0.005 0.685 ± 0.004 -0.022 ± 0.005

6 0.839 ± 0.007 0.010 ± 0.007 0.830 ± 0.006 -0.005 ± 0.007

x bins

Tcc Tcs Tss Tsc

1 0.471 ± 0.005 -0.077 ± 0.005 0.450 ± 0.006 -0.072 ± 0.006

2 0.369 ± 0.005 -0.097 ± 0.005 0.343 ± 0.005 -0.084 ± 0.005

3 0.337 ± 0.007 -0.070 ± 0.008 0.344 ± 0.007 -0.066 ± 0.007

4 0.432 ± 0.012 -0.086 ± 0.013 0.332 ± 0.012 -0.028 ± 0.011

5 0.356 ± 0.020 -0.089 ± 0.021 0.396 ± 0.018 -0.201 ± 0.018

Ph⊥ bins

Tcc Tcs Tss Tsc

1 0.271 ± 0.006 -0.095 ± 0.006 0.242 ± 0.006 -0.094 ± 0.006

2 0.353 ± 0.005 -0.082 ± 0.006 0.288 ± 0.005 -0.085 ± 0.005

3 0.561 ± 0.006 -0.065 ± 0.007 0.570 ± 0.006 -0.040 ± 0.007

4 0.587 ± 0.008 -0.097 ± 0.008 0.678 ± 0.008 -0.019 ± 0.009

5 0.900 ± 0.015 -0.051 ± 0.017 0.781 ± 0.015 -0.253 ± 0.016

y bins

Tcc Tcs Tss Tsc

1 0.173 ± 0.014 0.032 ± 0.014 0.203 ± 0.013 0.063 ± 0.013

2 0.205 ± 0.009 0.012 ± 0.009 0.227 ± 0.008 0.006 ± 0.008

3 0.328 ± 0.007 -0.073 ± 0.006 0.353 ± 0.006 -0.034 ± 0.006

4 0.446 ± 0.005 -0.095 ± 0.005 0.433 ± 0.006 -0.072 ± 0.006

5 0.569 ± 0.006 -0.107 ± 0.006 0.567 ± 0.007 -0.062 ± 0.007

Q2 bins

Tcc Tcs Tss Tsc

1 0.399 ± 0.004 -0.082 ± 0.005 0.368 ± 0.005 -0.083 ± 0.005

2 0.379 ± 0.006 -0.087 ± 0.006 0.352 ± 0.005 -0.074 ± 0.005

3 0.414 ± 0.008 -0.123 ± 0.008 0.439 ± 0.008 -0.057 ± 0.008

4 0.495 ± 0.013 -0.129 ± 0.013 0.459 ± 0.012 -0.145 ± 0.012

5 0.648 ± 0.027 -0.171 ± 0.026 0.606 ± 0.023 -0.273 ± 0.023

Table F.3: Elements of the transfer matrix T for negative pions produced in ρ0 decays.
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z bins

Tcc Tcs Tss Tsc

1 0.421 ± 0.007 -0.009 ± 0.007 0.467 ± 0.008 -0.005 ± 0.008

2 0.487 ± 0.006 0.012 ± 0.006 0.556 ± 0.006 0.029 ± 0.006

3 0.647 ± 0.004 0.008 ± 0.005 0.703 ± 0.004 0.034 ± 0.005

4 0.852 ± 0.005 -0.014 ± 0.005 0.860 ± 0.005 -0.004 ± 0.005

5 1.009 ± 0.008 -0.021 ± 0.011 1.000 ± 0.008 -0.003 ± 0.010

x bins

Tcc Tcs Tss Tsc

1 0.735 ± 0.007 0.002 ± 0.008 0.819 ± 0.009 0.036 ± 0.009

2 0.637 ± 0.006 0.011 ± 0.006 0.683 ± 0.006 0.032 ± 0.006

3 0.610 ± 0.005 -0.013 ± 0.006 0.647 ± 0.005 -0.005 ± 0.005

4 0.587 ± 0.007 -0.002 ± 0.007 0.649 ± 0.006 0.024 ± 0.006

5 0.631 ± 0.007 0.028 ± 0.007 0.666 ± 0.006 0.033 ± 0.007

Ph⊥ bins

Tcc Tcs Tss Tsc

1 0.271 ± 0.005 -0.020 ± 0.005 0.340 ± 0.005 0.012 ± 0.005

2 0.718 ± 0.004 0.034 ± 0.004 0.755 ± 0.004 0.045 ± 0.004

3 0.898 ± 0.005 0.034 ± 0.005 0.922 ± 0.004 0.036 ± 0.005

4 0.983 ± 0.007 0.011 ± 0.007 1.015 ± 0.005 0.035 ± 0.008

5 1.050 ± 0.015 0.009 ± 0.018 1.093 ± 0.015 0.113 ± 0.019

y bins

Tcc Tcs Tss Tsc

1 0.684 ± 0.019 0.062 ± 0.018 0.787 ± 0.015 0.112 ± 0.018

2 0.591 ± 0.009 -0.018 ± 0.009 0.646 ± 0.007 0.043 ± 0.008

3 0.576 ± 0.005 -0.003 ± 0.006 0.625 ± 0.005 0.019 ± 0.005

4 0.615 ± 0.004 0.030 ± 0.005 0.678 ± 0.004 0.022 ± 0.005

5 0.680 ± 0.006 0.031 ± 0.006 0.810 ± 0.007 0.100 ± 0.008

Q2 bins

Tcc Tcs Tss Tsc

1 0.719 ± 0.007 -0.034 ± 0.008 0.741 ± 0.008 -0.012 ± 0.008

2 0.613 ± 0.006 0.003 ± 0.006 0.673 ± 0.006 0.049 ± 0.007

3 0.613 ± 0.006 0.018 ± 0.006 0.654 ± 0.005 0.011 ± 0.006

4 0.612 ± 0.006 -0.005 ± 0.006 0.658 ± 0.005 0.014 ± 0.006

5 0.642 ± 0.008 0.059 ± 0.008 0.692 ± 0.007 0.037 ± 0.008

Table F.4: Elements of the transfer matrix T for neutral pions produced in ω decays.
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9

z bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2
˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.26 0.067 0.42 0.70 2.37 0.046 0.037 0.026 ± 0.010 ± 0.002 0.024 ± 0.010 ± 0.002

0.35 0.082 0.44 0.61 2.50 0.064 0.047 0.030 ± 0.009 ± 0.002 0.027 ± 0.009 ± 0.002

0.47 0.093 0.47 0.55 2.49 0.078 0.065 0.037 ± 0.008 ± 0.002 0.032 ± 0.008 ± 0.002

0.62 0.101 0.50 0.49 2.42 0.090 0.116 0.033 ± 0.011 ± 0.002 0.024 ± 0.011 ± 0.002

0.77 0.109 0.48 0.43 2.35 0.101 0.238 0.054 ± 0.015 ± 0.003 0.042 ± 0.015 ± 0.003

0.92 0.118 0.43 0.37 2.24 0.117 0.424 -0.044 ± 0.023 ± 0.006 -0.053 ± 0.023 ± 0.003

x bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.36 0.038 0.49 0.68 1.33 0.036 0.086 0.028 ± 0.009 ± 0.002 0.026 ± 0.009 ± 0.002

0.41 0.067 0.45 0.59 2.03 0.058 0.071 0.019 ± 0.008 ± 0.001 0.016 ± 0.008 ± 0.001

0.43 0.115 0.42 0.54 3.22 0.081 0.045 0.042 ± 0.009 ± 0.003 0.034 ± 0.009 ± 0.002

0.44 0.179 0.40 0.51 4.75 0.107 0.028 0.057 ± 0.015 ± 0.003 0.047 ± 0.015 ± 0.003

0.46 0.274 0.40 0.48 6.83 0.140 0.019 0.045 ± 0.025 ± 0.003 0.029 ± 0.025 ± 0.002

Ph⊥ bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.39 0.098 0.19 0.54 2.63 0.080 0.063 0.023 ± 0.011 ± 0.001 0.020 ± 0.011 ± 0.001

0.40 0.089 0.33 0.58 2.51 0.071 0.074 0.026 ± 0.009 ± 0.002 0.022 ± 0.009 ± 0.001

0.39 0.081 0.47 0.61 2.41 0.065 0.063 0.040 ± 0.009 ± 0.002 0.036 ± 0.009 ± 0.002

0.41 0.076 0.65 0.63 2.33 0.060 0.047 0.032 ± 0.010 ± 0.002 0.027 ± 0.010 ± 0.002

0.46 0.073 0.95 0.65 2.30 0.057 0.037 0.038 ± 0.017 ± 0.002 0.033 ± 0.017 ± 0.002

y bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2
˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.61 0.134 0.38 0.28 1.95 0.151 0.081 0.066 ± 0.040 ± 0.008 0.052 ± 0.039 ± 0.003

0.52 0.118 0.38 0.37 2.25 0.116 0.075 0.027 ± 0.014 ± 0.002 0.017 ± 0.014 ± 0.001

0.45 0.103 0.41 0.48 2.57 0.086 0.066 0.032 ± 0.009 ± 0.002 0.028 ± 0.009 ± 0.002

0.39 0.083 0.46 0.62 2.64 0.060 0.058 0.036 ± 0.008 ± 0.002 0.032 ± 0.008 ± 0.002

0.33 0.057 0.51 0.76 2.24 0.035 0.053 0.023 ± 0.009 ± 0.001 0.022 ± 0.009 ± 0.001

Q2 bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.40 0.044 0.47 0.60 1.27 0.050 0.099 0.021 ± 0.008 ± 0.001 0.019 ± 0.008 ± 0.001

0.40 0.069 0.46 0.60 2.00 0.063 0.062 0.021 ± 0.009 ± 0.001 0.017 ± 0.009 ± 0.001

0.40 0.107 0.44 0.60 3.13 0.076 0.038 0.040 ± 0.010 ± 0.003 0.034 ± 0.010 ± 0.002

0.40 0.168 0.43 0.59 4.88 0.094 0.023 0.060 ± 0.013 ± 0.004 0.052 ± 0.013 ± 0.003

0.41 0.264 0.41 0.58 7.63 0.117 0.015 0.054 ± 0.025 ± 0.004 0.043 ± 0.025 ± 0.003
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z bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2
˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.25 0.065 0.43 0.71 2.31 0.045 0.044 0.011 ± 0.012 ± 0.001 0.011 ± 0.012 ± 0.001

0.35 0.079 0.45 0.62 2.42 0.062 0.058 -0.020 ± 0.011 ± 0.002 -0.019 ± 0.011 ± 0.001

0.47 0.089 0.47 0.55 2.38 0.077 0.089 -0.008 ± 0.011 ± 0.001 -0.006 ± 0.011 ± 0.000

0.62 0.096 0.48 0.49 2.28 0.088 0.171 -0.018 ± 0.015 ± 0.002 -0.016 ± 0.015 ± 0.001

0.77 0.102 0.44 0.43 2.14 0.100 0.379 -0.025 ± 0.021 ± 0.003 -0.018 ± 0.021 ± 0.001

0.91 0.109 0.40 0.38 2.07 0.112 0.635 0.034 ± 0.035 ± 0.004 0.040 ± 0.034 ± 0.003

x bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.36 0.038 0.50 0.68 1.33 0.035 0.099 -0.010 ± 0.012 ± 0.001 -0.011 ± 0.012 ± 0.001

0.40 0.067 0.45 0.59 2.03 0.057 0.087 -0.010 ± 0.010 ± 0.001 -0.008 ± 0.010 ± 0.001

0.42 0.114 0.42 0.54 3.21 0.080 0.064 -0.014 ± 0.013 ± 0.002 -0.013 ± 0.013 ± 0.001

0.43 0.178 0.41 0.52 4.76 0.106 0.044 0.032 ± 0.022 ± 0.003 0.040 ± 0.022 ± 0.003

0.45 0.275 0.40 0.48 6.79 0.141 0.031 0.017 ± 0.036 ± 0.002 0.024 ± 0.035 ± 0.002

Ph⊥ bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.39 0.094 0.19 0.54 2.52 0.077 0.085 -0.019 ± 0.015 ± 0.001 -0.017 ± 0.015 ± 0.001

0.39 0.084 0.33 0.59 2.41 0.068 0.099 -0.008 ± 0.012 ± 0.001 -0.007 ± 0.012 ± 0.000

0.38 0.077 0.47 0.62 2.30 0.061 0.080 -0.020 ± 0.012 ± 0.002 -0.019 ± 0.012 ± 0.001

0.39 0.073 0.65 0.64 2.26 0.058 0.057 0.013 ± 0.013 ± 0.001 0.015 ± 0.013 ± 0.001

0.44 0.071 0.95 0.65 2.26 0.055 0.039 -0.013 ± 0.022 ± 0.001 -0.013 ± 0.022 ± 0.001

y bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2
˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.61 0.132 0.37 0.28 1.92 0.151 0.135 -0.064 ± 0.052 ± 0.014 -0.073 ± 0.051 ± 0.005

0.52 0.115 0.37 0.37 2.20 0.115 0.109 -0.015 ± 0.018 ± 0.003 -0.011 ± 0.018 ± 0.001

0.45 0.099 0.41 0.48 2.46 0.084 0.090 -0.014 ± 0.012 ± 0.002 -0.011 ± 0.012 ± 0.001

0.38 0.080 0.46 0.62 2.53 0.058 0.073 -0.002 ± 0.011 ± 0.000 -0.000 ± 0.011 ± 0.000

0.33 0.055 0.51 0.76 2.17 0.035 0.061 -0.003 ± 0.012 ± 0.000 -0.002 ± 0.012 ± 0.000

Q2 bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.40 0.043 0.47 0.61 1.26 0.048 0.118 -0.013 ± 0.011 ± 0.001 -0.013 ± 0.011 ± 0.001

0.40 0.068 0.46 0.61 1.99 0.060 0.078 -0.014 ± 0.011 ± 0.001 -0.013 ± 0.011 ± 0.001

0.39 0.106 0.45 0.61 3.12 0.074 0.050 -0.008 ± 0.013 ± 0.001 -0.005 ± 0.013 ± 0.000

0.39 0.167 0.43 0.59 4.87 0.093 0.034 0.010 ± 0.019 ± 0.001 0.015 ± 0.019 ± 0.001

0.40 0.262 0.42 0.58 7.59 0.117 0.024 0.049 ± 0.035 ± 0.005 0.059 ± 0.035 ± 0.004
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z bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2
˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.26 0.068 0.41 0.70 2.41 0.046 0.024 0.064 ± 0.033 ± 0.004 0.062 ± 0.033 ± 0.004

0.35 0.082 0.44 0.62 2.51 0.061 0.029 0.045 ± 0.024 ± 0.003 0.046 ± 0.024 ± 0.003

0.47 0.093 0.48 0.56 2.54 0.074 0.036 0.031 ± 0.020 ± 0.002 0.028 ± 0.020 ± 0.002

0.61 0.102 0.51 0.50 2.54 0.086 0.044 0.023 ± 0.025 ± 0.002 0.017 ± 0.025 ± 0.001

0.76 0.115 0.51 0.44 2.54 0.101 0.051 0.127 ± 0.035 ± 0.008 0.119 ± 0.035 ± 0.008

0.92 0.123 0.51 0.38 2.37 0.116 0.079 0.211 ± 0.055 ± 0.012 0.177 ± 0.054 ± 0.012

x bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.36 0.038 0.50 0.68 1.34 0.035 0.041 0.080 ± 0.030 ± 0.005 0.077 ± 0.030 ± 0.005

0.40 0.067 0.45 0.60 2.07 0.055 0.037 -0.014 ± 0.022 ± 0.001 -0.015 ± 0.022 ± 0.001

0.42 0.115 0.41 0.56 3.33 0.077 0.026 0.044 ± 0.025 ± 0.003 0.043 ± 0.025 ± 0.003

0.44 0.178 0.39 0.53 4.89 0.102 0.020 0.050 ± 0.040 ± 0.003 0.044 ± 0.040 ± 0.003

0.46 0.272 0.40 0.49 6.90 0.137 0.016 0.151 ± 0.066 ± 0.010 0.146 ± 0.065 ± 0.009

Ph⊥ bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.39 0.102 0.19 0.54 2.76 0.079 0.040 0.022 ± 0.037 ± 0.001 0.017 ± 0.037 ± 0.001

0.38 0.088 0.33 0.59 2.57 0.067 0.036 0.033 ± 0.027 ± 0.002 0.030 ± 0.027 ± 0.002

0.39 0.079 0.47 0.63 2.43 0.061 0.031 0.036 ± 0.025 ± 0.002 0.034 ± 0.025 ± 0.002

0.41 0.073 0.65 0.65 2.32 0.057 0.027 0.093 ± 0.024 ± 0.006 0.093 ± 0.024 ± 0.006

0.47 0.072 0.95 0.66 2.30 0.055 0.018 -0.040 ± 0.037 ± 0.003 -0.040 ± 0.037 ± 0.003

y bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2
˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.60 0.132 0.39 0.28 1.92 0.151 0.029 0.008 ± 0.118 ± 0.008 -0.021 ± 0.116 ± 0.001

0.52 0.119 0.37 0.37 2.28 0.116 0.038 -0.031 ± 0.035 ± 0.003 -0.036 ± 0.034 ± 0.002

0.45 0.104 0.39 0.48 2.61 0.087 0.036 0.007 ± 0.023 ± 0.001 0.005 ± 0.023 ± 0.000

0.39 0.084 0.45 0.62 2.67 0.060 0.034 0.070 ± 0.022 ± 0.004 0.068 ± 0.022 ± 0.004

0.33 0.059 0.52 0.76 2.29 0.036 0.027 0.047 ± 0.029 ± 0.003 0.046 ± 0.029 ± 0.003

Q2 bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

〈sin θγ∗ 〉 fVM 2〈sin φ〉qUL 2〈sin φ〉lUL

0.39 0.043 0.47 0.61 1.27 0.046 0.047 0.031 ± 0.024 ± 0.002 0.028 ± 0.024 ± 0.002

0.40 0.067 0.46 0.61 1.99 0.058 0.034 0.018 ± 0.025 ± 0.001 0.017 ± 0.025 ± 0.001

0.40 0.104 0.44 0.61 3.13 0.071 0.024 0.054 ± 0.026 ± 0.004 0.055 ± 0.026 ± 0.004

0.40 0.165 0.42 0.60 4.89 0.091 0.019 0.062 ± 0.033 ± 0.004 0.054 ± 0.033 ± 0.004

0.41 0.259 0.40 0.58 7.60 0.114 0.014 0.108 ± 0.063 ± 0.007 0.099 ± 0.062 ± 0.006
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z bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2
˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.25 0.090 0.35 0.56 2.45 0.038 1.203 1.649 0.030 ± 0.007 ± 0.002 0.010 ± 0.007 ± 0.001

0.35 0.098 0.40 0.52 2.43 0.047 1.214 1.567 0.037 ± 0.008 ± 0.002 0.022 ± 0.008 ± 0.001

0.47 0.100 0.45 0.51 2.41 0.063 1.219 1.538 0.052 ± 0.009 ± 0.003 0.015 ± 0.010 ± 0.001

0.62 0.102 0.50 0.49 2.39 0.116 1.223 1.514 0.058 ± 0.013 ± 0.003 0.037 ± 0.014 ± 0.006

0.77 0.107 0.49 0.45 2.36 0.242 1.233 1.458 0.108 ± 0.018 ± 0.006 0.023 ± 0.020 ± 0.002

0.92 0.119 0.45 0.39 2.34 0.429 1.242 1.398 0.031 ± 0.029 ± 0.025 0.046 ± 0.031 ± 0.028

x bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2
˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.34 0.039 0.47 0.66 1.31 0.083 1.220 1.997 0.044 ± 0.012 ± 0.002 0.000 ± 0.010 ± 0.001

0.36 0.068 0.40 0.53 1.85 0.065 1.247 1.623 0.031 ± 0.008 ± 0.002 0.017 ± 0.008 ± 0.001

0.37 0.115 0.37 0.47 2.80 0.043 1.205 1.464 0.040 ± 0.008 ± 0.002 0.029 ± 0.009 ± 0.001

0.37 0.179 0.36 0.45 4.15 0.027 1.147 1.362 0.054 ± 0.012 ± 0.003 0.031 ± 0.013 ± 0.002

0.37 0.276 0.36 0.43 6.13 0.019 1.099 1.285 0.085 ± 0.019 ± 0.004 0.029 ± 0.018 ± 0.002

Ph⊥ bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.33 0.109 0.17 0.46 2.50 0.055 1.222 1.472 0.012 ± 0.008 ± 0.001 0.029 ± 0.009 ± 0.002

0.36 0.098 0.32 0.52 2.46 0.067 1.212 1.565 0.043 ± 0.008 ± 0.002 0.012 ± 0.009 ± 0.001

0.36 0.089 0.47 0.56 2.38 0.055 1.208 1.642 0.047 ± 0.009 ± 0.002 0.018 ± 0.009 ± 0.001

0.39 0.084 0.65 0.59 2.35 0.042 1.200 1.717 0.060 ± 0.010 ± 0.003 0.017 ± 0.010 ± 0.002

0.46 0.077 0.95 0.63 2.34 0.036 1.187 1.845 0.070 ± 0.018 ± 0.006 0.018 ± 0.017 ± 0.003

y bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.43 0.141 0.33 0.27 1.97 0.061 1.271 1.337 0.037 ± 0.029 ± 0.005 0.016 ± 0.032 ± 0.008

0.38 0.122 0.32 0.37 2.31 0.057 1.246 1.381 0.031 ± 0.011 ± 0.002 0.042 ± 0.012 ± 0.002

0.36 0.104 0.36 0.48 2.55 0.056 1.218 1.489 0.032 ± 0.008 ± 0.002 0.016 ± 0.009 ± 0.001

0.35 0.084 0.44 0.61 2.64 0.054 1.183 1.758 0.045 ± 0.009 ± 0.002 0.014 ± 0.008 ± 0.001

0.33 0.058 0.52 0.76 2.25 0.054 1.137 2.525 0.042 ± 0.013 ± 0.002 -0.003 ± 0.010 ± 0.001

Q2 bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.36 0.052 0.41 0.53 1.27 0.087 1.274 1.658 0.031 ± 0.009 ± 0.002 0.007 ± 0.008 ± 0.001

0.36 0.081 0.40 0.53 1.99 0.055 1.238 1.604 0.039 ± 0.008 ± 0.002 0.027 ± 0.008 ± 0.001

0.36 0.122 0.40 0.54 3.12 0.034 1.175 1.552 0.050 ± 0.009 ± 0.003 0.024 ± 0.009 ± 0.001

0.36 0.186 0.39 0.54 4.87 0.021 1.116 1.483 0.044 ± 0.011 ± 0.002 0.028 ± 0.012 ± 0.001

0.36 0.276 0.38 0.55 7.58 0.014 1.073 1.440 0.070 ± 0.021 ± 0.004 0.005 ± 0.022 ± 0.003
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z bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2
˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.25 0.087 0.36 0.57 2.39 0.046 1.204 1.674 0.001 ± 0.008 ± 0.000 -0.018 ± 0.008 ± 0.001

0.35 0.093 0.41 0.53 2.34 0.059 1.216 1.589 0.006 ± 0.010 ± 0.000 -0.037 ± 0.010 ± 0.002

0.46 0.097 0.45 0.51 2.32 0.087 1.223 1.547 0.005 ± 0.011 ± 0.000 -0.042 ± 0.012 ± 0.002

0.62 0.097 0.48 0.49 2.26 0.170 1.231 1.522 -0.002 ± 0.016 ± 0.009 -0.019 ± 0.017 ± 0.010

0.77 0.100 0.45 0.44 2.18 0.383 1.245 1.467 -0.045 ± 0.024 ± 0.014 -0.033 ± 0.026 ± 0.016

0.91 0.108 0.41 0.39 2.12 0.640 1.256 1.419 -0.067 ± 0.042 ± 0.007 0.016 ± 0.043 ± 0.004

x bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.33 0.039 0.47 0.66 1.30 0.096 1.217 2.015 0.015 ± 0.013 ± 0.001 -0.003 ± 0.010 ± 0.001

0.35 0.068 0.39 0.53 1.86 0.080 1.246 1.631 -0.007 ± 0.009 ± 0.001 -0.031 ± 0.009 ± 0.002

0.37 0.115 0.36 0.47 2.80 0.059 1.205 1.465 0.006 ± 0.010 ± 0.000 -0.020 ± 0.011 ± 0.001

0.37 0.179 0.36 0.45 4.16 0.039 1.147 1.364 0.012 ± 0.015 ± 0.001 -0.065 ± 0.016 ± 0.003

0.36 0.276 0.37 0.43 6.10 0.029 1.099 1.284 -0.008 ± 0.025 ± 0.001 -0.049 ± 0.024 ± 0.003

Ph⊥ bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.33 0.104 0.17 0.47 2.41 0.073 1.226 1.485 0.005 ± 0.010 ± 0.000 -0.028 ± 0.011 ± 0.001

0.35 0.094 0.32 0.53 2.38 0.088 1.215 1.585 -0.005 ± 0.009 ± 0.001 -0.016 ± 0.010 ± 0.001

0.35 0.085 0.47 0.57 2.30 0.069 1.208 1.677 -0.002 ± 0.011 ± 0.001 -0.031 ± 0.010 ± 0.002

0.37 0.081 0.65 0.60 2.30 0.050 1.199 1.749 0.005 ± 0.012 ± 0.002 -0.039 ± 0.011 ± 0.003

0.44 0.075 0.95 0.64 2.29 0.038 1.187 1.868 0.018 ± 0.022 ± 0.004 -0.032 ± 0.021 ± 0.004

y bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.42 0.138 0.32 0.27 1.94 0.089 1.273 1.340 0.016 ± 0.035 ± 0.006 -0.043 ± 0.040 ± 0.008

0.37 0.120 0.32 0.37 2.26 0.078 1.249 1.384 -0.004 ± 0.013 ± 0.001 -0.017 ± 0.015 ± 0.001

0.36 0.100 0.36 0.48 2.47 0.073 1.223 1.495 0.000 ± 0.010 ± 0.001 -0.027 ± 0.011 ± 0.002

0.34 0.080 0.43 0.61 2.53 0.067 1.187 1.767 -0.006 ± 0.010 ± 0.000 -0.017 ± 0.010 ± 0.001

0.32 0.055 0.51 0.76 2.17 0.062 1.139 2.543 0.000 ± 0.015 ± 0.001 -0.015 ± 0.011 ± 0.001

Q2 bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.36 0.051 0.41 0.54 1.27 0.104 1.270 1.677 0.012 ± 0.010 ± 0.001 -0.029 ± 0.009 ± 0.002

0.35 0.079 0.40 0.54 1.99 0.069 1.235 1.624 -0.002 ± 0.009 ± 0.001 -0.010 ± 0.009 ± 0.001

0.35 0.120 0.40 0.55 3.11 0.045 1.174 1.565 -0.006 ± 0.010 ± 0.000 -0.026 ± 0.011 ± 0.001

0.35 0.184 0.39 0.54 4.87 0.030 1.116 1.489 -0.001 ± 0.014 ± 0.000 -0.065 ± 0.015 ± 0.003

0.34 0.277 0.38 0.54 7.56 0.022 1.074 1.438 0.012 ± 0.026 ± 0.001 -0.060 ± 0.028 ± 0.003
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z bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2
˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.25 0.090 0.37 0.56 2.48 0.013 1.204 1.634 0.065 ± 0.026 ± 0.006 -0.026 ± 0.024 ± 0.007

0.35 0.099 0.41 0.53 2.53 0.018 1.207 1.574 0.096 ± 0.025 ± 0.007 -0.030 ± 0.026 ± 0.005

0.47 0.107 0.45 0.48 2.51 0.025 1.218 1.496 0.142 ± 0.026 ± 0.011 -0.014 ± 0.029 ± 0.008

0.61 0.120 0.49 0.41 2.50 0.021 1.229 1.413 0.094 ± 0.050 ± 0.022 0.132 ± 0.056 ± 0.030

0.77 0.134 0.52 0.37 2.57 0.019 1.228 1.365 0.079 ± 0.087 ± 0.149 0.278 ± 0.089 ± 0.138

0.90 0.133 0.52 0.34 2.30 0.022 1.247 1.356 0.055 ± 0.228 ± 0.037 0.272 ± 0.255 ± 0.115

x bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2
˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.34 0.040 0.49 0.64 1.29 0.024 1.229 1.928 0.082 ± 0.051 ± 0.017 -0.035 ± 0.049 ± 0.016

0.37 0.068 0.42 0.51 1.79 0.023 1.256 1.595 0.134 ± 0.028 ± 0.010 -0.052 ± 0.029 ± 0.007

0.39 0.115 0.39 0.47 2.79 0.017 1.206 1.462 0.123 ± 0.026 ± 0.009 0.017 ± 0.029 ± 0.005

0.39 0.179 0.39 0.45 4.19 0.010 1.146 1.366 0.061 ± 0.035 ± 0.005 0.014 ± 0.038 ± 0.007

0.40 0.274 0.39 0.44 6.27 0.007 1.096 1.297 0.088 ± 0.052 ± 0.007 0.118 ± 0.052 ± 0.013

Ph⊥ bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.35 0.111 0.18 0.47 2.63 0.030 1.213 1.477 0.061 ± 0.029 ± 0.005 -0.005 ± 0.030 ± 0.002

0.37 0.103 0.32 0.51 2.59 0.019 1.208 1.540 0.078 ± 0.027 ± 0.006 0.035 ± 0.029 ± 0.003

0.37 0.096 0.47 0.52 2.44 0.013 1.214 1.567 0.144 ± 0.030 ± 0.012 -0.055 ± 0.031 ± 0.008

0.39 0.095 0.65 0.54 2.40 0.011 1.212 1.593 0.135 ± 0.033 ± 0.010 0.005 ± 0.034 ± 0.009

0.45 0.086 0.94 0.58 2.33 0.011 1.205 1.686 0.055 ± 0.064 ± 0.032 0.136 ± 0.069 ± 0.029

y bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.46 0.137 0.42 0.27 1.93 0.022 1.274 1.341 0.282 ± 0.106 ± 0.025 -0.048 ± 0.132 ± 0.012

0.40 0.121 0.37 0.37 2.29 0.021 1.247 1.383 0.122 ± 0.033 ± 0.009 -0.020 ± 0.037 ± 0.014

0.37 0.106 0.38 0.48 2.60 0.021 1.216 1.484 0.090 ± 0.023 ± 0.007 0.009 ± 0.025 ± 0.004

0.36 0.089 0.45 0.61 2.77 0.018 1.178 1.741 0.081 ± 0.030 ± 0.007 -0.029 ± 0.030 ± 0.008

0.32 0.061 0.53 0.76 2.37 0.015 1.135 2.499 0.078 ± 0.064 ± 0.020 -0.060 ± 0.053 ± 0.025

Q2 bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.38 0.053 0.43 0.51 1.27 0.028 1.282 1.619 0.110 ± 0.033 ± 0.010 -0.019 ± 0.033 ± 0.006

0.37 0.083 0.42 0.51 1.99 0.019 1.242 1.574 0.125 ± 0.028 ± 0.009 -0.010 ± 0.029 ± 0.005

0.37 0.126 0.41 0.52 3.13 0.013 1.179 1.514 0.110 ± 0.028 ± 0.012 -0.056 ± 0.030 ± 0.006

0.37 0.188 0.40 0.53 4.88 0.009 1.117 1.463 0.070 ± 0.034 ± 0.005 0.066 ± 0.037 ± 0.009

0.38 0.281 0.40 0.54 7.61 0.007 1.074 1.423 0.078 ± 0.059 ± 0.010 0.216 ± 0.065 ± 0.018
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z bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.25 0.090 0.34 0.55 2.43 0.017 1.207 1.628 0.040 ± 0.037 ± 0.006 0.010 ± 0.040 ± 0.006

0.35 0.094 0.41 0.54 2.41 0.029 1.212 1.591 0.016 ± 0.044 ± 0.006 -0.032 ± 0.049 ± 0.010

0.46 0.098 0.44 0.49 2.30 0.048 1.228 1.525 0.041 ± 0.052 ± 0.015 0.064 ± 0.057 ± 0.024

0.61 0.123 0.44 0.39 2.50 0.046 1.231 1.392 0.238 ± 0.196 ± 0.155 -0.078 ± 0.230 ± 0.145

x bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.31 0.040 0.44 0.64 1.30 0.036 1.229 1.933 -0.030 ± 0.080 ± 0.036 0.064 ± 0.088 ± 0.041

0.33 0.068 0.39 0.51 1.78 0.034 1.257 1.596 0.034 ± 0.047 ± 0.005 0.012 ± 0.053 ± 0.012

0.35 0.115 0.36 0.47 2.81 0.028 1.204 1.465 0.012 ± 0.047 ± 0.004 -0.006 ± 0.053 ± 0.008

0.34 0.178 0.36 0.46 4.22 0.020 1.144 1.372 0.065 ± 0.066 ± 0.007 0.101 ± 0.074 ± 0.009

0.36 0.274 0.38 0.43 6.15 0.020 1.098 1.290 -0.089 ± 0.100 ± 0.021 -0.370 ± 0.118 ± 0.028

Ph⊥ bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.32 0.102 0.17 0.48 2.44 0.051 1.224 1.496 0.042 ± 0.046 ± 0.008 -0.054 ± 0.052 ± 0.006

0.33 0.097 0.32 0.52 2.45 0.035 1.214 1.561 0.060 ± 0.047 ± 0.008 0.022 ± 0.056 ± 0.013

0.33 0.093 0.47 0.52 2.35 0.022 1.219 1.572 0.035 ± 0.054 ± 0.013 0.048 ± 0.060 ± 0.016

0.35 0.090 0.65 0.57 2.43 0.017 1.203 1.660 0.006 ± 0.060 ± 0.009 0.052 ± 0.064 ± 0.017

0.41 0.085 0.95 0.61 2.48 0.014 1.190 1.749 -0.215 ± 0.148 ± 0.038 0.176 ± 0.155 ± 0.110

y bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.42 0.141 0.37 0.27 1.99 0.046 1.270 1.337 0.201 ± 0.194 ± 0.046 -0.068 ± 0.253 ± 0.028

0.36 0.115 0.33 0.37 2.19 0.042 1.254 1.393 0.023 ± 0.064 ± 0.012 -0.023 ± 0.072 ± 0.012

0.34 0.100 0.35 0.48 2.45 0.034 1.225 1.493 0.011 ± 0.041 ± 0.005 -0.042 ± 0.046 ± 0.009

0.33 0.085 0.42 0.61 2.65 0.028 1.183 1.750 0.065 ± 0.050 ± 0.005 0.042 ± 0.061 ± 0.023

0.27 0.058 0.50 0.76 2.28 0.022 1.137 2.512 0.042 ± 0.104 ± 0.036 0.146 ± 0.097 ± 0.036

Q2 bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.34 0.053 0.38 0.51 1.28 0.043 1.280 1.629 0.043 ± 0.054 ± 0.008 0.018 ± 0.061 ± 0.010

0.33 0.081 0.39 0.52 1.99 0.030 1.240 1.591 0.015 ± 0.048 ± 0.009 -0.008 ± 0.052 ± 0.005

0.33 0.125 0.39 0.52 3.14 0.022 1.178 1.522 -0.046 ± 0.051 ± 0.022 0.099 ± 0.058 ± 0.025

0.33 0.185 0.38 0.54 4.87 0.018 1.117 1.474 0.105 ± 0.064 ± 0.013 -0.033 ± 0.071 ± 0.018

0.33 0.279 0.39 0.54 7.52 0.018 1.075 1.421 0.067 ± 0.113 ± 0.041 -0.114 ± 0.153 ± 0.042
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z bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2
˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.25 0.080 0.36 0.63 2.47 0.024 1.183 1.823 0.060 ± 0.028 ± 0.005 -0.041 ± 0.026 ± 0.003

0.35 0.088 0.42 0.58 2.48 0.030 1.197 1.688 0.018 ± 0.025 ± 0.002 0.002 ± 0.024 ± 0.000

0.47 0.096 0.47 0.55 2.52 0.036 1.204 1.604 0.085 ± 0.021 ± 0.006 -0.052 ± 0.022 ± 0.004

0.62 0.102 0.52 0.51 2.55 0.043 1.212 1.531 0.092 ± 0.027 ± 0.011 -0.031 ± 0.030 ± 0.004

0.76 0.113 0.53 0.45 2.56 0.052 1.220 1.452 0.088 ± 0.039 ± 0.006 -0.017 ± 0.042 ± 0.014

0.92 0.124 0.53 0.39 2.50 0.082 1.230 1.393 0.141 ± 0.067 ± 0.010 0.105 ± 0.071 ± 0.010

x bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.35 0.039 0.49 0.67 1.32 0.041 1.212 2.050 0.078 ± 0.037 ± 0.005 -0.021 ± 0.027 ± 0.002

0.38 0.067 0.42 0.57 1.99 0.036 1.227 1.702 0.044 ± 0.025 ± 0.003 -0.041 ± 0.023 ± 0.003

0.39 0.115 0.38 0.53 3.14 0.026 1.179 1.538 0.053 ± 0.025 ± 0.004 -0.037 ± 0.027 ± 0.003

0.40 0.179 0.36 0.50 4.64 0.019 1.129 1.421 0.070 ± 0.036 ± 0.007 0.027 ± 0.040 ± 0.003

0.41 0.274 0.37 0.47 6.60 0.017 1.090 1.322 0.090 ± 0.058 ± 0.007 -0.053 ± 0.058 ± 0.008

Ph⊥ bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.34 0.105 0.18 0.51 2.67 0.038 1.206 1.523 0.066 ± 0.032 ± 0.005 -0.012 ± 0.034 ± 0.001

0.36 0.091 0.32 0.57 2.53 0.034 1.198 1.657 0.076 ± 0.026 ± 0.007 -0.047 ± 0.028 ± 0.004

0.37 0.083 0.47 0.61 2.43 0.030 1.191 1.763 0.055 ± 0.026 ± 0.004 -0.042 ± 0.025 ± 0.003

0.40 0.077 0.65 0.63 2.35 0.026 1.187 1.838 0.041 ± 0.026 ± 0.004 -0.037 ± 0.023 ± 0.003

0.47 0.073 0.95 0.66 2.32 0.018 1.180 1.925 -0.005 ± 0.039 ± 0.007 0.014 ± 0.035 ± 0.001

y bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.49 0.141 0.35 0.27 2.00 0.031 1.269 1.337 0.112 ± 0.150 ± 0.009 0.019 ± 0.159 ± 0.006

0.43 0.122 0.33 0.37 2.33 0.036 1.244 1.383 0.146 ± 0.038 ± 0.010 -0.097 ± 0.043 ± 0.008

0.40 0.105 0.36 0.48 2.61 0.034 1.215 1.491 0.060 ± 0.024 ± 0.004 -0.039 ± 0.027 ± 0.003

0.36 0.084 0.43 0.61 2.66 0.033 1.181 1.763 0.059 ± 0.025 ± 0.004 -0.033 ± 0.023 ± 0.002

0.33 0.059 0.52 0.76 2.29 0.027 1.136 2.526 0.017 ± 0.039 ± 0.001 0.011 ± 0.026 ± 0.001

Q2 bins

〈z〉 〈x〉 〈Ph⊥〉
ˆ

GeV
˜

〈y〉 〈Q2〉
ˆ

GeV2˜

fVM
A(〈y〉,R)
A(〈y〉)

A(〈y〉,R)
B(〈y〉)

2〈sin(φ− φS)〉UT 2〈sin(φ + φS)〉UT

0.37 0.046 0.44 0.58 1.27 0.045 1.255 1.764 0.027 ± 0.028 ± 0.003 0.002 ± 0.025 ± 0.001

0.38 0.072 0.42 0.58 2.00 0.033 1.222 1.717 0.069 ± 0.025 ± 0.005 -0.049 ± 0.024 ± 0.003

0.37 0.111 0.41 0.59 3.13 0.023 1.166 1.655 0.052 ± 0.026 ± 0.004 -0.053 ± 0.027 ± 0.004

0.38 0.173 0.39 0.58 4.90 0.018 1.112 1.559 0.084 ± 0.033 ± 0.008 -0.005 ± 0.036 ± 0.004

0.38 0.266 0.38 0.57 7.57 0.014 1.072 1.483 0.056 ± 0.059 ± 0.006 0.081 ± 0.064 ± 0.006
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Samenvatting

In het onderzoek naar de structuur van nucleonen is de vraag naar de oorsprong van

de spin van deze deeltjes nog steeds niet volledig opgelost. De spinbijdrage van de

partonen, de nucleonconstituenten, wordt gegeven door de heliciteitsdistributie. Deze

beschrijft het verschil in het aantal partonen met een spin parallel en antiparallel met de

nucleonspin in een referentiestelsel waarin het nucleon een oneindig grote impuls heeft

(infinite momentum frame) en waarbij de richting van zijn spin longitudinaal is t.o.v. de be-

wegingsrichting. In het naïeve quark–parton model worden de partonen geïdentificeerd

met de quarks, waarbij hun spins samengevoegd de totale nucleonspin opleveren. Ex-

perimenten in CERN en SLAC leverden echter totale quark heliciteitsdistributies op kleiner

dan 30 %. Quantum chromodynamica (QCD) beschrijft de interactie tussen quarks via

een uitwisseling van gluonen, de ijkbosonen van de sterke wisselwerking. Deze gluonen

bedden de quarks in het nucleon in een zee van virtuele quark–antiquark paren en glu-

onen. Naast de spin van de quarks kunnen dus ook de spin van de gluonen evenals het

baanimpulsmoment van de quarks en gluonen een bijdrage leveren tot de nucleonspin.

Tot op de dag van vandaag gaven zowel indirecte als directe metingen slechts vage

informatie over de grootte van de gluon heliciteitsdistributie. Daarnaast is een directe

meting van de baanimpulsmomenten tot op heden onmogelijk gebleken.

Niet enkel de heliciteitsdistributie maar ook de transversale spin van de constituenten

kan informatie over de nucleonstructuur geven. In tegenstelling tot de heliciteitsdistribu-

tie is de transversale distributie gedefiniëerd voor een nucleonspin die transversaal is t.o.v.

zijn bewegingsrichting. Net zoals het geval is voor een longitudinale nucleonspin stelt de

transversale distributie het verschil voor van het aantal partonen met spin parallel of an-

tiparallel met de nucleonspin. De heliciteits– en transversale distributies lijken gelijkaardig

te zijn, maar hun interpretatie is slechts geldig in het infinite momentum frame waarin

de richting van de impuls van het nucleon de rotatiesymmetrie breekt. Bovendien ver-

biedt behoud van heliciteit bijdragen van gluonen tot de transversale distributie van het

nucleon.

Naast de heliciteit en transversale distributiefunctie bestaan in leading twist nog zes

andere quarkdistributiefuncties voor elke quarksmaak. Bij integratie over de intrinsieke

quark transversale impulsen blijken echter enkel de ongepolariseerde distributiefunctie,

die de quarkdichtheid in het nucleon voorstelt, en de heliciteit en transversale distributies

niet te verdwijnen. Deze drie distributies zijn evenwaardig en vormen de fundamentele

vrijheidsgraden van de quarks in het nucleon. De transversale distributiefunctie werd

eerst vermeld in 1979, maar werd tot op heden nooit gemeten. De reden hiervoor is

te vinden in haar chiraal–oneven aard die vereist dat ze gecombineerd wordt met een

ander chiraal–oneven object in processen die de heliciteit behouden. Eén mogelijkheid
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om toegang tot transversaliteit te krijgen is het semi–inclusief diep–inelastische verstrooi-

ingsproces waarbij de distributiefuncties gecombineerd worden met fragmentatiefunc-

ties. De combinatie van de transversale distributie met de chiraal–oneven Collins frag-

mentatiefunctie veroorzaakt een links–rechts asymmetrie in de werkzame doorsnede

voor een transversaal gepolariseerd nucleon. De interesse in deze asymmetrie groeide

toen een allereerste meting in het SMC–experiment in 1999 een positieve asymmetrie

opleverde voor positieve hadronen geproduceerd in diep–inelastische verstrooiing op

transversaal gepolariseerde waterstof trefkernen. Semi–inclusieve diep–inelastische ver-

strooiing laat bovendien toe nog een andere distributiefunctie te meten, nl. de Sivers

functie die de correlatie van quark transversale impulsen met de transversale spin van

het nucleon beschrijft. De motivatie voor het bestuderen van de Sivers functie wordt

gevormd door het feit dat haar bestaan samenhangt met de eis voor het niet nul zijn

van het baanimpulsmoment van de quarks. Net zoals er een combinatie optreedt van

de transversale en Collins functies, verschijnt de Sivers functie samen met de ongepo-

lariseerde fragmentatiefunctie in de werkzame doorsnede voor een transversaal gepo-

lariseerd nucleon en produceert zij ook een links–rechts asymmetrie.

Het diep–inelastische verstrooiingsexperiment HERMES (HERa MEasurement of Spin)

maakt gebruik van de leptonenbundel van HERA (Hadron–Elektron-RingAnlage) te DESY

(Deutsches Elektronen–SYnchrotron) in Hamburg te Duitsland. In 2001 werd een transver-

saal gepolariseerde waterstof target geïnstalleerd die het mogelijk maakte om de indi-

viduele Collins en Sivers asymmetrie amplitudes te meten. In dit eindwerk werden de

metingen met deze transversaal gepolariseerde target genomen tijdens de periode van

2002 tot 2004 geanalyseerd. Ongewogen en Ph⊥–gewogen Collins en Sivers amplitudes

werden bepaald voor geladen en neutrale pionen en voor geladen kaonen via een

twee–dimensionale fit aan de azimutale single–spin asymmetrie. Om verschillende in-

vloeden van b.v. de HERMES spectrometer en target of de HERA bundel te controleren,

werden diverse systematische studies uitgevoerd met de HERMES metingen. Zo werd

de contributie tot de systematische onzekerheid te wijten aan de hadron identificatie

door de RICH detector en aan het ongepolariseerde cosinusmoment in de noemer van

de asymmetrie bepaald. Andere bijdragen tot de systematische onzekerheid werden

geschat met behulp van data van ongepolariseerde Monte Carlo generatoren. Collins

en Sivers asymmetrieën werden geïmplementeerd in de Monte Carlo data door het

wegen van de evenementen afhankelijk van een willekeurig toegekende target spin-

toestand. De schatting van de systematische onzekerheid op de ongewogen ampli-

tudes omvat o.a. effecten van de extractiemethode, de spectrometeracceptantie en

de eindige detectorresoluties. De correlatie van de azimutale asymmetrie met de intrin-

sieke quark transversale impulsen werd gecontroleerd met behulp van een nieuw ont-

worpen Monte Carlo generator gmc_trans, die azimutale verdelingen te wijten aan de

transversale impulsafhankelijkheid van quark distributie– en fragmentatiefuncties gene-

reert. De geïmplementeerde ongewogen amplitudes konden goed gereconstrueerd

worden, terwijl Ph⊥–gewogen amplitudes sterk beïnvloed werden door de onvolledige

integratie over Ph⊥ in de HERMES acceptantie.

De geanalyseerde datasets van semi–inclusieve mesonen bevatten een bijdrage van

mesonen afkomstig van het verval van vector mesonen geproduceerd in exclusieve re-

acties. Vanuit het standpunt van de theorie is het alsnog onduidelijk of deze bijdrage al

dan niet als achtergrond beschouwd moet worden. Met behulp van de PYTHIA Monte
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Carlo generator met inbegrip van exclusieve vector mesonproductie werden de fracties

van mesonen afkomstig van exclusieve vector mesonen in de verschillende hadron data

sets bepaald. De grootste fracties – tot 10 % in het semi–inclusief gebied, dat in de ana-

lyse gebruikt werd – werden gevonden in de data sets van de geladen pionen. Deze

fracties die gedomineerd worden door verval van exclusieve ρ0–mesonen, kunnen zelfs

toenemen tot ongeveer 50 % voor z > 0.7 buiten het semi–inclusief gebied. Voor neutrale

pionen en geladen kaonen zijn de bijdragen kleiner dan 4 % in het gebied 0.2 < z <

0.7. Vervalmesonen van exclusieve vector mesonen verstoren niet alleen de geëxtra-

heerde amplitudes, ze kunnen eveneens Collins– en Siversachtige amplitudes vertonen.

Deze amplitudes kunnen ofwel afkomstig zijn van een vector meson amplitude die ge-

transfereerd werd naar de vervalmesonen of ze kunnen tot stand gekomen zijn tijdens

het vervalproces. Met behulp van de PYTHIA en DIPSI Monte Carlo generatoren werden

transfercoëfficiënten voor geladen pionen komende van exclusieve ρ0–vervallen en voor

neutrale pionen van exclusieve ω–vervallen bepaald. De statistische significantie van

de HERMES data lieten bovendien een extractie van de Collins– en Siversachtige ampli-

tudes voor exclusieve ρ0–mesonen toe, die uiteindelijk consistent met nul bleken. Deze

amplitudes werden niet enkel voor de typische kinematica van het ρ0 vector meson zelf

bepaald, maar ook voor zijn vervalpionen. Net zoals voor de vector mesonen werden

deze amplitudes met grootte–orde van enkele procenten consistent met nul bevonden

voor zowel positieve als negatieve pionen. Voor de schatting van de amplitudes die ver-

worven worden tijdens het vervalproces werden vervalhoekdistributies van ρ0–mesonen

onderzocht. Er werd aangetoond dat de verworven Collins and Sivers amplitudes klein

mogen verondersteld worden in het semi–inclusieve gebied. Deze conclusie wordt on-

dersteund door de dominantie van natuurlijke pariteitsuitwisseling en de kleine schend-

ing van behoud van s–kanaalsheliciteit die gevonden werd in de HERMES data. Een

methode om de bijdrage van exclusieve ρ0 en ω–mesonen d.m.v. reactiekinematica te

onderdrukken werd onderzocht, waarbij aangetoond werd dat dit soort techniek niet

werkt, zelfs wanneer de meetgegevens van HERMES van het jaar 2005 in beschouwing

genomen worden. Daarnaast werden amplitudes bepaald uit de azimutale asymmetrie

van het verschil in opbrengst tussen positieve en negatieve pionen, waarin geen bijdrage

van exclusieve vector mesonen optreedt. Deze significant positieve amplitudes tonen

aan dat de Collins en Sivers amplitudes van de semi–inclusieve pion data sets zeker niet

in hoofdzaak te wijten zijn aan vervalpionen van exclusieve vector mesonen.

In 1996 en 1997 verrichtte het HERMES experiment metingen met een longitudinaal

gepolariseerde waterstof target. De spins van de nucleonen waren gealigneerd langs

de richting van de impuls van de leptonenbundel, wat resulteerde in een kleine com-

ponent van de spins transversaal t.o.v. de richting van het virtueel foton. Dit heeft tot

gevolg dat de gemeten azimutale asymmetrieën naast een subleading–twist compo-

nent van de werkzame doorsnede voor longitudinaal gepolariseerde nucleonen ook de

Collins en Sivers amplitudes bevatten. De geëxtraheerde Collins en Sivers amplitudes

van de metingen op een transversaal gepolariseerde target werden aangewend om de

subleading–twist amplitudes te scheiden van de metingen op een longitudinaal gepo-

lariseerde target. Hierbij werden significant positieve amplitudes voor positieve en neu-

trale pionen gevonden, hetgeen aantoont dat de interpretatie van de azimutale asym-

metrieën louter in termen van leading–twist functies niet altijd afdoende is. De transver-

saal gepolariseerde target die aangewend werd voor de meting van de Collins en Sivers
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amplitudes, heeft naast de dominante transversale spincomponent eveneens een kleine

component longitudinaal t.o.v. de richting van het virtueel foton. Er werden echter maar

verwaarloosbare bijdragen van de subleading–twist component tot de gemeten Collins

en Sivers amplitudes gevonden.

Uit alle ondernomen studies kan besloten worden dat de significant positieve onge-

wogen Sivers amplitudes voor positieve pionen en kaonen en neutrale pionen de allereer-

ste aanduiding vormen van een niet nul zijnde T–odd distributiefunctie van semi–inclu-

sieve diep–inelastische verstrooiing. Bovendien veroorzaakt het product van de T–odd

Collins fragmentatiefunctie en de transversale distributiefunctie significant positieve (ne-

gatieve) ongewogen Collins amplitudes voor positieve (negatieve) pionen. De interpre-

tatie van de azimutale asymmetrie amplitudes in termen van distributie– en fragmen-

tatiefuncties laat toe een verband tussen de drie pionamplitudes af te leiden. Dit ver-

band wordt met 2σ geschonden voor zowel de Collins als de Sivers amplitudes. Niettemin

zijn beide amplitudes sterk anti–gecorreleerd door hun simultane extractieprocedure. De

som van beide amplitudes voldoet aan de relatie hetgeen aantoont dat de schending

van de eerdervermelde relatie mogelijkerwijze veroorzaakt werd door een statistische

fluctuatie. Via Gaussische sampling van de algemene ongewogen Collins amplitude

voor de drie piontypes kan een waarschijnlijkheidsdistributie opgesteld worden voor de

verhouding van de disfavoured tot de favoured Collins functie als functie van de verhou-

ding van transversaliteit van verschillende quarksmaken. In het scenario met de hoogste

waarschijnlijkheid blijkt de disfavoured Collins functie van dezelfde grootte te zijn maar

met een tegengesteld teken als de favoured Collins functie. De verkregen meest waar-

schijnlijke verhouding van disfavoured tot favoured Collins functie kan mogelijkerwijze

nuttig zijn voor het extraheren van de Collins functie uit een meting van azimutale asym-

metrieën voor de productie van geladen pionparen in elektron–positron annihilatie in

het BELLE experiment. Een verklaring voor het Collinseffect gebaseerd op het stringfrag-

mentatiemodel resulteert in een positief teken van de Collins functie voor positieve pio-

nen, hetgeen consistent is met het meetresultaat. Een allereerste extractie van de Sivers

functie uit de gemeten ongewogen Sivers amplitude gaf een negatieve functie voor

u–quarks en een positieve functie voor d–quarks. In een semi–klassiek model impliceert

dit een positief baanimpulsmoment voor u–quarks en een negatief baanimpulsmoment

voor d–quarks.

Het HERMES experiment zette zijn metingen verder tijdens het jaar 2005 en was in staat

een verdubbeling te behalen van de statistische significantie van de gecombineerde

data set genomen van 2002 tot 2004. Naar de toekomst toe zal een verbeterde energie-

calibratie van de calorimeter zijn resolutie verbeteren wat zal leiden tot een grotere frac-

tie van signaal tot achtergrond evenementen in de neutrale pionidentificatie en daar-

door tot een kleinere onzekerheid in de amplitudes voor neutrale pionen. Bovendien zal

de hogere statistische significantie misschien toelaten om de fractie van signaal evene-

menten in elke azimutale bin en spintoestand te bepalen. In dat geval kan een achter-

grondscorrectie gebeuren vóór de vorming van de azimutale amplitude. Voorts werd

een vernieuwde amplitude extractiemethode via een unbinned maximum likelihood fit

voorgesteld. Deze fit is minder gevoelig aan acceptantie–effecten en kan misschien

de analyse van de Ph⊥–gewogen amplitudes toelaten. Dit zou de interpretatie in termen

van distributie– en fragmentatiefuncties toestaan zonder verdere veronderstellingen over

de transversale impulsdistributies binnen het nucleon.
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