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Abstract. We discuss polarized lepton–proton scattering with special emphasis on the difference between
target polarization defined relative to the lepton beam or to the virtual photon direction. In particular, this
difference influences azimuthal distributions in the final state. We provide a general framework of analysis
and apply it to the specific cases of semi-inclusive deep inelastic scattering, of exclusive meson production,
and of deeply virtual Compton scattering.

1 Introduction

Measurements of deep inelastic scattering on a polarized
nucleon are an essential source of information in spin phys-
ics. The inclusive spin dependent structure functions g1
and g2 have become textbook material, and present-day
experiments investigate selected final states that give ac-
cess to a wealth of information about the role of spin in the
internal structure of the nucleon. In semi-inclusive deep in-
elastic scattering (SIDIS) for instance, the Collins effect [1]
provides an opportunity to access the transversity distri-
bution of quarks, and the Sivers effect [2] reveals the sub-
tle role of gluon rescattering in QCD dynamics [3]. In ex-
clusive channels like meson electroproduction and deeply
virtual Compton scattering (DVCS), target polarization
allows one to separate generalized parton distributions
with different spin dependence. In particular, the trans-
verse target spin asymmetry for appropriate final states
[4] is sensitive to the helicity-flip distribution E, which
carries information about the orbital angular momentum
of quarks in the nucleon [5].

In experiment, the target polarization usually is lon-
gitudinal or transverse with respect to the lepton beam
direction. For the strong-interaction part of the reaction,
i.e., the γ∗p subprocess, longitudinal and transverse po-
larization with respect to the virtual photon momentum is
however a more natural basis. The conversion between the
two sets of polarization states is simple and well known for
a target polarized longitudinally with respect to the lepton
beam, whereas for transverse polarization the transforma-
tion is more involved. In the present contribution, we give
a general framework to analyze transverse and longitu-
dinal polarization data, both for semi-inclusive and for
exclusive processes.

a e-mail: mdiehl@mail.desy.de

The outline of this paper is as follows. In Sect. 2 we
give the general transformation between target polariza-
tion longitudinal or transverse with respect to either the
lepton beam or the virtual photon direction. In Sects. 3
and 4 we derive and discuss the general expression of the
polarized lepton–proton cross section in terms of cross sec-
tions and interference terms at the γ∗p level. We apply
these results to the specific cases of SIDIS and exclusive
meson production in Sects. 5 and 6. In Sect. 7 we derive
positivity bounds and show how they may help one to
separate contributions from longitudinal and transverse
photons in the cross section. The special case of DVCS
is discussed in Sect. 8, and we summarize our results in
Sect. 9. Some additional material is given in three appen-
dices.

2 Transformation of the target spin

We consider lepton–proton scattering processes of the
form

�(l) + p(P )→ �(l′) + h(Ph) +X(P ′), (1)

with four-momenta given in parentheses. � denotes the
lepton, p the target proton, and h a produced hadron. X
can be an inclusive system of hadrons as in SIDIS, or a
single hadron as in exclusive processes. The virtual photon
radiated by the lepton has momentum q = l − l′. We use
the conventional kinematical variables for deep inelastic
processes, Q2 = −q2, xB = Q2/(2P · q), y = (P · q)/(P ·
l), and the azimuthal angle φ between the hadron and
lepton planes as shown in Fig. 1. Our discussion in this
section also covers the case of virtual Compton scattering,
where h is a real photon, as well as processes where h is a
system of several particles. In this section we do not make
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Fig. 1. Kinematics of the process (1) in
the target rest frame. P hT and ST respec-
tively are the components of P h and S
perpendicular to q. (The target spin vec-
tor S is not shown.) φ and φS respectively
are the azimuthal angles of P h and S in
the coordinate system with axes x, y, z, in
accordance with the Trento conventions
[7]

any kinematical approximations, except for neglecting the
lepton mass.

To transform between the different target polarization
states, we find it useful to introduce two coordinate sys-
tems C and C ′ in the target rest frame, with respective
axes x, y, z and x′, y′, z′ as shown in Figs. 1 and 2. The
z axis points along q, whereas the z′ axis points along l.
The x axis and the x′ axis are chosen such that l′ lies in
the x-z and the x′–z′ plane and has a positive x and x′
component. The y and y′ axes coincide. The two coordi-
nate systems C and C ′ are related via a rotation about
the y axis by the angle θ between q and l. In terms of
invariants we have

sin θ = γ

√
1− y − 1

4y
2γ2

1 + γ2 , γ = 2xBMp/Q, (2)

where Mp is the proton mass. In deep inelastic kinematics
γ is small, and so is sin θ ≈ γ

√
1− y. Note for instance

that γ2 is the parameter controlling the size of target mass
corrections in inclusive DIS [6].

We parameterize the target spin vector S in the two
coordinate systems by

S
C=

ST cosφS

ST sinφS

−SL

 , S
C′
=

PT cosψ
PT sinψ
−PL

 , (3)

so that PL, PT specify longitudinal and transverse po-
larization relative to the lepton beam direction, and SL,
ST longitudinal and transverse polarization relative to the
virtual photon direction. Likewise, ψ is the azimuthal an-
gle of the target spin around the lepton beam direction,
whereas φS is the corresponding azimuthal angle around
the virtual photon direction. PL and SL are between −1
and 1, and PT and ST are between 0 and 1. The sign con-
vention for the longitudinal case is such that PL = +1 and
SL = +1 correspond to a right-handed proton in the �p
and γ∗p center of mass, respectively. The values of PL and
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Fig. 2. The lepton plane in the target rest frame. The y and
y′ axes coincide and point out of the paper plane

PT are determined by the experimental setup, whereas SL
and ST depend on the kinematics of an individual event.
The rotation from C to C ′ readily gives

ST cosφS = cos θ PT cosψ − sin θ PL,

ST sinφS = PT sinψ,
SL = sin θ PT cosψ + cos θ PL. (4)

We remark that, although we work in the target rest
frame, our results can readily be applied to a polarized
�p collider, whose laboratory frame is obtained from the
target rest frame by a boost along the lepton beam mo-
mentum. PL and PT then give the longitudinal and trans-
verse polarization of the proton beam with respect to the
beam axis.

2.1 Longitudinal polarization
with respect to the lepton beam

We have PT = 0, so that

ST cosφS = − sin θ PL,
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ST sinφS = 0, SL = cos θ PL. (5)

If we allow ST to be negative, so that (−ST, φS + π) and
(ST, φS) are equivalent, the first and second relation can
be written more simply as ST = − sin θ PL and φS = 0.

2.2 Transverse polarization
with respect to the lepton beam

With PL = 0 we find

ST cosφS = cos θ PT cosψ,
ST sinφS = PT sinψ, SL = sin θ PT cosψ. (6)

It turns out that the expression for the cross section in
the next sections are considerably simpler when written
in terms of the angle φS instead of ψ. We can use the
relations (6) to obtain

sinψ =
cos θ sinφS√

1− sin2θ sin2φS

, cosψ =
cosφS√

1− sin2θ sin2φS

(7)
and, inserting this into the same relations, finally have

ST =
cos θ√

1− sin2θ sin2φS

PT,

SL =
sin θ cosφS√

1− sin2θ sin2φS

PT. (8)

The phase space element is however simpler in terms of ψ,
which describes the azimuthal distribution of the scattered
lepton around the beam axis, with the reference direction
provided by the target spin.1 Namely, we have

d3l′

2l′0
=

y

4xB
dxB dQ2 dψ

=
y

4xB
dxB dQ2 dφS

cos θ
1− sin2θ sin2φS

. (9)

The transformation from dψ to dφS introduces an explicit
φS dependence. In deep inelastic kinematics, one has how-
ever dψ ≈ dφS up to corrections of order γ2.

2.3 Cross section and asymmetries

The dependence of the �p cross section on the target po-
larization is at most linear in the spin vector S. This fol-
lows from the superposition principle and becomes for in-
stance explicit in the spin density matrix formalism used
in the next section. For an unpolarized lepton beam we can
therefore write dσ/(dxB dQ2 dφdψ) = a0 +S ·a, where a0
and a only depend on the four-momenta of the reaction

1 In the case where PT = 0 one can define ψ as the azimuthal
angle of l′ with respect to an arbitrary direction fixed in space.
The cross section is then of course independent of this angle.

(1) but not on the target spin. Expressing the vectors in
our coordinate system C we have

dσ
dxB dQ2 dφdψ

= a0 +ST cosφS a1 +ST sinφS a2−SLa3,

(10)
where the ai depend on xB, y, Q2 and φ but not on φS or
ψ. With (5) and (8) we have

1
2π

dσ
dxBdQ2dφ

∣∣∣∣∣
PT=0

= a0 − PL sin θa1 − PL cos θa3,

dσ
dxBdQ2dφdφS

∣∣∣∣∣
PL=0

=
cos θ

1− sin2θ sin2φS

(11)

×
[
a0 + PT

cos θ(cosφSa1 + sinφSa2) − sin θ cosφSa3√
1 − sin2θ sin2φS

]
,

where in the first relation we have integrated over ψ and
in the second one we have used (9) to trade dψ for dφS .

It is often useful to express the spin dependence of
a process through asymmetries. We define asymmetries
for longitudinal and transverse target polarization with
respect to the lepton beam:

A�
UL =

dσ(PL = +1)− dσ(PL = −1)
dσ(PL = +1) + dσ(PL = −1)

∣∣∣∣∣
PT=0

,

A�
UT(φS) =

dσ(φS)− dσ(φS + π)
dσ(φS) + dσ(φS + π)

∣∣∣∣∣
PT=1,PL=0

(12)

in accordance with the Trento conventions [7]. The sub-
script U indicates an unpolarized lepton beam, and for
better legibility we have not displayed the dependence of
the cross sections and asymmetries on other kinematical
variables φ, xB, Q2, etc. These asymmetries can be di-
rectly measured in experiment, whereas their counterparts
for longitudinal and transverse target polarization with re-
spect to the virtual photon direction,

Aγ∗
UL =

dσ(SL = +1)− dσ(SL = −1)
dσ(SL = +1) + dσ(SL = −1)

∣∣∣∣∣
ST=0

,

Aγ∗
UT(φS) =

dσ(φS)− dσ(φS + π)
dσ(φS) + dσ(φS + π)

∣∣∣∣∣
ST=1,SL=0

, (13)

are more natural to describe the physics of the γ∗p sub-
process. From (10) and (11) we readily obtain the trans-
formation between the two types of asymmetries,

A�
UL = cos θ Aγ∗

UL − sin θ Aγ∗
UT(0) , (14)

A�
UT(φS) =

cos θ Aγ∗
UT(φS) + sin θ cosφS A

γ∗
UL√

1− sin2θ sin2φS

and its inverse

Aγ∗
UL = cos θ A�

UL + sin θ A�
UT(0) ,
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Aγ∗
UT(φS) =

√
1− sin2θ sin2φS A

�
UT(φS)

cos θ

− sin θ cosφS

(
A�

UL + tan θ A�
UT(0)

)
= cosφS

(
cos θ A�

UT(0)− sin θ A�
UL

)
+ sinφS A

�
UT(

1
2

π) . (15)

An experiment having both longitudinal and transverse
target polarization can hence uniquely reconstruct the two
asymmetries Aγ∗

UL and Aγ∗
UT(φS). To determine A�

UT(φS) at
φS = 0 or φS = 1

2π one can of course use data for all φS ,
given that

A�
UT(φS) =

cosφS A
�
UT(0) + cos θ sinφS A

�
UT( 1

2π)√
1− sin2θ sin2φS

(16)

according to (11). Notice that the transformations (14)
and (15) require θ to be fixed, which implies that the cross
sections in (12) and (13) have to be differential in both xB
and Q2 (which also fixes y for a given CM energy of the
�p collision). If the measured cross sections are integrated
over wider bins in xB and Q2, the transformations can
only be done approximately, with an average value of θ.

Our results generalize straightforwardly to the case of
a longitudinally polarized lepton beam. The relations (10)
and (11) then hold separately for right- and left-handed
beam polarization with coefficients a→i and a←i . (Since we
neglect the lepton mass, the lepton helicity is a good quan-
tum number and frame independent.) Writing dσ→ and
dσ← for the respective cross section with a right-handed
and left-handed lepton beam, we introduce the double spin
asymmetries

A�
LL =

[
dσ→(PL = +1)− dσ→(PL = −1) (17)

−dσ←(PL = +1) + dσ←(PL = −1)
]/

[
dσ→(PL = +1) + dσ→(PL = −1)

+dσ←(PL = +1) + dσ←(PL = −1)
] ∣∣∣

PT=0
,

A�
LT(φS) =

[
dσ→(φS)− dσ→(φS + π)

−dσ←(φS) + dσ←(φS + π)
]/

[
dσ→(φS) + dσ→(φS + π)

+dσ←(φS) + dσ←(φS + π)
] ∣∣∣

PT=1,PL=0

and their analogs Aγ∗
LL and Aγ∗

LT(φS), with (PL, PT) re-
placed by (SL, ST). One then has relations like (14), (15)
and (16) with the subscript U replaced by L.

3 From �p to γ∗p cross sections

In the previous section we have given the transformation
between target polarization defined with respect to either

the direction of l or the direction of q = l−l′. We have not
actually used that q is the momentum of a virtual photon
which is radiated off the lepton beam and absorbed by
the target proton. We now use this, which will in partic-
ular allow us to make explicit the interplay between the
azimuthal angles φ and φS . The discussion in this chapter
holds for processes like SIDIS and exclusive meson pro-
duction, but not for DVCS (see Sect. 8).

Our evaluation of the �p cross section closely follows
the steps detailed in Sect. 3 of [8] for an unpolarized target
(see also [9]). A reader not interested in the derivation
may directly go to the result (29). To describe the γ∗p
subprocess we use a coordinate system C ′′ with axes x′′,
y′′, z′′ as shown in Fig. 1. The z′′ axis points opposite to
q and the x′′ axis is chosen such that P h lies in the x′′–z′′
plane and has a positive x′′ component.2 In this coordinate
system the proton spin vector reads

S
C′′
=

ST cos(φ− φS)
ST sin(φ− φS)

SL

 (18)

and the spin density matrix of the target [10] can be writ-
ten as

ρji =
1
2

[
δji + S · σji

]
(19)

C′′
=

1
2

(
1 + SL ST exp[−i(φ− φS)]

ST exp[i(φ− φS)] 1− SL

)
in a basis of polarization states specified by two-
component spinors,

χ+ 1
2

=

(
1
0

)
, χ− 1

2
=

(
0
1

)
. (20)

These states respectively correspond to definite spin pro-
jection +1

2 and − 1
2 along the z′′ axis, and to right- and

left-handed proton helicity in the γ∗p center of mass. The
components of σ in (19) are the Pauli matrices. As is well
known, the cross section can be written as

dσ(�p→ �hX) ∝ LνµWµν
d3l′

2l′0
d3Ph

2P 0
h

, (21)

with a proportionality factor depending on xB, y and Q2.
The leptonic tensor reads

Lνµ = l′ν lµ + lν l′µ − (l′ · l) gνµ + iP� ε
νµαβqαlβ (22)

with the convention ε0123 = 1 and the lepton beam po-
larization P� defined such that P� = +1 corresponds to a
purely right-handed and P� = −1 to a purely left-handed
beam. The hadronic tensor is given by

Wµν =
∑
ij

ρji

∑
X

δ(4)(P ′ + Ph − P − q) (23)

2 We take the z′′ axis opposite to the z axis of coordinate sys-
tem C, so that in the γ∗p center of mass the proton moves into
the positive z′′ direction, a choice favored in many theoretical
calculations.
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×
∑
spins

〈p(i)|Jµ(0)|hX〉 〈hX|Jν(0)|p(j)〉,

where Jµ is the electromagnetic current.
∑

X denotes the
integral over the momenta of all hadrons inX, and also the
sum over their number if X is an inclusive system. There
are further sums

∑
ij over target spin states i, j = ± 1

2
and

∑
spins over all polarizations in the hadronic final state

hX. We now introduce polarization vectors εm for definite
helicity m of the virtual photon,

εµ0 =
1

Q
√

1 + γ2

(
qµ +

Q2

P · q P
µ

)
, (24)

ε+1 =
1√
2

(0,−1, i, 0), ε−1 =
1√
2

(0, 1, i, 0),

with γ defined in (2) and the components of ε±1 given
in coordinate system C ′′. As shown in [8], the leptonic
tensor Lνµ can be expressed as a linear combination of
terms ενnε

µ∗
m . Up to a global factor the expansion coeffi-

cients form the spin density matrix of the virtual photon.
They depend on P�, on Q2, on the usual ratio of longitu-
dinal and transverse photon flux

ε =
1− y − 1

4y
2γ2

1− y + 1
2y

2 + 1
4y

2γ2
, (25)

and on the azimuthal angle φ.3 The contraction LνµWµν

can then be written in terms of the quantities

σmn =
∑
ij

ρji σ
ij
mn ∝

∫
dtdM2

X (εµ∗m Wµν ε
ν
n), (26)

where the xB and Q2 dependent proportionality factor is
chosen such that σmm is the γ∗p cross section for photon
helicity m with Hand’s convention for the virtual photon
flux. In (26) we have integrated over the invariant mo-
mentum transfer t = (P − P ′)2 = (Ph − q)2 and over the
invariant mass M2

X = P ′2 of the system X.4 The σij
mn are

polarized photoabsorption cross sections or interference
terms, given by

σij
mn(xB, Q

2) (27)

∝
∫

dtdM2
X

∑
X

δ(4)(P ′ + Ph − P − q)
∑
spins

(
Ai

m

)∗
Aj

n

in terms of the amplitudes Ai
m for the subprocess γ∗p →

hX with proton polarization i and photon polarization
m. Changing the basis of spin states one can rewrite in-
terference terms as linear combinations of cross sections,

3 The polarization vectors in (24) are identical to those in
(3.16) of [8], where they are however given in a different coor-
dinate system. We also note that the angle ϕ in [8] is equal to
−φ used here.

4 The integration over M2
X is trivial if X is a single hadron,

because one then has
∑

X = (2π)−3 ∫
d3P ′/(2P ′0). Together

with δ(4)(P ′ + Ph − P − q) this leaves one delta function con-
straint in the hadronic tensor (23).

as shown in Appendix A. We have defined our polarization
states for protons and photons in the coordinate system
C ′′, whose axes are specified with reference only to the mo-
menta of the γ∗p process, but not to the lepton momenta
or to the proton polarization. Therefore σij

mn depends on
the kinematical variables xB and Q2, whereas the depen-
dence on ε and φ is contained in Lνµ and the dependence
on ST, SL and φS in ρji. From hermiticity and parity in-
variance we have the relations σnm = σ∗mn and

σji
nm = (σij

mn)∗, σ−i−j
−m−n = (−1)m−n−i+j σij

mn, (28)

with m,n = 0,+1,−1 and i, j = + 1
2 ,− 1

2 . They imply that
σ+−

00 , σ+−
+− and σ−+

+− are purely imaginary, whereas other
interference terms have both real and imaginary parts.
Using these relations and closely following the steps of
the derivation in [8] we obtain our master formula[

αem

8π3

y2

1− ε
1− xB

xB

1
Q2

]−1 dσ
dxB dQ2 dφdψ

=
1
2

(
σ++

++ + σ−−++

)
+ εσ++

00 − ε cos(2φ) Reσ++
+−

−
√
ε(1 + ε) cosφRe (σ++

+0 + σ−−+0 )

− P�

√
ε(1− ε) sinφ Im (σ++

+0 + σ−−+0 )

− SL

[
ε sin(2φ) Imσ++

+−

+
√
ε(1 + ε) sinφ Im (σ++

+0 − σ−−+0 )
]

+ SLP�

[√
1− ε2 1

2

(
σ++

++ − σ−−++

)
−

√
ε(1− ε) cosφRe (σ++

+0 − σ−−+0 )
]

− ST
[
sin(φ− φS) Im (σ+−

++ + εσ+−
00 )

+
ε

2
sin(φ+ φS) Imσ+−

+−

+
ε

2
sin(3φ− φS) Imσ−+

+−

+
√
ε(1 + ε) sinφS Imσ+−

+0

+
√
ε(1 + ε) sin(2φ− φS) Imσ−+

+0

]
+ STP�

[√
1− ε2 cos(φ− φS) Reσ+−

++

−
√
ε(1− ε) cosφS Reσ+−

+0

−
√
ε(1− ε) cos(2φ− φS) Reσ−+

+0

]
. (29)

For the sake of legibility we have labeled the target spin
states by ± instead of ± 1

2 . In the following we will also
use the common notation

σT =
1
2
(σ++

++ + σ−−++), σL = σ++
00 (30)

for the transverse and longitudinal γ∗p cross sections. The
dependence of the �p cross section on ε and on the angles
φ and φS (or ψ as explained in Sect. 2.2) is fully explicit
in (29).
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Relations analogous to (28) and (29) hold for cross sec-
tions and interference terms that are differential in M2

X

and t, or equivalently in M2
X and P 2

hT, where P hT is the
transverse component of the hadron momentum with re-
spect to the virtual photon momentum (see Fig. 1). Let us
analyze the behavior of the different interference terms in
the region of small P hT. To this end we go to the γ∗p cen-
ter of mass and consider the amplitudes for γ∗p→ hX as a
function of the scattering angle Θ between h and γ∗. For
semi-inclusive processes, we can choose the set of states
X to be summed over in the cross section such that the
system X has definite total spin jX and definite spin pro-
jection mX along its momentum. For exclusive processes
we simply choose helicity states of the single hadron X.
Also taking states with definite helicity mh of the hadron
h, we can perform a partial-wave decomposition of the γ∗p
scattering amplitude (see e.g. [10]):

Ai
m(jX ,mX ,mh;Θ)

=
∑

J

ai
m(jX ,mX ,mh;J) dJ

i−m, mX−mh
(Θ). (31)

For Θ → 0 the rotation functions follow the behavior
dJ

µ, µ′(Θ) ∼ Θ|µ−µ′|. In the product (Ai
m)∗Aj

n we thus
have a sum over terms which behave like Θ to the power
|i−m−mX +mh|+ |j−n−mX +mh| ≥ |i−m− j+n|.
Since Θ ∼ |P hT| for small Θ, we finally obtain a power
behavior like

dσij
mn

dP 2
hT
∼ |P hT||m−n−i+j| for P hT → 0, (32)

or like a higher power of |P hT|. Applying this to our cross
section formula (29) we find the simple rule that terms
coming with an angular dependence cos(Mφ + NφS) or
sin(Mφ + NφS) behave like dσij

mn/(dP 2
hT) ∼ |P hT|M or

like a higher power, where M = 0, 1, 2, 3 and N = −1, 0, 1.
Using the transformations (5) and (8) we obtain from

(29) the cross sections for definite target polarization with
respect to the lepton beam,[

αem

4π2

y2

1− ε
1− xB

xB

1
Q2

]−1 dσ
dxB dQ2 dφ

∣∣∣∣∣
PT=0

= terms independent of PL

− PL

[
sinφ

(
cos θ

√
ε(1 + ε) Im (σ++

+0 − σ−−+0 )

− sin θ Im (σ+−
++ + εσ+−

00 )− sin θ
ε

2
Imσ+−

+−
)

+ sin(2φ)

×
(

cos θ ε Imσ++
+− − sin θ

√
ε(1 + ε) Imσ−+

+0

)
− sin(3φ) sin θ

ε

2
Imσ−+

+−
]

+ PLP�

[
cos θ

√
1− ε2 1

2
(σ++

++ − σ−−++)

+ sin θ
√
ε(1− ε) Reσ+−

+0

− cosφ
(

cos θ
√
ε(1− ε) Re (σ++

+0 − σ−−+0 )

+ sin θ
√

1− ε2 Reσ+−
++

)
+ cos(2φ) sin θ

√
ε(1− ε) Reσ−+

+0

]
(33)

for longitudinal and[
cos θ

1− sin2θ sin2φS

]−1

×
[
αem

8π3

y2

1− ε
1− xB

xB

1
Q2

]−1 dσ
dxB dQ2 dφdφS

∣∣∣∣∣
PL=0

= terms independent of PT

− PT√
1− sin2θ sin2φS

[
sinφS cos θ

√
ε(1 + ε) Imσ+−

+0

+ sin(φ− φS)
(
cos θ Im (σ+−

++ + εσ+−
00 )

+
1
2

sin θ
√
ε(1 + ε) Im (σ++

+0 − σ−−+0 )
)

+ sin(φ+ φS)
(
cos θ

ε

2
Imσ+−

+−

+
1
2

sin θ
√
ε(1 + ε) Im (σ++

+0 − σ−−+0 )
)

+ sin(2φ− φS)
(
cos θ

√
ε(1 + ε) Imσ−+

+0

+
1
2

sin θ ε Imσ++
+−

)
+ sin(2φ+ φS)

1
2

sin θ ε Imσ++
+−

+ sin(3φ− φS) cos θ
ε

2
Imσ−+

+−
]

− PTP�√
1− sin2θ sin2φS

×
[
cosφS

(
cos θ

√
ε(1− ε) Reσ+−

+0

− sin θ
√

1− ε2 1
2
(σ++

++ − σ−−++)
)

− cos(φ− φS)
(
cos θ

√
1− ε2 Reσ+−

++

− 1
2

sin θ
√
ε(1− ε) Re (σ++

+0 − σ−−+0 )
)

+ cos(φ+ φS)
1
2

sin θ
√
ε(1− ε) Re (σ++

+0 − σ−−+0 )

+ cos(2φ− φS) cos θ
√
ε(1− ε) Reσ−+

+0

]
(34)

for transverse polarization. The terms independent of PL
and PT are those given in the first three lines on the right-
hand side of (29). Although the expressions for the ex-
perimentally accessible cross sections (33) and (34) are a
little lengthy, they have a clear structure. Using the re-
lations cosφS sin(nφ) = 1

2 [ sin(nφ + φS) + sin(nφ − φS) ]
and cosφS cos(nφ) = 1

2 [ cos(nφ + φS) + cos(nφ − φS) ],
we have written the cross sections such that the terms in
each line can be experimentally separated by measuring
the dependence on φ and (with transverse target polariza-
tion) on φS . Different terms σij

mn(xB, Q
2) multiplying the

same function of φ and φS can be separated by the Rosen-
bluth technique, measuring at several �p collision energies
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to get several values of ε at the same xB and Q2. A dif-
ferent possibility is to combine data with transverse and
longitudinal target polarization. Here one can analyze a
limited number of terms at a time.
(1) The three combinations Im (σ++

+0 − σ−−+0 ), Im (σ+−
++ +

εσ+−
00 ) and Imσ+−

+− can be separated by combined analy-
sis of the sinφ term in the longitudinal cross section (33)
and the sin(φ − φS) and sin(φ + φS) terms in the trans-
verse cross section (34). Further separation of Imσ+−

++ and
Imσ+−

00 is only possible with the Rosenbluth method, as is
the separation of the cross sections σT and σL in σT+εσL.
The terms just discussed are of particular physical inter-
est, and we will come back to them in Sects. 5, 6 and 7.
(2) The cross section difference σ++

++ − σ−−++ and the inter-
ference term Reσ+−

+0 can be obtained by combined anal-
ysis of the φ independent terms in (33) and (34), i.e. by
integrating over φ and forming double spin asymmetries
for polarized beam and target. In this case, the transfor-
mation between asymmetries for target polarization with
respect to the beam or to the virtual photon direction is
well known from the measurement of the structure func-
tions g1 and g2 in inclusive DIS. We give the relation be-
tween the notation usually employed in the literature and
our’s in Appendix B.
(3) Imσ++

+− and Imσ−+
+0 can be separated by measuring

both the sin(2φ) term in (33) and the sin(2φ − φS) term
in (34). Imσ++

+− can also directly be obtained from the
sin(2φ+φS) term for transverse target polarization, where
it is however suppressed by sin θ. The situation is analo-
gous for the cosφ term in (33) and the cos(φ − φS) and
cos(φ+ φS) terms in (34).
(4) Imσ−+

+− can either be extracted from the sin(3φ− φS)
term in the transverse cross section, or from the sin(3φ)
term in the longitudinal one, where it is however sup-
pressed by sin θ. An analogous statement holds for the
cos(2φ − φS) term in (34) and the cos(2φ) term in (33).
Finally, the interference term Imσ+−

+0 only appears in the
transverse cross section (34).

To conclude this section we take a closer look on az-
imuthal moments for transverse target polarization, which
are given by

〈w(φ, φS) 〉�UT = (35)∫
dφdφS w(φ, φS) [S(φ, φS) − S(φ, φS + π)]∫

dφdφS [S(φ, φS) + S(φ, φS + π)]

∣∣∣∣∣
PT=1,PL=0

and similarly for the double spin asymmetry with polar-
ized beam and target. For brevity we have not displayed
the dependence on the variables xB, y, and Q2, and have
written S(φ, φS) = dσ/(dxB dQ2 dφdφS). Without the φS

dependence introduced by the global factor

f(sin2φS) =
cos θ

(1− sin2θ sin2φS)3/2 (36)

in the PT dependent part of S(φ, φS), the moment of
w(φ, φS) = 2 sin(mφ+ φS) would directly project out the
sin(mφ + φS) term in the transverse cross section (34),
where m = 0,±1,±2,−3. Taking the effect of this term

into account is straightforward, given that

1
2π2

∫ 2π

0
dφ

∫ 2π

0
dφS f(sin2φS) sin(nφ+ φS)

× sin(mφ+ φS)

=



1
π

∫ 2π

0
dφS f(sin2φS) sin2φS if n = m = 0,

1
2π

∫ 2π

0
dφS f(sin2φS) if n = m 	= 0,

1
2π

∫ 2π

0
dφS f(sin2φS)

×(2 sin2φS − 1) if n = −m 	= 0,

=


1 + 5

8 sin2θ +O(sin4θ) if n = m = 0,
1 + 1

4 sin2θ +O(sin4θ) if n = m 	= 0,
3
8 sin2θ +O(sin4θ) if n = −m 	= 0,

1
2π2

∫ 2π

0
dφ

∫ 2π

0
dφS f(sin2φS) cos(nφ+ φS)

× cos(mφ+ φS)

=



1
π

∫ 2π

0
dφS f(sin2φS) cos2 φS if n = m = 0,

1
2π

∫ 2π

0
dφS f(sin2φS) if n = m 	= 0,

1
2π

∫ 2π

0
dφS f(sin2φS)

×(2 cos2 φS − 1) if n = −m 	= 0,

=


1− 1

8 sin2θ −O(sin4θ) if n = m = 0,
1 + 1

4 sin2θ +O(sin4θ) if n = m 	= 0,
− 3

8 sin2θ −O(sin4θ) if n = −m 	= 0,
(37)

where for all other combinations of m and n the integrals
are zero. For simplicity we have Taylor expanded the ex-
act expressions, which are given by elliptic integrals. We
see in particular that the moment 〈 2 sin(mφ + φS) 〉�UT
projects out not only the sin(mφ+ φS) term in the cross
section but has an admixture from the sin(mφ − φS)
term, and vice versa. This admixture comes with a pref-
actor 3

8 sin2θ and therefore is typically small in deep in-
elastic kinematics. If high precision is required, one can
readily invert the linear relation between the moments
〈 2 sin(mφ+ φS) 〉�UT and 〈 2 sin(mφ− φS) 〉�UT and the co-
efficients of sin(mφ + φS) and sin(mφ − φS) in the cross
section. Alternatively, one can avoid this mixing effect
by including a factor 1/f(sin2φS) in the weight functions
w(φ, φS), which then also depend on θ.

We emphasize that the results in this section do not
depend on our choice of coordinate systems. They depend
on the angles φ and φS and on the phase conventions
for spin states as specified in (20) and (24), which can be
defined independently of a reference frame and coordinate
system (see also [7]). We have used the different systems
C, C ′ and C ′′ of Fig. 1 in order to have simple expressions
in intermediate steps of our derivation.
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4 Hadron pair production

In a number of physically interesting cases one considers
processes

�(l) + p(P )→ �(l′) + h1(P1) + h2(P2) +X(P ′), (38)

with two hadrons h1 and h2 instead of a single hadron as
in (1). Examples are semi-inclusive or exclusive produc-
tion of π+π− pairs, either from the decay of a ρ0 or from
the continuum. Let us write Ph = P1 + P2 for the total
momentum of the hadron pair. To describe the kinemat-
ics of (38) we need three more variables in addition to the
case of a single hadron h (where one can e.g. choose xB,
y, Q2, φS , φ, M2

X and P 2
hT). One additional variable is

the squared invariant mass M2
h = P 2

h of h1 and h2, and
the two others can be chosen as the polar and azimuthal
angles ϑ, ϕ of the hadron h1 in the rest frame of the pair,
defined in a coordinate system with the z axis pointing op-
posite to P ′ and the x axis taken such that P lies in the
x–z plane and has a positive x component.5 The invariant
mass Mh is invariant under a parity transformation, and
so is the polar angle ϑ (which can be expressed through
scalar products of four-vectors). As a consequence, the re-
lations (28) also hold for the differential cross sections and
interference terms dσij

mn/(dM
2
h dcosϑ), and our cross sec-

tion formulae (29), (33) and (34) can be made differential
in M2

h and in cosϑ. This is for instance important for the
analysis of exclusive pion pair production, which we will
briefly discuss in Sect. 6. Note that our results do not gen-
eralize so easily to the dependence on the azimuthal angle
ϕ. Since ϕ is not invariant under a parity transformation,
the relations (28) no longer hold when the ϕ dependence
is included. General analyses of the cross section structure
for this case can be found in [13] for an unpolarized and
in [14] for a polarized target.

A different generalization of the results in Sect. 3 is
relevant for the analysis of semi-inclusive hadron-pair pro-
duction in the framework of dihadron fragmentation func-
tions. This offers a way to measure the transversity dis-
tribution of quarks in the proton; see [15] for a discussion
and references. In this case the �p cross section is required
as a function not of the angle φ between the lepton plane
and the plane spanned by q and P h, but of the angle
φR between the lepton plane and the plane spanned by q
and the relative momentum R = 1

2 (P 1 − P 2) (with all
momenta taken in the target rest frame). Our derivation
in Sect. 3 used γ∗p cross sections and interference terms
for polarizations defined with respect to the q–P h plane,
with the crucial point that this definition only referred to
the kinematics of the γ∗p subprocess. It is straightforward
to repeat the derivation for polarizations defined with re-
spect to the q–R plane, and the result will be the analogs
of the cross section formulae (29), (33) and (34) with φ
replaced by φR, and with γ∗p cross sections and interfer-
ence terms referring to different polarization states than in
Sect. 3. The cross sections σii

mm and the interference term

5 See for instance Fig. 6 in [11] or Fig. 5 in [12], where these
angles are denoted by (θ, φ) or (θ, ϕ), respectively.

σ+−
+0 are actually the same in both cases, since they appear

without a φ or φR dependence, but all other interference
terms will in general depend on the choice of polarization
states.

5 Semi-inclusive deep inelastic scattering

Let us now take a closer look at semi-inclusive hadron
production. It is customary to trade the variable M2

X for
z = (Ph · P )/(q · P ) in this case. In the kinematical limit
of large Q2 at given xB, z and P h, the cross section fac-
torizes into a hard-scattering subprocess multiplied with
parton densities and fragmentation functions that explic-
itly depend on the transverse parton momentum. The cor-
responding Born level expressions have been calculated in
[16–19] at leading and first subleading order in 1/Q. We
will remark on αs effects at the end of this section. The
Born level results show a simple pattern.
(1) At leading order in 1/Q we have cross sections and
interference terms σij

++ and σij
+− that involve only trans-

verse photon polarization. They are expressed in terms
of twist-two parton densities and twist-two fragmentation
functions. These twist-two functions have a simple prob-
abilistic interpretation in the parton model; see e.g. [20,
21].
(2) The interference terms σij

+0 between a transverse and a
longitudinal photon are suppressed by one power of 1/Q.
They involve a twist-two parton density times a twist-
three fragmentation function or vice versa.
(3) The longitudinal cross section σ++

00 and the interfer-
ence term σ+−

00 do not appear in the result. At Born level
they must hence be suppressed by 1/Q2.

For brevity we will in the following refer to the cross
sections and interference terms of point 1 as “twist-two”
and to those of point 2 as “twist-three” quantities. The
finding in point 1 has a simple physical reason. To lead-
ing accuracy in 1/Q the transverse momentum and the
virtuality of the incoming and outgoing parton is set to
zero when evaluating the hard scattering, which at Born
level is just the scattering of a quark or antiquark on a
virtual photon; see Fig. 3a. In the Breit frame one read-
ily sees that conservation of the fermion helicity requires
the photon to have transverse polarization. This is the
well-known mechanism responsible for the Callan–Gross
relation in inclusive DIS.

For definiteness let us express the leading-twist results
from [18] in terms of γ∗p cross sections and interference
terms. Using the abbreviation

Γ =
4π3αem

Q2

xB

1− xB
(39)

we can write

1
2

[
dσ++

++

dz dP 2
hT

+
dσ−−++

dz dP 2
hT

]
= Γ F

[
f1D1

]
,(40)

1
2

[
dσ++

++

dz dP 2
hT
− dσ−−++

dz dP 2
hT

]
= Γ F

[
g1D1

]
,
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h

Fig. 3. Semi-inclusive hadron production γ∗p → hX at large Q2. a Born level graph. b A next-to-leading order graph where
the hadron h has transverse momentum of order Q

Re
dσ++

+−
dz dP 2

hT
= Γ F

[ |pT| |kT| cos(ϕp + ϕk)
MpMh

h⊥1 H
⊥
1

]
,

Im
dσ++

+−
dz dP 2

hT
= Γ F

[ |pT| |kT| cos(ϕp + ϕk)
MpMh

h⊥1LH
⊥
1

]
,

Re
dσ+−

++

dz dP 2
hT

= Γ F
[ |pT| cosϕp

Mp
g1TD1

]
,

Im
dσ+−

++

dz dP 2
hT

= Γ F
[ |pT| cosϕp

Mp
f⊥1TD1

]
,

Im
dσ+−

+−
dz dP 2

hT
= Γ F

[ |kT| cosϕk

Mh
2h1H

⊥
1

]
,

Im
dσ−+

+−
dz dP 2

hT
= Γ F

[ |pT|2|kT| cos(2ϕp + ϕk)
M2

p Mh
h⊥1TH

⊥
1

]
,

with convolution integrals given by

F
[
wfD

]
=

∑
a=q,q̄

e2a

∫
d2pT d2kT δ

(2)
(
pT − kT − P hT/z

)
× w(pT,kT) fa(xB,p

2
T) Da(z, z2k2

T), (41)

where f represents a parton density, D a fragmentation
function, and w an additional weight function. To write
the weight functions in a compact way we have used the
angles ϕp = ∠(pT,P hT) and ϕk = ∠(kT,P hT) in the
transverse plane. The quark or antiquark densities (in
lowercase symbols) depend on xB and on the transverse
momentum pT of the parton relative to the proton. The
fragmentation functions (in uppercase symbols) depend
on z and on the transverse momentum kT of the par-
ton relative to the hadron h (or the transverse momen-
tum −zkT of h relative to the parton).6 We note that
some of the convolutions in (40) acquire an explicit mi-
nus sign when the integrals over pT and kT are car-
ried out; see e.g. Appendix D in [16]. As remarked in
[17], the convolutions (41) factorize into separate trans-
verse momentum integrals over parton densities and over

6 See [16] for a discussion of adequate reference frames in
this context. We also remark that P h⊥ in the notation of [16]
is the same as P hT in the present paper.

fragmentation functions if one forms weighted cross sec-
tions

∫
dP 2

hT |P hT/z |M dσij
mn/(dz dP 2

hT) with the power
M = |m − n − i + j| we encountered in (32). We shall
not discuss all parton densities and fragmentation func-
tions here (see [16,17] for their definitions and [20] for an
overview), but point out two terms of particular interest
in ongoing and planned experiments [22–25]. The Sivers
function f⊥1T together with the usual unpolarized fragmen-
tation function D1 appears in Imσ+−

++ , and the transver-
sity distribution h1 comes together with the Collins frag-
mentation function H⊥1 in Imσ+−

+− . Many investigations
have shown these functions to reveal subtle aspects of the
dynamics and the structure of hadrons; see e.g. [21,26] for
recent reviews.

We notice in (40) that all possible cross sections and
interference terms with transverse photons are non-zero.
The results of [16,17,19] show that all interference terms
σij

+0 are non-vanishing as well.7 Taking into account theQ2

behavior specified above and keeping in mind that sin θ is
of order 1/Q, we can now discuss the relative size of terms
which have the same dependence on φ and φS in the cross
sections (33) and (34) for definite target polarization with
respect to the beam.
(1) For longitudinal target polarization the Sivers and
Collins terms, Imσ+−

++ and Imσ+−
+− , come with a factor

sin θ and thus appear with the same power in 1/Q as the
twist-three interference term Im (σ++

+0 −σ−−+0 ). For a trans-
versely polarized target, this twist-three term is multiplied
with sin θ and thus suppressed by 1/Q2 compared with
the Sivers or the Collins term. Furthermore, the Sivers
term Imσ+−

++ always comes together with Imσ+−
00 , which

is 1/Q2 suppressed according to our above discussion.
(2) For the φ independent terms in the cross section the
situation is reverse (and well known from inclusive DIS).
Here it is for transverse target polarization that both the
twist-two cross section difference σ++

++−σ−−++ and the twist-
three term Reσ+−

+0 appear with the same power in 1/Q.
For a longitudinally polarized target this twist-three term

7 This is in contrast to semi-inclusive hadron-pair production
in dependence of the angle φR discussed in Sect. 4, where the
calculation of [27] gives zero entries for several interference
terms σij

++, σij
+− and σij

+0.
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is accompanied by sin θ and thus down by 1/Q2 compared
with σ++

++ − σ−−++ .
For the terms with cosφ and cos(φ − φS) in the po-

larized cross sections (33) and (34) the situation is as in
case 1, and for the terms with sin(2φ) and sin(2φ−φS) as
in case 2.

In those cases where a “competing term” in the cross
section is suppressed by 1/Q2, one may argue that it
should be consistently neglected in an analysis based on
theoretical results with accuracy only up to order 1/Q.
After all, quantities like Imσ+−

++ have themselves 1/Q2

suppressed contributions in addition to the leading-twist
part which one would like to extract. In general, subtract-
ing one particular type of power-suppressed term from
an observable can improve the comparison with leading-
twist theory, but it can also make it worse, since differ-
ent power-suppressed terms may have opposite sign and
partially compensate each other. Our case is however spe-
cial. Taking for example the 1/Q2 suppressed quantities
εImσ+−

00 and sin θ
√
ε(1 + ε) Im (σ++

+0 − σ−−+0 ), which com-
pete with Imσ+−

++ in the sin(φ − φS) term, we see that
they come with a different dependence on ε. Since the σij

mn

are independent of this variable, these power-suppressed
terms can in general not compensate power corrections in
Imσ+−

++ itself. This provides some theoretical motivation
to try and separate such contributions, which may be of
practical relevance especially if a twist-two term is “acci-
dentally” small because the relevant parton distributions
or fragmentation functions are.

Let us finally remark on loop corrections to the Born
level formulae on which we have based our discussion so
far. At leading accuracy in 1/Q these have been recently
investigated in [28,29]. Note that at next-to-leading or-
der in αs there are hard-scattering graphs where two par-
tons with transverse momenta of order Q are produced;
see Fig. 3b. It was emphasized in [28] that such graphs
do not contribute when P hT is small compared with Q
and can be generated from the transverse momentum de-
pendence in the parton densities and fragmentation func-
tions, as expressed in (41). They do however contribute
if one integrates the cross section over all P hT (or takes
P hT weighted cross sections as mentioned above). They
produce effects at leading order in 1/Q and can be eval-
uated using standard collinear factorization, with parton
densities and fragmentation functions that are integrated
over the transverse parton momentum. In particular, these
graphs generate an order αs contribution to the longitu-
dinal cross section σ++

00 , just as in the well-known case
of inclusive DIS. Explicit calculation for an unpolarized
target shows that they also generate a cosφ and cos(2φ)
modulation in the cross section [30], described by the in-
terference terms Re (σ++

+0 +σ−−+0 ) and Reσ++
+−. The lepton

polarization dependence for an unpolarized target is due
to Im (σ++

+0 + σ−−+0 ). Because of time reversal invariance,
this term requires an absorptive part in the amplitude and
thus appears only at order α2

s in the large P hT region [31].

6 Exclusive meson production

Exclusive electroproduction of light mesons such as �p→
�ρ0p or �p → �π+n provides opportunities to study gen-
eralized parton distributions (GPDs); see [4,32] for re-
cent reviews. In the limit of large Q2 at fixed xB and
t, the γ∗p amplitude factorizes into the convolution of
a hard-scattering subprocess with generalized parton dis-
tributions in the nucleon and the light-cone distribution
amplitude of the produced meson (see Fig. 4). The fac-
torization theorem shows that the leading transitions in
the large Q2 limit have both the virtual photon and the
produced meson longitudinally polarized, all other transi-
tions being suppressed by at least one power of 1/Q [33,
34]. This gives a hierarchy opposite to the one we have
encountered for semi-inclusive production in Sect. 5.
(1) The only leading-twist observables are the longitudi-
nal cross section σ++

00 and the interference term σ+−
00 .

(2) Transverse–longitudinal interference terms σij
+0 are at

least one power of 1/Q down compared with σ++
00 .

(3) Cross sections and interference terms σij
++ and σij

+−
with transverse photon polarization are suppressed by at
least 1/Q2 compared with σ++

00 .
Using the abbreviation

Γ ′ =
αem

Q6

x2
B

1− xB
(42)

the leading-twist results given in [4,32] can written as8

1
Γ ′

dσ++
00

dt
= (1− ξ2) |HM |2 −

(
ξ2 +

t

4M2
p

)
|EM |2

− 2ξ2 Re (E∗MHM ),
1
Γ ′

Im
dσ+−

00

dt
= −

√
1− ξ2

√
t0 − t
Mp

Im (E∗MHM ) (43)

for mesons with natural parity like ρ0, ρ+, f2, and as

1
Γ ′

dσ++
00

dt
= (1− ξ2) |H̃M |2 − ξ2 t

4M2
p

|ẼM |2

− 2ξ2 Re (Ẽ∗MH̃M ),
1
Γ ′

Im
dσ+−

00

dt
=

√
1− ξ2

√
t0 − t
Mp

ξ Im (Ẽ∗MH̃M ) (44)

for mesons with unnatural parity like π0, π+, η. In the
kinematical factors on the right-hand side9 we have used
the scaling variable ξ and the smallest kinematically al-
lowed momentum transfer −t0, given by

ξ =
xB

2− xB
, −t0 =

4ξ2M2
p

1− ξ2 (45)

up to relative corrections of order xBM
2
p/Q

2, xB t/Q
2 and

M2
h/Q

2. Note that
√
t0 − t ∝ |P hT|, so that the behavior

of Im dσ+−
00 /dt illustrates our general result (32).

8 The relation between the angle β used in [4] and the angles
used here is sin β[4] = − sin(φ− φS)here.

9 Their expressions for the case where outgoing baryon is not
a nucleon can be found in [35].
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M(P
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Fig. 4. Example graphs for exclusive production of a meson M at large Q2. Instead of the proton there may be a different
baryon in the final state. The lower blobs represent twist-two generalized parton distributions, and the upper blobs stand for
the twist-two distribution amplitude of the meson

The quantities HM , EM , H̃M , ẼM are integrals over
the GPDs H, E, H̃, Ẽ appropriate for the production of
the meson M (given in Appendix 9 for �p → �ρ0p and
�p → �π+n). They depend on ξ, t and Q2, where the
dependence on Q2 is only logarithmic and reflects the fa-
miliar scaling violations from loop corrections to the hard-
scattering kernels. We note that for mesons with natural
parity both quark and gluon GPDs in general contribute
at leading order in αs, whereas for mesons with unnatural
parity only quark distributions appear at this accuracy
[32].

The interest of measuring Im dσ+−
00 /dt in addition to

dσ++
00 /dt is immediately clear from (43) and (44). The

combination of these two observables provides a handle
to separate the contributions from the GPDs H and E
or H̃ and Ẽ, which describe different spin dependence.10
The nucleon helicity-flip distributions Eq and Eg are of
particular interest because they carry information about
the contribution from the orbital angular momentum of
quarks and gluons to the total spin of the proton [5]. With
the Q2 behavior discussed above, we find from (34) that
with transverse target polarization one can obtain Imσ+−

00
from the sin(φ − φS) dependent term of the �p cross sec-
tion, where it comes together with the terms Imσ+−

++ and
sin θ Im (σ++

+0 − σ−−+0 ), both of which are suppressed by at
least 1/Q2. In the cross section (33) for longitudinal target
polarization, sin θ Imσ+−

00 and Im (σ++
+0 −σ−−+0 ) contribute

to the sinφ dependence with the same power of 1/Q, to-
gether with at least 1/Q2 suppressed terms sin θ Imσ+−

++
and sin θ Imσ+−

+− . We note that a non-zero effect for this
sinφ modulation has been measured in ep → eπ+n by
HERMES [36].

As discussed in the previous section, one may want
to extract separate γ∗p cross sections and interference
terms without an a priori assumption on their relative
size. The leading-twist interference term Imσ+−

00 in (43)
could for instance be “accidentally” small because EM is
much smaller than HM or because their relative phase
is close to zero. Combining data for transverse and lon-
gitudinal target polarization one can separate the terms
Im (σ+−

++ + εσ+−
00 ), Imσ+−

+− and Im (σ++
+0 − σ−−+0 ), provided

10 Unfortunately, these two observables are insufficient to
uniquely determine both the size of the convolutions HM and
EM or H̃M and ẼM and their relative phase.

that one measures both the sin(φ − φS) and sin(φ + φS)
dependence for a transversely polarized target. Without
the Rosenbluth technique one can however not isolate the
longitudinal contribution in Im (σ+−

++ +εσ+−
00 ), nor the lon-

gitudinal part from σT + εσL in the unpolarized cross sec-
tion.

For electroproduction of vector mesons one experimen-
tally finds that the ratio σL/σT is not very large forQ2 of a
few GeV2 [11,37], which means that the predicted power
suppression of transverse photon amplitudes is numeri-
cally not yet very effective in this kinematics. In addition
one finds that transitions with the same helicity for pho-
ton and meson are clearly larger than those changing the
helicity [11,37], which is commonly referred to as approx-
imate s-channel helicity conservation. The largest power-
suppressed amplitudes are hence those from a transverse
photon to a transverse vector meson. A possibility to re-
move this particularly important type of power correction
in an analysis is to measure the decay angular distribu-
tion of the vector meson, say in ρ → π+π−. Here we can
make use of our result in Sect. 4. If only the dependence
on the polar decay angle ϑ but not the azimuth ϕ is con-
sidered, our cross section formulae (33) and (34) can be
made differential in cosϑ. Different helicities of the ρ do
not interfere if ϕ is integrated over, so that for all m,n
and i, j we have

dσij
mn(γ∗p→ π+π−p)

d(cosϑ)
(46)

=
3 cos2ϑ

2
σij

mn(γ∗p→ ρLp)

+
3 sin2ϑ

4
σij

mn(γ∗p→ ρTp),

with γ∗p cross sections and interference terms for longitu-
dinal and transverse ρ polarization. Since σij

++(ρL) is the
product of two s-channel helicity non-conserving ampli-
tudes, it should be negligible in σij

++(ρL) + εσij
00(ρL), un-

less ε is small. Using the ϑ dependence in (46) to project
out the ρL contribution from the sin(φ− φS) term in the
cross section will hence help toward isolating the twist-two
observable σ+−

00 (ρL).
We finally mention that an angular analysis analogous

to (46) can also be performed for the production of contin-
uum π+π− pairs, where one can measure the interference
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between partial waves with different total spin of the pion
pair [38,32,39]. The ϑ dependence for interference terms
dσ+−

mn/(d cosϑ) is the same as for the terms dσ++
mn/(d cosϑ)

accessible with an unpolarized target.

7 Positivity constraints

In Sect. 3 we have introduced γ∗p cross sections and in-
terference terms for specific polarization states. The γ∗p
cross section must be positive or zero for any polariza-
tion state of the photon–proton system, so that one has∑

ijmn(cim)∗ σij
mn c

j
n ≥ 0 for arbitrary complex coefficients

cim. This means that the matrix

M = (47)

σ++
00 i Imσ+−

00 (σ++
+0 )∗ (σ−+

+0 )∗ −(σ−−
+0 )∗ (σ+−

+0 )∗

−i Imσ+−
00 σ++

00 (σ+−
+0 )∗ (σ−−

+0 )∗ (σ−+
+0 )∗ −(σ++

+0 )∗

σ++
+0 σ+−

+0 σ++
++ σ+−

++ σ++
+− i Imσ+−

+−
σ−+

+0 σ−−
+0 (σ+−

++)∗ σ−−
++ i Imσ−+

+− (σ++
+−)∗

−σ−−
+0 σ−+

+0 (σ++
+−)∗ −i Imσ−+

+− σ−−
++ −(σ+−

++)∗

σ+−
+0 −σ++

+0 −i Imσ+−
+− σ++

+− −σ+−
++ σ++

++


formed by M(mi)(nj) = σij

mn must be positive semidefi-
nite, where the rows and columns are ordered such that
they correspond to the combinations

(
0,+ 1

2

)
,
(
0,− 1

2

)
,(

+1,+ 1
2

)
,
(
+1,− 1

2

)
,
(−1,+ 1

2

)
,
(−1,− 1

2

)
of photon and

proton helicities. In writing down (47) we have used the
relations (28) from hermiticity and parity invariance. We
have not been able to find closed expressions for the eigen-
values of this matrix (and if they existed, they might be
too complicated to be useful in practice). More tractable
sets of positivity bounds can be obtained if one uses that
submatrices of M are also positive semidefinite. As simple
example is the submatrix for longitudinal photons, formed
from the first and second rows and columns of M , whose
positivity implies

| Imσ+−
00 | ≤ σ++

00 . (48)

The submatrix for transverse photons, formed by the third
to sixth rows and columns of M , has eigenvalues

2e1,2 = σ++
++ − Imσ+−

+− + σ−−++ + Imσ−+
+− (49)

±
[
(σ++

++ − Imσ+−
+− − σ−−++ − Imσ−+

+−)2

+ 4(Reσ++
+− − Imσ+−

++)2 + 4(Reσ+−
++ + Imσ++

+−)2
] 1

2
,

2e3,4 = σ++
++ + Imσ+−

+− + σ−−++ − Imσ−+
+−

±
[
(σ++

++ + Imσ+−
+− − σ−−++ + Imσ−+

+−)2

+ 4(Reσ++
+− + Imσ+−

++)2 + 4(Reσ+−
++ − Imσ++

+−)2
] 1

2
.

Note that e3 and e4 are obtained from e1 and e2 by chang-
ing the signs of all proton helicity-flip terms σ+−

mn . All four
eigenvalues (49) must be non-negative, which implies

| Imσ+−
+− | ≤ σ++

++ , | Imσ−+
+− | ≤ σ−−++ , (50)

and (
Reσ++

+− − Imσ+−
++

)2
+

(
Reσ+−

++ + Imσ++
+−

)2

≤
(
σ++

++ − Imσ+−
+−

)(
σ−−++ + Imσ−+

+−
)
,(

Reσ++
+− + Imσ+−

++

)2
+

(
Reσ+−

++ − Imσ++
+−

)2

≤
(
σ++

++ + Imσ+−
+−

)(
σ−−++ − Imσ−+

+−
)
. (51)

One can easily obtain inequalities that are weaker than
(51) but involve fewer interference terms, e.g. by omitting
one of the squared terms on the left-hand sides. Adding
the bounds (51) one has

(Reσ++
+−)2 + (Imσ+−

++)2 + (Reσ+−
++)2 + (Imσ++

+−)2

≤ (σ++
++) (σ−−++)− (Imσ+−

+−) (Imσ−+
+−), (52)

where any of the terms on the left-hand side can be omit-
ted. We note that the submatrix of M formed by the 1st,
2nd, 4th and 5th rows and columns has eigenvalues given
in analytic form similar to (49), as well as the submatrix
formed by the 1st, 2nd, 3rd and 6th rows and columns.
This provides inequalities similar to (51) which involve
different cross sections and interference terms.

As already mentioned, the dependence of the polarized
�p cross section on φ and φS allows one to separate all γ∗p
cross sections and interference terms, except for

σ++
ε =

1
2
(σ++

++ + σ−−++) + εσ++
00 = σT + εσL,

Imσ+−
ε = Im (σ+−

++ + εσ+−
00 ), (53)

whose individual contributions from transverse and longi-
tudinal photons can only be disentangled by the Rosen-
bluth technique. Let us show how the bounds (51) restrict
the longitudinal contributions εσL and ε Imσ+−

00 to the
measurable combinations σ++

ε and Imσ+−
ε . For simplicity

we start from the bound (52) and omit the term Reσ+−
++ ,

whose extraction requires measurement of the angular de-
pendence in a double spin asymmetry. We then have

(A− εσL) (B − εσL)− (C − ε Imσ+−
00 )2 ≥ D,

εσL ≤ 1
2
(A+B), (54)

where

A = σ++
ε +

1
2
(σ++

++ − σ−−++), (55)

B = σ++
ε − 1

2
(σ++

++ − σ−−++),

C = Imσ+−
ε ,

D = (Reσ++
+−)2 + (Imσ++

+−)2 + (Imσ+−
+−) (Imσ−+

+−)

are measurable without Rosenbluth separation. The corre-
sponding allowed region in the plane of σL and Imσ+−

00 is
bounded on the right by a branch of the hyperbola defined
by (A− εσL) (B − εσL)− (C − ε Imσ+−

00 )2 = D. Together
with |Imσ+−

00 | ≤ σL this leaves the shaded region shown in
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+−

σ

σ

L

00Im

Fig. 5. Region in the plane of σL and Imσ+−
00 allowed by the

positivity bounds (48) and (54)

Fig. 5. Note that this region depends on ε, both explicitly
through the factors multiplying σL and Imσ+−

00 in (54)
and implicitly through σ++

ε and Imσ+−
ε in A, B and C.

Stronger restrictions on σL and Imσ+−
00 are obtained in

the same manner if one starts with the two bounds (51),
each of which can be written in the form (54) with suitable
coefficients A, B, C, D.

8 Deeply virtual Compton scattering

In this section we discuss the specific case of DVCS, which
is measured in the exclusive electroproduction process

�(l) + p(P )→ �(l′) + γ(q′) + p(P ′), (56)

where a real photon with momentum q′ now plays the role
taken in the previous sections by the produced hadron h
with momentum Ph. We use the same kinematical vari-
ables as before, introduced in Sect. 2 and in (25) and (45).
In particular, the azimuthal angle φ is defined as in Fig. 1
with Ph replaced by q′.

DVCS is one of the most valuable sources of informa-
tion about generalized parton distributions. One reason
is that in the reaction (56) Compton scattering interferes
with the Bethe–Heitler process; see Fig. 6. The �p cross
section thus receives contributions

dσ(�p→ �γp) = dσVCS + dσBH + dσINT (57)

from Compton scattering and from the Bethe–Heitler pro-
cess, as well as from their interference term. The Compton
part dσVCS of the cross section has the same general struc-
ture as discussed in Sect. 3. With suitable kinematics and
observables, one can however also access the interference
term dσINT, which has a simple linear dependence on the
helicity amplitudes of the subprocess γ∗p → γp (as op-
posed to a quadratic dependence in dσVCS). In addition,
the interference term provides access to the phases of these
subprocess amplitudes.

In the generalized Bjorken limit of large Q2 at fixed xB
and t, the Compton amplitude can be written as the con-
volution of hard-scattering kernels with GPDs [40]. The

detailed dependence of the �p cross section on these con-
volutions has been given in [41]11 at the leading and first
subleading order in 1/Q. To see which combinations of
GPDs are measurable with which polarization, we give
here the expression of the interference term at leading or-
der in 1/Q,

dσINT

dxB dQ2 dtdφdψ
(58)

≈ − e�
α3

em

2π2

y2

Q4

2− xB

|t|
Mp

Q

√
2

ε(1− ε)
1

P (cosφ)

×
(

cosφRe M̂++ + P�

√
1− ε2 sinφ Im M̂++

+ SL

[
sinφ Im M̂ L

++ + P�

√
1− ε2 cosφRe M̂ L

++

]
+ ST cos(φ− φS)

×
[
sinφ Im M̂ S

++ + P�

√
1− ε2 cosφRe M̂ S

++

]
+ ST sin(φ− φS)

×
[
cosφ Im M̂ N

++ − P�

√
1− ε2 sinφRe M̂ N

++

] )
,

where e� = ±1 is the charge of the lepton beam. Notice
that the factor

P (cosφ) = 1− 2 cosφ

√
2(1 + ε)

ε

1− ξ
1 + ξ

t0 − t
Q2

+O
(

1
Q2

)
(59)

from the lepton propagators in the Bethe–Heitler ampli-
tude influences the φ dependence of the cross section.
This effect is formally of order 1/Q but can be rather
important in experimentally relevant kinematics, also be-
cause P (cosφ) appears in the denominator of (58). The
coefficients appearing in (58) are linear combinations of
γ∗p → γp helicity amplitudes with both photons having
helicity +1. They can be written in terms of Compton
form factors as

M̂++ =
√

1− ξ2
√
t0 − t
2Mp

×
[
F1H+ ξ(F1 + F2)H̃ − t

4M2
p

F2 E
]
,

M̂ L
++ =

√
1− ξ2

√
t0 − t
2Mp

×
[
F1H̃+ ξ(F1 + F2)

(
H+

ξ

1 + ξ
E
)

−
(

ξ

1 + ξ
F1 +

t

4M2
p

F2

)
ξẼ

]
,

M̂ S
++ =

[
ξ2

(
F1 +

t

4M2
p

F2

)
− t

4M2
p

F2

]
H̃

11 Note that the angles used in [41] are related to the ones
used here by φ[41] = [π − φ ]here and ϕ[41] = [π − φS + φ ]here .
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Fig. 6. Graphs for virtual Compton scattering a and for the Bethe–Heitler process b

−
(

t

4M2
p

+
ξ2

1 + ξ

)
ξ(F1 + F2) E

+
[(

t

4M2
p

+
ξ2

1 + ξ

)
F1 +

t

4M2
p

ξF2

]
ξẼ

− ξ2(F1 + F2)H ,
M̂ N

++ = − t

4M2
p

(
F2H− F1 E

)
+ ξ2

(
F1 +

t

4M2
p

F2

)
(H+ E)

− ξ2(F1 + F2)
(
H̃+

t

4M2
p

Ẽ
)
, (60)

with the Dirac and Pauli form factors F1 and F2 of the
proton evaluated at momentum transfer t. The term with
superscript S (“sideways”) contributes most strongly to
the cross section for transverse target polarization in the
hadron plane, and the term with superscript N (“nor-
mal”) contributes most for target polarization perpendicu-
lar to the hadron plane, according to the respective factors
cos(φ − φS) and sin(φ − φS) in (58). The Compton form
factors are given as integrals over GPDs and read

H(ξ, t) =
∑

q

e2q

∫ 1

−1
dxHq(x, ξ, t)

×
(

1
ξ − x− iε

− 1
ξ + x− iε

)
+O(αs),

H̃(ξ, t) =
∑

q

e2q

∫ 1

−1
dx H̃q(x, ξ, t) (61)

×
(

1
ξ − x− iε

+
1

ξ + x− iε

)
+O(αs),

where the sums are over quark flavors q with eu = 2
3 and

ed = es = − 1
3 . The expressions for E and Ẽ are analo-

gous to those of H and H̃, respectively. In (61) we have
suppressed the dependence of the Compton form factors
on Q2, which arises at order αs in analogy to the scaling
violation in deep inelastic structure functions.

We see in (58) that single beam or target spin asym-
metries project out the imaginary parts of the Compton
form factors, which according to (61) are just GPDs at
x = ±ξ to leading order in αs. The real part of M̂++
appears in the unpolarized �p cross section, and the real

parts of the other three combinations in double spin asym-
metries. From (60) one readily finds that separation of all
four Compton form factors is possible.

Since ξ is small in a wide range of experimentally rel-
evant kinematics, it is instructive to write

M̂ S
++ = − t

4M2
p

[
F2H̃ − F1 ξẼ

]
− ξ

t

4M2
p

[
(F1 + F2)E − F2 ξẼ

]
+ ξ2O(H, E , H̃, ξẼ) ,

M̂ N
++ = − t

4M2
p

[
F2H− F1E

]
(62)

− ξ
t

4M2
p

(F1 + F2) ξẼ + ξ2O(H, E , H̃) .

For counting powers of ξ we use ξẼ rather than Ẽ in com-
parison with H, because the contribution to Ẽ from pion
exchange scales like ξ−1 [4,32]. The only combination in
(60) where the helicity-flip distribution E is not kinemat-
ically suppressed compared with other GPDs turns out to
be M̂ N

++, which comes with an angular dependence like
sin(φ − φS) cosφ or sin(φ − φS) sinφ in the interference
term. Note that one may rewrite

cos(φ− φS)

×
[
sinφ Im M̂ S

++ + P�

√
1− ε2 cosφRe M̂ S

++

]
+ sin(φ− φS)

×
[
cosφ Im M̂ N

++ − P�

√
1− ε2 sinφRe M̂ N

++

]
=

1
2

[
sin(2φ− φS) Im (M̂ S

++ + M̂ N
++)

+ P�

√
1− ε2 cos(2φ− φS) Re (M̂ S

++ + M̂ N
++)

+ sinφS Im (M̂ S
++ − M̂ N

++)

+ P�

√
1− ε2 cosφS Re (M̂ S

++ − M̂ N
++)

]
, (63)

which results in a simpler form of the angular dependence,
as we have used in Sect. 3. In terms of dominant contribu-
tions from the different GPDs, the combinations M̂ S

++ and
M̂ N

++ appear however more natural than their difference
and sum; see (62).

Let us now take a closer look at how the different
Compton form factors can be extracted from the polarized
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�p cross section. To this end we need the general depen-
dence on the angles φ and φS , which has the form [41]

Q4

y2

dσBH

dxB dQ2 dtdφdψ
=

1
|t|

1
ε

1
P (cosφ)

×
(

2∑
n=0

cos(nφ) cBH
nU + SLP�

1∑
n=0

cos(nφ) cBH
nL

+ STP�

[
cos(φ− φS)

1∑
n=0

cos(nφ) cBH
nS

+ sin(φ− φS) sinφ sBH
1N

])
,

Q4

y2

dσVCS

dxB dQ2 dtdφdψ
=

1
Q2

1
1− ε

×
(

2∑
n=0

cos(nφ) cVCS
nU + P� sinφ sVCS

1U

+ SL

2∑
n=1

sin(nφ) sVCS
nL + SLP�

1∑
n=0

cos(nφ) cVCS
nL

+ ST

[
sin(φ− φS)

2∑
n=0

cos(nφ) cVCS
nN

+ cos(φ− φS)
2∑

n=1

sin(nφ) sVCS
nS

]

+ STP�

[
cos(φ− φS)

1∑
n=0

cos(nφ) cVCS
nS

+ sin(φ− φS) sinφ sVCS
1N

])
,

Q4

y2

dσINT

dxB dQ2 dtdφdψ

= − e�
1
|t|

Mp

Q

1
ε
√

1− ε
1

P (cosφ)

×
(

3∑
n=0

cos(nφ) cINT
nU + P�

2∑
n=1

sin(nφ) sINT
nU

+ SL

3∑
n=1

sin(nφ) sINT
nL + SLP�

2∑
n=0

cos(nφ) cINT
nL

+ ST

[
sin(φ− φS)

3∑
n=0

cos(nφ) cINT
nN

+ cos(φ− φS)
3∑

n=1

sin(nφ) sINT
nS

]

+ STP�

[
cos(φ− φS)

2∑
n=0

cos(nφ) cINT
nS

+ sin(φ− φS)
2∑

n=1

sin(nφ) sINT
nN

])
, (64)

where the subscripts U, L, S, N of the angular coefficients
c and s indicate an unpolarized target, or longitudinal,
sideways or normal target polarization as explained after
(60). These angular coefficients depend on ε, xB, Q2, t,
and the kinematic prefactors have been chosen such that
(up to logarithms in Q2) they all remain finite or vanish in

the limit of large Q2 relevant for the extraction of GPDs.12
For ε → 0 the coefficients behave like cn, sn ∼

√
ε

n, and
for ε → 1 the coefficients accompanied by the lepton po-
larization P� vanish like

√
1− ε whereas the others remain

finite. We see in (64) that generically σBH dominates over
σVCS in generalized Bjorken kinematics (where |t| � Q2)
except if ε is sufficiently close to 1. The interference term
lies in between σBH and σVCS, and it can most directly
be isolated from the difference of cross sections for posi-
tive and negative lepton beam charge. Furthermore, we see
that the Bethe–Heitler contribution depends only on the
product of beam and target polarizations, so that it drops
out in single beam or target spin asymmetries. Unless ε
is close to 1 these asymmetries will then be dominated by
the interference term, with smaller contributions from the
Compton cross section.

Let us now discuss the dynamical content and the
power behavior in Q of the angular coefficients in the
generalized Bjorken limit. It is independent of the tar-
get polarization, and in the following we write cn and sn

to collectively denote the coefficients with subscripts U,
L, S, N. Detailed formulae and references can be found in
[41]. It is understood that the power behavior discussed
in the following is modified by logarithms in Q2 for the
Compton and interference terms.
(1) The Bethe–Heitler coefficients cBH

n and sBH
n behave like

1/Qn.
(2) The leading coefficients in the Compton cross section
are the cVCS

0 , which (up to logarithms) become indepen-
dent of Q in the Bjorken limit. They are quadratic in
the twist-two Compton form factors H, E , H̃, Ẽ intro-
duced above, which parameterize γ∗p → γp amplitudes
with equal helicity of the initial and final state photon.

cVCS
1 and sVCS

1 are suppressed by 1/Q and can be ex-
pressed through products of twist-two with twist-three
Compton form factors. The twist-three form factors pa-
rameterize the γ∗p → γp amplitudes with a longitudinal
γ∗. They contain a part involving the twist-two GPDs
already discussed and another part involving matrix ele-
ments of quark–antiquark–gluon operators in the nucleon,
in analogy with the sum g1+g2 of inclusive structure func-
tions for DIS.

cVCS
2 and sVCS

2 become again Q independent in the
Bjorken limit, but only start at order αs. They can be ex-
pressed through products of the Compton form factors H,
E , H̃, Ẽ with form factors parameterizing γ∗p→ γp tran-
sitions from photon helicity −1 to +1. These transitions
have a twist-two contribution from gluon transversity dis-
tributions, coming of course with a factor of αs. They also
have a twist-four contribution from quark distributions,
which comes without αs but with a 1/Q2 suppression [42].
Very little is known about gluon transversity distributions,
so that we cannot say which piece will be more important
in given kinematics.
(3) In the interference term the leading coefficients are
cINT
1 and sINT

1 , as we already saw in (58). They provide

12 For the purpose of our presentation we have normalized the
coefficients c, s differently than in [41], and we have chosen a
different notation to indicate the target spin dependence.
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access to the linear form factor combinations (60) and
thus are especially important observables to extract from
measurement.

The coefficients cINT
0 involve the Compton form factors

H, E , H̃, Ẽ as well, but they come with a kinematical
suppression factor 1/Q.

The coefficients cINT
2 and sINT

2 are linear combinations
of twist-three Compton form factors and scale as 1/Q. If
one is willing to make the Wandzura–Wilczek approxima-
tion, where quark–antiquark–gluon matrix elements are
neglected, these observables provide additional informa-
tion on the twist-two distributions H, E, H̃, Ẽ.

cINT
3 and sINT

3 are sensitive to the γ∗p → γp transi-
tions from photon helicity −1 to +1 and thus have a Q
independent piece starting at order αs.

For completeness we remark that the angular coeffi-
cients cINT and sINT of the interference term receive fur-
ther contributions [32], which are suppressed compared
with those just discussed by either powers of 1/Q2 or of
αs. We need not discuss them here, given the accuracy we
aim at.

Using the transformation rules from Sects. 2.1 and 2.2
and some relations between trigonometric functions, one
can readily extract from (64) the �p cross sections for
longitudinal and for transverse target polarization with
respect to the beam, as we did in Sect. 3. We restrict
ourselves here to an unpolarized lepton beam, where the
Bethe–Heitler cross section does not contribute to the PL
or PT dependence as mentioned above. In suitable kine-
matics one is then most sensitive to the interference term,
which reads

P (cosφ)
dσINT

dxB dQ2 dtdφ

∣∣∣∣∣
PT=0,P�=0

∝ terms independent of PL

+ PL

(
sinφ

×
[
cos θ sINT

1L − sin θ cINT
0N +

1
2

sin θ (cINT
2N − sINT

2S )
]

+ sin(2φ)
[
cos θ sINT

2L − 1
2

sin θ (cINT
1N + sINT

1S )

+
1
2

sin θ (cINT
3N − sINT

3S )
]

+ sin(3φ)
[
cos θ sINT

3L − 1
2

sin θ (cINT
2N + sINT

2S )
]

− sin(4φ)
1
2

sin θ (cINT
3N + sINT

3S )
)

(65)

for longitudinal and

(1− sin2θ sin2φS)3/2

cos θ

× P (cosφ)
dσINT

dxB dQ2 dtdφdφS

∣∣∣∣∣
PL=0,P�=0

∝ terms independent of PT

+ PT sin(φ− φS)
(

cos θ cINT
0N +

1
2

sin θ sINT
1L

+ cosφ
[
cos θ cINT

1N +
1
2

sin θ sINT
2L

]
+ cos(2φ)

[
cos θ cINT

2N − 1
2

sin θ (sINT
1L − sINT

3L )
]

+ cos(3φ)
[
cos θ cINT

3N − 1
2

sin θ sINT
2L

]
− cos(4φ)

1
2

sin θ sINT
3L

)
+ PT cos(φ− φS)

(
sinφ

[
cos θ sINT

1S +
1
2

sin θ sINT
2L

]
+ sin(2φ)

[
cos θ sINT

2S +
1
2

sin θ (sINT
1L + sINT

3L )
]

+ sin(3φ)
[
cos θ sINT

3S +
1
2

sin θ sINT
2L

]
+ sin(4φ)

1
2

sin θ sINT
3L

)
(66)

for transverse target polarization, where we have not dis-
played kinematic factors which are independent on φ and
φS . For both polarizations, the sinφ or cosφ modulation
in the cross section (at given φ−φS) receives its main con-
tribution from the coefficients sINT

1L , cINT
1N or sINT

1S contain-
ing the twist-two Compton form factors, with corrections
that are power suppressed by 1/Q2. In the sin(2φ) and
cos(2φ) terms, however, the coefficients sINT

2L , cINT
2N and

sINT
2S containing the twist-three Compton form factors ap-

pear together with other terms of the same order in 1/Q.
Their extraction would require at least subtraction of the
contributions from the coefficients sINT

1L , cINT
1N , sINT

1S , which
are presumably larger than sINT

3L , cINT
3N , sINT

3S according to
our discussion above.

A rigorous separation of sINT
1L , cINT

1N and sINT
1S from

the 1/Q2 corrections that accompany them in the sinφ
or cosφ terms requires measurement of almost the full φ
and φS dependence in the polarized cross sections (the
information from the sin(4φ) and cos(4φ) terms is redun-
dant). For small enough sin θ one can however easily esti-
mate whether these 1/Q2 corrections are numerically im-
portant, provided one knows the size of the sin(2φ) term
in (65) and of the sin(φ − φS), sin(φ − φS) cos(2φ) and
cos(φ− φS) sin(2φ) terms in (66).

9 Summary

We have studied the analysis of lepton scattering on a po-
larized spin 1

2 target. Starting point was the general trans-
formation between target spin states defined with respect
to the lepton beam direction, which are relevant in exper-
iment, and spin states defined with respect to the lepton
momentum transfer q = l − l′, which are natural to de-
scribe the hadronic part of the process in the one-photon
exchange approximation. This transformation can easily
be incorporated at the level of polarized cross sections
and of spin asymmetries.

Detailed information on spin properties of the nucleon
can be obtained in semi-inclusive and in exclusive �p scat-
tering from the distribution in the azimuthal angle φ be-
tween the lepton scattering plane and a suitably defined



M. Diehl, S. Sapeta: On the analysis of lepton scattering on longitudinally or transversely polarized protons 531

hadron plane. We have given the general form of the �p
cross section for longitudinal or transverse target polar-
ization relative to the beam direction, expressed in terms
of polarized cross sections and interference terms of the
γ∗p subprocess. Our main results, given in (29), (33) and
(34) are valid for all kinematics and thus hold in a variety
of dynamical contexts. They can be used for any defini-
tion of a hadronic plane, provided this definition depends
only on four-momenta of the γ∗p subprocess. They read-
ily generalize to cross sections which depend on kinemati-
cal variables describing the hadronic final state, provided
these variables are invariant under a parity transforma-
tion. Combining the information from both longitudinal
and transverse target polarization, one can separate all
γ∗p cross sections and interference terms, except for the
contributions from longitudinal and transverse photons to
σT + εσL and to its counterpart Im (σ+−

++ + εσ+−
00 ) for pro-

ton helicity-flip. These contributions can be disentangled
only by Rosenbluth separation, which requires measure-
ment at different �p energies. Without this possibility, one
can however use positivity constraints to obtain limits on
σL and Imσ+−

00 from measuring the angular dependence
of the polarized �p cross sections.

We have then studied the particular cases of semi-
inclusive deep inelastic scattering and of exclusive meson
production. We have also considered the case of deeply
virtual Compton scattering, where a special angular and
polarization dependence arises from the interference term
between Compton scattering and the Bethe–Heitler pro-
cess. Taking into account the power behavior in the large
scale Q for each of these reactions, we have in particular
discussed how from measured cross sections one can sep-
arate twist-two and twist-three quantities, whose analysis
in QCD provides specific information on the role of spin
at the interface of partons and hadrons.

The parameter controlling the mixing of polarizations
defined relative to the beam or to the photon direction is
γ = 2xBMp/Q. For deep inelastic measurements at low xB
one can thus typically neglect this mixing and directly use
cross section formulae like (29) and (64) for the analysis.
For moderate or high xB, our results allow one to take
these mixing effects into account without further model
assumptions.
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Appendix A:
Interference terms versus cross sections

Interference terms σij
mn between different polarizations in

the process γ∗p → hX can be expressed through cross

sections in a suitable basis of spin states. In particular, we
have

Reσ+−
++ =

1
2

(
σ→→++ − σ←←++

)
,

Imσ+−
++ = −1

2

(
σ↑↑++ − σ↓↓++

)
,

Imσ+−
00 = −1

2

(
σ↑↑00 − σ↓↓00

)
, (A.1)

where the labels → and ← respectively denote definite
proton spin projection +1

2 and − 1
2 along the x′′ axis, and

the labels ↑ and ↓ definite proton spin projection +1
2 and

− 1
2 along the y′′ axis. In other words, Reσ+−

++ corresponds
to the asymmetry for transverse proton polarization in the
hadron plane, and Imσ+−

++ and Imσ+−
00 to asymmetries

for transverse proton polarization normal to the hadron
plane.

The interference terms between photon helicities +1
and −1 can be written as combinations of cross sections
for linear photon polarization. With photon polarization
vectors

ε→ = (0, 1, 0, 0), ε↑ = (0, 0, 1, 0),

ε↗ =
1√
2

(0, 1, 1, 0), ε↖ =
1√
2

(0,−1, 1, 0) (A.2)

defined in coordinate system C ′′ we have

Reσ++
+− =

1
2

(
σ++
↑↑ − σ++

→→
)
,

Imσ++
+− =

1
2

(
σ++
↗↗ − σ++

↖↖
)
, (A.3)

Im (σ+−
+− + σ−+

+−) =
1
2

(
σ→→↗↗ − σ←←↗↗ − σ→→↖↖ + σ←←↖↖

)
,

Im (σ+−
+− − σ−+

+−) = − 1
2

(
σ↑↑↑↑ − σ↓↓↑↑ − σ↑↑→→ + σ↓↓→→

)
.

Appendix B:
Inclusive deep inelastic scattering

Our derivation in Sect. 3 can readily be adapted to in-
clusive lepton–proton scattering �p → �X. The inclusive
hadronic state X does not define a hadron plane, so that
we introduce γ∗p cross sections and interference terms for
photon and proton polarizations with respect to the lepton
plane spanned by q and l′ in the target rest frame (cf. also
our remarks at the end of Sect. 4). In the inclusive case we
have additional symmetry relations σji

nm = σij
mn since the

inclusive hadronic tensor is constrained by time reversal
invariance.13 We then obtain for the �p cross section[

αem

2π
y2

1− ε
1− xB

xB

1
Q2

]−1 dσ
dxB dQ2

∣∣∣∣∣
PT=0

(B.1)

13 For the semi-inclusive or exclusive case time reversal does
not constrain the hadronic tensor (23) since it transforms the
states |hX〉 from “out” to “in” states. In the inclusive case this
is of no consequence because one sums over a complete set of
final states.
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=
1
2

(
σ++

++ + σ−−++

)
+ εσ++

00 + PLP�

×
[
cos θ

√
1− ε2 1

2
(σ++

++ − σ−−++)

+ sin θ
√
ε(1− ε)σ+−

+0

]
for longitudinal and[

αem

4π2

y2

1− ε
1− xB

xB

1
Q2

]−1 dσ
dxB dQ2 dψ

∣∣∣∣∣
PL=0

(B.2)

=
1
2

(
σ++

++ + σ−−++

)
+ εσ++

00

− PTP� cosψ
[
cos θ

√
ε(1− ε)σ+−

+0

− sin θ
√

1− ε2 1
2
(σ++

++ − σ−−++)
]

for transverse target polarization. Using the relation be-
tween ψ and φS from Sect. 2.2 and taking into account
that σ+−

+0 is now purely real because of time reversal invari-
ance, we see that this corresponds to the φ independent
terms of our formulae (29), (33) and (34) for semi-inclusive
or exclusive scattering. It is customary to introduce double
spin asymmetries [43]

A‖ =
[
dσ→(PL = +1)− dσ→(PL = −1) (B.3)

−dσ←(PL = +1) + dσ←(PL = −1)
]/

[
dσ→(PL = +1) + dσ→(PL = −1)

+dσ←(PL = +1) + dσ←(PL = −1)
] ∣∣∣

PT=0
,

A⊥ = − 1
cosψ

[
dσ→(ψ)− dσ→(ψ + π)

− dσ←(ψ) + dσ←(ψ + π)
]/

[
dσ→(ψ) + dσ→(ψ + π)

+ dσ←(ψ) + dσ←(ψ + π)
] ∣∣∣

PT=1,PL=0
,

where σ→ denotes right-handed and σ← left-handed lep-
ton beam polarization. Note that the ψ dependence of the
numerator is divided out in A⊥. One further introduces
asymmetries A1 and A2 for the subprocess γ∗p → X,
which are related to the usual inclusive structure func-
tions by

A1 =
g1 − γ2g2

F1
, A2 =

γ(g1 + g2)
F1

. (B.4)

The relation between lepton and photon asymmetries is
usually given in the form [44]

A‖ = D (A1 + ηA2), A⊥ = d (A2 − ζA1), (B.5)

where

D =
1− (1− y)ε

1 + εR
, η =

γyε

1− (1− y)ε ,

d = D

√
2ε

1 + ε
, ζ = η

1 + ε

2ε
(B.6)

with R = σL/σT. In our notation this reads

A‖ =
1

1 + εR

×
[
cos θ

√
1− ε2A1 + sin θ

√
2ε(1− ε) A2

]
,

A⊥ =
1

1 + εR
(B.7)

×
[
cos θ

√
2ε(1− ε) A2 − sin θ

√
1− ε2A1

]
.

Comparing with (B.1) and (B.2) we identify

A1 =
σ++

++ − σ−−++

σ++
++ + σ−−++

, A2 =

√
2σ+−

+0

σ++
++ + σ−−++

. (B.8)

The factors (1 + εR)−1 = σT/(σT + εσL) in (B.7) reflect
that the γ∗p asymmetries are defined with respect to the
transverse cross section σT. Positivity of the matrix (47)
implies |σ+−

+0 | ≤ (σ++
00 σ++

++)1/2 and we thus recover the
bound

|A2| ≤
√

1
2
(1 +A1)R (B.9)

derived in [45].

Appendix C:
Integrals for exclusive meson production

For definiteness we give here the convolution integrals ap-
pearing in (43) and (44) for �p→ �ρ0p and for �p→ �π+n.
Results for other channels can be found in [4,32,35]. To
leading order in αs one has

Hρ0 =
4παs

9
fρ√
2

∫ 1

0
dz

φρ(z)
z(1− z)

×
∫ 1

−1
dx

[
1

ξ − x− iε
− 1
ξ + x− iε

]
×

[
2
3
Hu(x, ξ, t) +

1
3
Hd(x, ξ, t) +

3
8
Hg(x, ξ, t)

x

]
,

H̃π+ =
4παs

9
fπ

∫ 1

0
dz

φπ(z)
z(1− z)

×
∫ 1

−1
dx

[
2
3

1
ξ − x− iε

+
1
3

1
ξ + x− iε

]
×

[
H̃u(x, ξ, t)− H̃d(x, ξ, t)

]
(C.1)

with the meson decay constants fρ ≈ 209 MeV and
fπ ≈ 131 MeV and the respective light-cone distribu-
tion amplitudes normalized as

∫ 1
0 dz φ(z) = 1. Our def-

initions of GPDs are such that for ξ = 0, t = 0 and
x > 0 they are related to the usual parton densities in
the proton as Hq(x, 0, 0) = q(x), Hg(x, 0, 0) = xg(x) and
H̃q(x, 0, 0) = ∆q(x) [32]. The convolutions Eρ0 and Ẽπ+

are obtained from (C.1) by replacing H with E and H̃

with Ẽ.
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