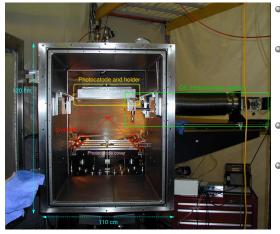

Main components of the existing RICH

Radiator 15 mm thick Liquid Freon $(C_6F_{14}, n=1.28)$

Photon converter 300 nm Csl film coated on Pad Planes

Position Detector 1940 × 403 mm² - Multi Wire/Pad Proportional Chamber


filled with Methane at STP, HV= $1050 \div 1100 \text{ V}$

FE Electronics 11520 analog chs, multiplexed S&H

NOTE1: The CsI layer shall be evaporated on the 3 pad planes before the experiment (require 2 weeks approx.)

NOTE2: Once evaporated, the pads shall not be exposed to air

Evaporation Facility for large area photocathode

- Stainless steel cylindrical vessel
- 3 pumps (scroll + molecular + cryogenic) provide vacuum of $5 \cdot 10^{-7}$ mbar in < 24 h
- ullet 4 crucibles ightarrow thickness uniformity $\sim 10\%$
- Csl powder (from CERN) evaporated at ~ 500 °C

Evaporation Facility and Glove Box

- Clean environment required
- Evaporation facility requires about $5 \times 5 \text{ m}^2$
- The glove box requires about $4 \times 7 \text{ m}^2$

Current Status

The RICH operated successfully in the E94-107 hypernuclear spectroscopy experiment

- RICH is parked at JLab (Jack knows)
- The spare radiator is broken
- Evaporation Facility and Glove Box are at Stony Brook University

Already Scheduled Maintenance

- Ship the broken radiator to Rome (within few weeks)
- Repair it in the next months
- Send back to JLab the spare radiator

NOTE: Before installation in Hall A, Csl shall be evaporated on the pads

Two Evaporation Options

Option 1

- The evaporation can be done at Stony Brook
- The evaporated pad planes are moved to JLab by track; the pad planes shall be fluxed by inert gas during the transportation (legal and practical questions are under evaluation)
- Pad will be installed in the RICH at JLab

Option 2

- The evaporation facility is moved back to JLab (proper/clean working room required !!)
- Pads are evaporated at JLab and installed in the RICH

Both Options require the Glove Box to be moved to JLab (room needed !!) We prefer option 1 (less effort, cleaner environment at Stony Brook) \times

Final decision late spring $_{\sim}$

Upgrade Options

NO Upgrade

Present RICH π rejection 1:100 at 2.4 GeV (\sim 95% efficiency)

MINOR: Extended proximity gap

- ullet Add a stainless steel frame \sim 5 cm tick.
- Expected π rejection at 1:500
- No risk foreseen (Easy to come back to the original version)

MAJOR: New radiator refractive index + extended proximity gap

- Change the liquid freon radiator^a
- ullet Expected π rejection better than 1:1000 (including previous upgrade)
- Require: cooling of the freon recirculation system (minor issue according to Brian Kross) and cooling of the radiator vessel in the RICH (major issue)
- Carefull evaluation of the technical aspects is underway

Plan and cost

- February-April/06: more detailed study of the upgrade impact and practical aspects (including additional Montecarlo analysis)
- May/06: Final decision on upgrade

We will try to design the upgrade so that one can come back to the original configuration in short time (one/two days)

Costs, very very preliminary!

- \bullet MINOR Upgrade: \sim 5 k\$
- MAJOR Upgrade: \sim 20 k\$ + Cooling and Insulation of the freon circulating system (ask Jack/Brian)

Human Resources

- 1 technician at JLab (Brian/Jack are the ideal people)
- 1 data acquistion expert at JLab (shall replace Bodo)
- 1 detector supervisor at JLab (may coincide with the previous one)
- 3 technicians from Rome
- 1 PhD student would be very welcome