Particle ID in HRS for e, e' π (K)

Bogdan Wojtsekhowski

⊙ The issues: e/pi rejection online, PID stability

- ⊙ Examples of PID with A1/A2 counters and ToF in HRS
- Preparation for Transversity

Structure of HRS-L detector package

VDCs S1 A2 **S**0 RICH Short GC S2m **C-12** FPP FPP Lead-glass

Jlab, 2/20/ 2007

Shower and Gas Cerenkov PID for HRS detector

Gas Cerenkov

Shower total amplitude 6 **Pions** Electrons Events, a.u 5 4 3 2 1 0 .5 1.5 2 1 0 Amplitude in the shower detector, GeV

Electron rejection vs Pion eff. ~ 50/95%

2181 8.859 40 on track 15^{15} 7.5 10 2.5 5 12.5 0 Number of photoelectrons when track hit center of Mirror 5 80 off track 60 7.5 0 2.5 55 10 12.5 15 Number of photoelectrons when track hit miss Mirror 5

Electron rejection ~ $1/(P_0+P_1) = 350$

Jlab, 2/20/ 2007

Aerogel Cerenkov PID for HRS detector

Aerogel Cerenkov PID for HRS detector

PID in 5q search (P ~ 1.5-2 GeV/c) Pion rejection in A1&A2 ~ 200

Jlab, 2/20/ 2007

Aerogel Cerenkov Counters for HRS detector

"vacuum hand" moves the n=1.015 aerogel block

Time-of-Flight and Beta PID for HRS detector

S2m & S2m at L ~1-2 x10³⁸ and HRS at 6°

At trigger rate of 1 kHz in HRS for L ~ 10^{37} and HRS at 16° 4+ ns beam structure allows good PID with TOF - accidental pions will be 2.4+ ns after kaons

Summary

- $\odot~$ Rejection of the electrons ~ 1000 by Gas Cer & Lead-glass
- Rejection of the protons ~ 100 by a cut on A2 > 2 ph.electron
- Rejection of the pions in kaon sample ~ 200 by a cut on A1&A2
- Time-of-flight with 4 ns beam structure provides a simple and reliable PID for the luminosity which will be used for the Transversity experiment