False asymmetry from target spin flip

Yi Qiang Duke University for Transversity Collaboration Meeting

False asymmetry from irregular environments

- Linear change
 - Can be canceled by either regular or random sequences
- Higher orders
 - Can be expanded into sine waves of different frequencies
 - The false asymmetry coming from different frequencies and different schemes can be predicted by simulation

Monte Carlo

- Total experimental time:
 - ~ 15 days ~ 20000 minutes (1000 20 min flips)
- For both regular of random, the period of noise was scanned from 0.01 minutes to 1000 minutes. And a random starting phase shift was generated.
- For random sequences, the initial spin state was determined by a random generator.

Typical False asymmetry distribution from regularly flipped target (20 min)

False asymmetry distribution from randomly flipped target (10 or 20 min)

The distribution is in Gaussian distribution.

False asymmetry comparison

Comparison in middle range

Comparison of high frequency noises

Comparison of low frequency noises

Summary

- Random flips were beat in most frequencies due to low statistics ~ 500 flips.
- Regular flip is extremely sensitive to 40 min noise: spin flip itself.
- More frequent random flip brings more false asymmetry from lower frequency noises but less from higher frequencies.
- A possible improvement to the random flips is to make the + and – packages in the same amount. And this will be investigated soon.