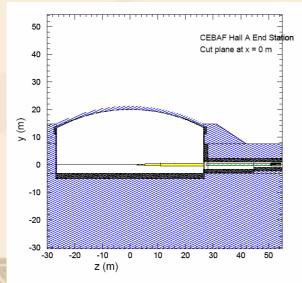
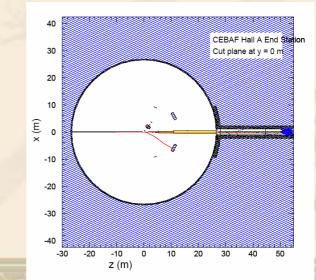
BigBite Background simulation Progress Report

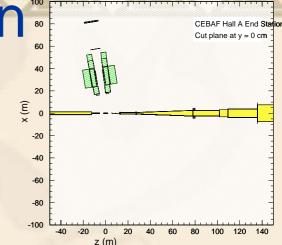
Xin Qian

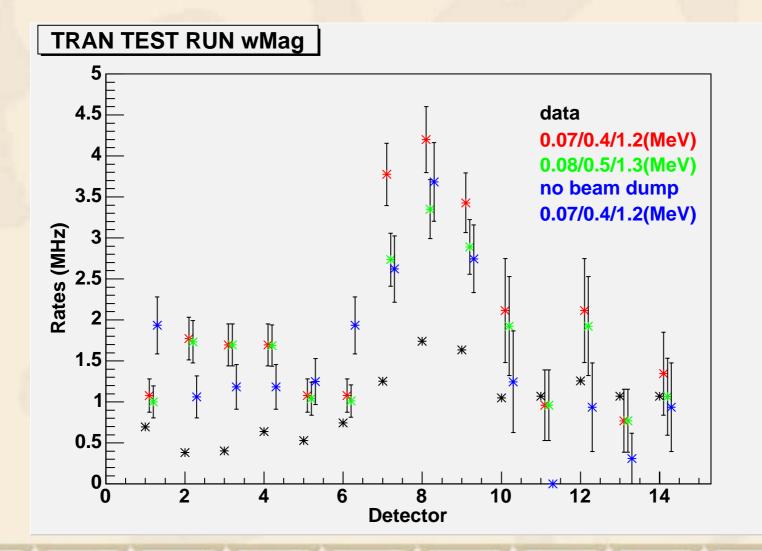



Motivation & Plan Provide reliable background rates on BigBite wire chamber and calorimeter. Step 4: Compare with bare wire chamber data experimental condition.

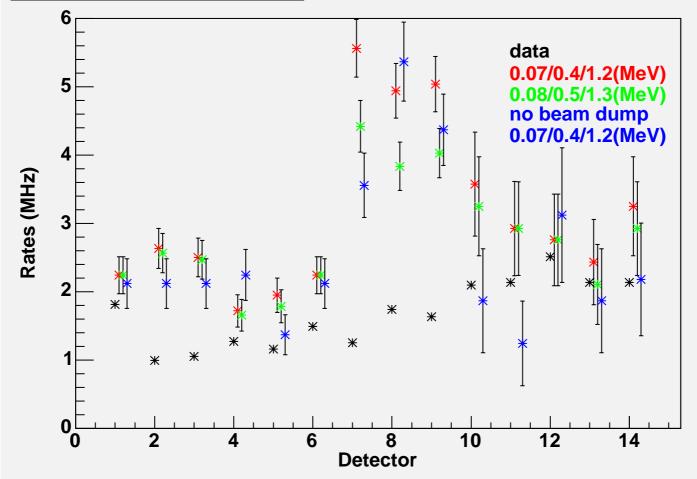
GENAT3 based simulation
GEANT3 with modified physics.
Modified Physics:

OR Use exclusive event generator: photon-nuclear fragmentation package DINREG in GEANT substitutes old 'PFIS' mechanism.

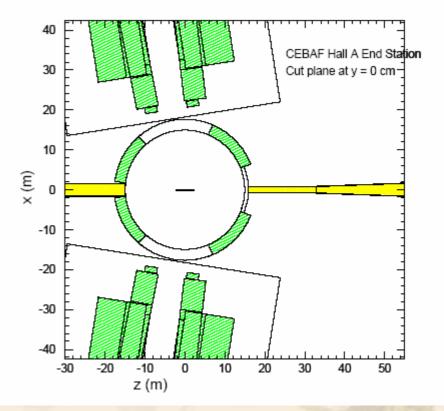

Electron-nuclear interactions are modeled using equivalent photon representation of an electron.


TRAN Test Run

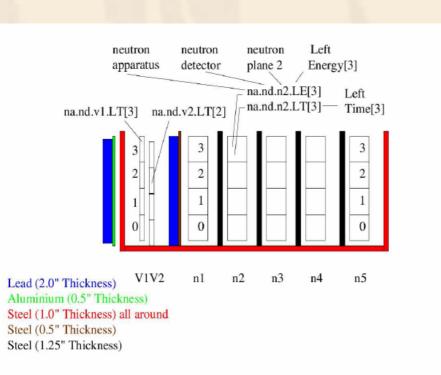
Aux plane 1400*500*2 mm dE plane 2000*500*3 mm E plane 2000*500*30 mm


Distance between E plane and Aux plane ~900mm Aux plane is put in the position of first drift chamber 15 cm LD2 target $2 \mu A$ Ee = 4.6 GeV θ_B = 99 degree B_B = 0.986 T Energy loss cut: Aux: 0.07 MeV dE: 0.4 MeV E: 1.2 MeV

TRAN test run comparison


TRAN test run comparison

TRAN TEST RUN woMag



Update on TRAN test run

- Add vacuum chamber.
- Add copy of detector to increase statistics.
- Remove part of beam dump to reduce running time.
- Still need to confirm geometry carefully.
- Need systematic error on the threshold.

Comparison with N20 run

LH2 target, 40 degree,

15 m.

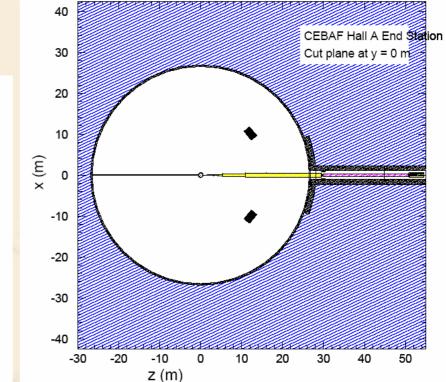
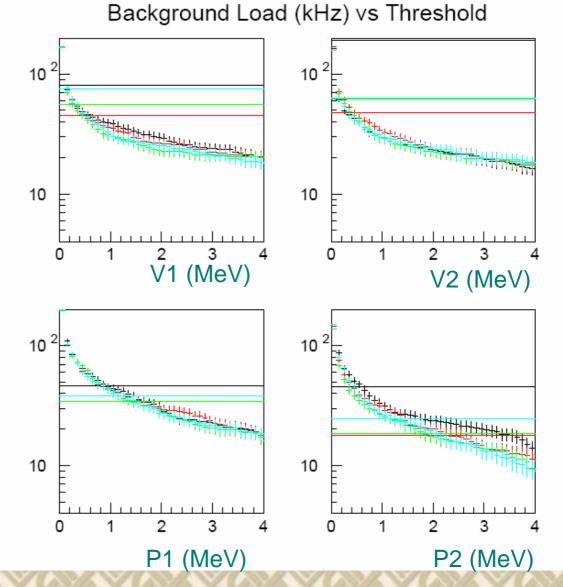



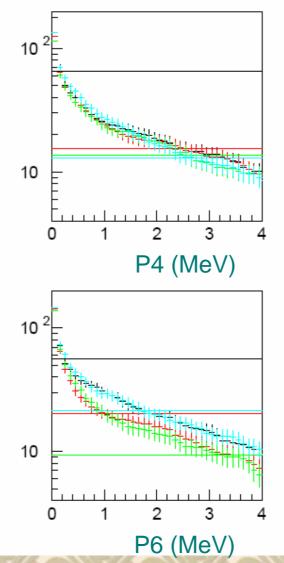
Figure 1: The layout of the N20 test setup

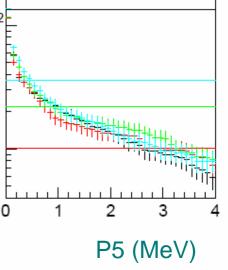
Comparison with N20 data

2005/10/20 19.27

 Threshold unknown.
 Expect 2 ~ 3 MeV for Pn?

Comparison with N20 data

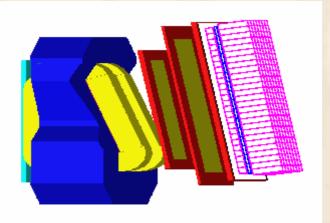

2005/10/20 19.27

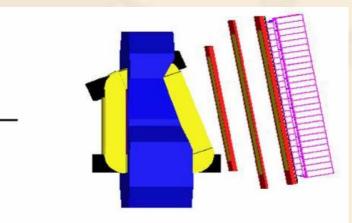

Background Load (kHz) vs Threshold

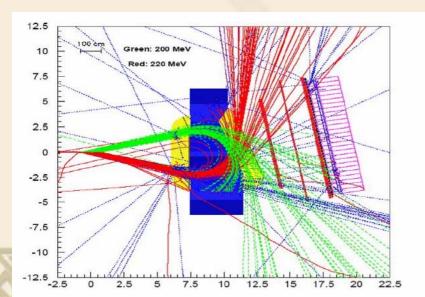
10

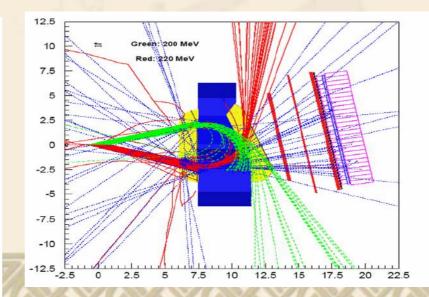
10

 Threshold unknown.
 Expect 2 ~ 3 MeV for Pn?

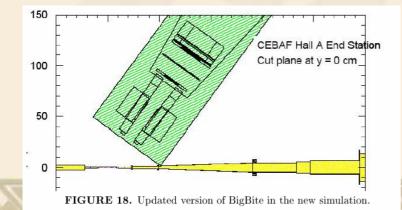





Comparison with SRC data & bare wire chamber data


Still need more information on the geometry, threshold, rates, position.

Will provide more comparisons in the near future.


12

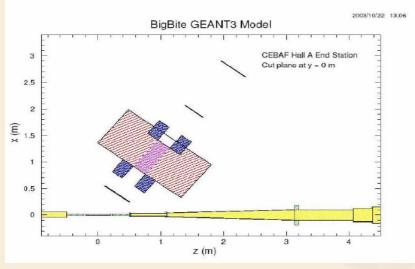

3.2 GeV 54 degree
 * for black box model
 Threshold 0.06 keV

6.0 GeV 30 degree
 * for black box model
 Threshold 0.06 keV

settings	DC1	DC2	DC3
Pavel's simulation	31 ± 6	119 ± 12	-
with new beam line	38.4 ± 9.6	168 ± 20.08	-
new BigBite model	154.3 ± 8.5	349.1 ± 12.8	348.6 ± 12.8
settings	DC1*	$DC2^*$	$DC3^*$
new BigBite model	181.75 ± 28.7	364.4 ± 39.8	408.821 ± 47.2

settings	DC1	DC2	DC3
new BigBite model	$61.3 {\pm} 5.35$	103.9 ± 6.97	82.3 ± 6.2
settings	DC1*	DC2 *	DC3 *
new BigBite model	98.1 ± 11.145	120.4 ± 12.8	119.7 ± 12.9

GEN case:


Photon conversion factor is 0.6%. Using black box model

particle	layer	γ	e^+	e^-	π^+
rates	BD1	19.5 ± 0.66	3.7 ± 3.7	157 ± 24.3	0.11 ± 0.000779
particle	layer	π^-	n	р	-
rates	BD1	0.0551 ± 0.000551	19.55 ± 0.0103	1.43 ± 0.00281	-
particle	layer	γ	e^+	e^-	π^+
rates	BD2	25.55 ± 0.75	3.74 ± 3.74	333.3 ± 35.3	0.165 ± 0.00095
particle	layer	π^{-}	n	р	-
rates	BD2	0.0551 ± 0.00055	26.9 ± 0.012	1.702 ± 0.00306	-
particle	layer	γ	e^+	e^-	π^+
rates	BD3	21.8 ± 0.7	26.2 ± 9.9	359.5 ± 36.6	0.11 ± 0.0007788
particle	layer	π^{-}	n	р	-
rates	BD3	0 ± 0	23.9 ± 0.011	1.211 ± 0.000258	-

TRANSVERSITY case: Photon conversion factor is 0.6%. Using black box model

particle	Rates at BD1	Rates at BD2	Rates at BD3	Rates (simple)
γ	$28.6 {\pm} 0.54$	$30.13 {\pm} 0.56$	28.2 ± 0.54	2.16
e^+	0	0	0	0.06
e^-	$65.88{\pm}10.6$	86.68 ± 12.2	88.4 ± 12.4	0.06
π^+	$0.51 {\pm} 0.0012$	$0.534{\pm}0.0012$	$0.455{\pm}0.0011$	0.66
π^{-}	$0.588{\pm}0.0012$	$0.588{\pm}0.0012$	$0.588{\pm}0.0012$	0.6
p	$2.54{\pm}0.0026$	$2.54{\pm}0.0026$	2.09 ± 0.0023	2.4
n	$28.64{\pm}0.0081$	40.5 ± 0.01	$42.58 {\pm} 0.01$	6.8

Comparison with Pavel's old simulation

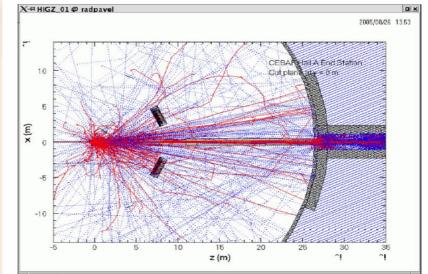
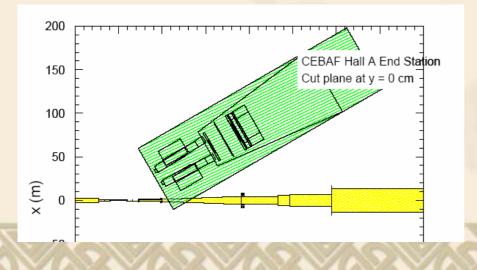



FIGURE 16. Old beam line.

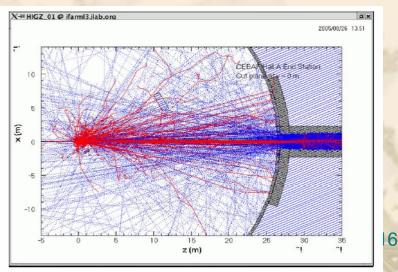


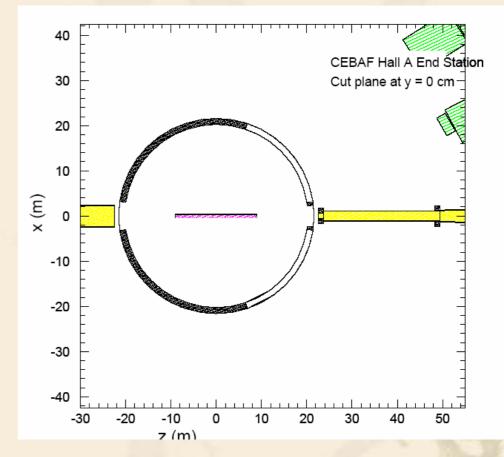
FIGURE 17. New beam line.

GEN case

First wire chamber:
 With Dump:

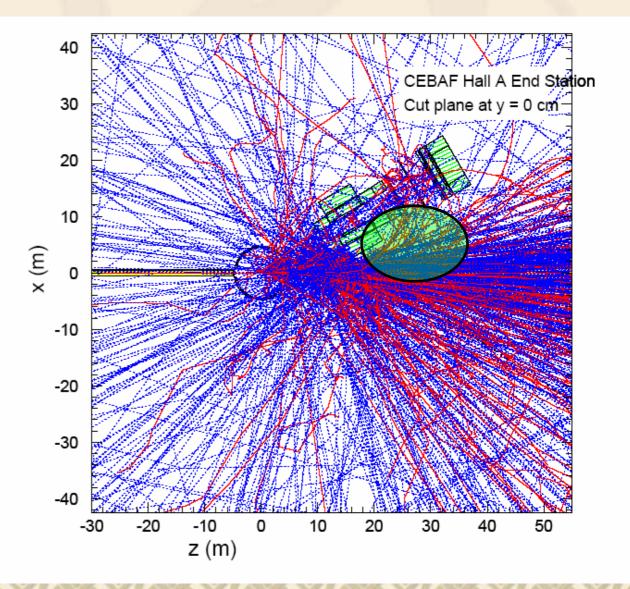
 With Dump:
 154.3 +- 8.5 MHz

 No Dump:


 72 +- 5.8 MHz
 Block in the middle of
 BigBite magnet by Lead
 No dump:
 61 +- 5.3 MHz
 40 cm long Lead block

♦ TRANSVERSITY Real First wire chamber: ♦ With Dump: ∞ 61.3 +- 5.35 MHz ♦ No Dump: ∝ 65 +- 5.5 MHz Block in the middle of **BigBite magnet by Lead** & No dump: ∞ 44.4 +- 4.5 MHz

New model for TRANSVERSITY


 A new model is recently build for TRANSVERSITY condition.

 Still need to check the geometry.

Study Shielding possibility

 Currently developing software for this motivation. There still are some bugs in the program.

Conclusion & Future Work

- In TRANSVERSITY test run comparison, the simulation rates is higher than data by a factor of 1~3. With new modified model, we can see a clear reduction in simulation rates (still collecting statistics).
- In N20 test run comparison, need threshold information to do the comparison. The difference should be within factor of 3 with a raw guess of threshold.
- Need more information to carry out simulation for SRC data and bare wire chamber comparisons.
- With same model of beam line, GEN and TRANSVERSITY background is in the same level (TRANSVERSITY is less by a factor of 2).

Conclusion & Future Work

- The minimum rates of TRANSVERSITY and GEN are around 20 MHz within this model.
- Our simulation is almost consistent with Pavel's old simulation and the simple model with only the target (working on the surprising increase of electron rates).
- New TRANSVERSITY model is being developed.
- New TRANSVERSITY test run model is being developed.
- SRC data and bare wire chamber models will be developed. (Need more information)
- A program to study shielding probability is being developed. (search for bugs)
- Hope to finish everything before the resubmission of proposal.