DAQ and Regression Analysis

Bryan Moffit

College of William and Mary

Parity Collaboration Meeting

December 7^{th} , 2002

December 7^{th} , 2002

HAPPEX DAQ - Input Signals

Device	Signal Type	Number of devices	Total Required Channels
Stripline Position Monitor (BPM)	Voltage	7+	28+
Cavity Position Monitor (BPMCAV)	Voltage	3	15
Beam Current Monitor (BCM)	Voltage	3	3
Battery (BATT)	Voltage	4	4
Luminosity Monitor (LUMI)	Current	12	12
Detector (DET)	Current	4	4

Other

Source Signals (Delayed Helicity, Pairsynch, etc..)

Three-Phase Power

HAPPEX DAQ - Components

Hardware

MVME5100 CPU

JLab Trigger Interface

HAPPEX Timing Board

Harvard-Princeton ADCs

SIS3801 Scaler - V/F Converter

Software

CODA v2.2

Parity Analyzer (PAN)

ROOT v3.03

Green Monster (K. Paschke)

December 7^{*th*}, 2002

Current Work

- Trigger Supervisor (TS) implementation
 - * Success with Counting House Crate
 - \star Cables laid for Spectrometer Crates (2^{*nd*} floor of counting house)
 - * RS485-Fiber converter tested (for Injector DAQ)
- Characterization of recently acquired ADCs
- Tests & Implementation of Voltage-to-Frequency (V/F) converters
- Automatic generation of ASCII Database for PAN
- Setup of ITS Laser Room DAQ

Immediate Future

Provide Q_A Feedback for Spin Duality (e01-012) and GDH (e97-110)

• Run Counting House and Injector DAQs (standalone or together)

★ Automatic HALOG Entries

★ Test TS with Spectrometer Crates

• Automatic ASCII database creation

★ Develop MySQL database creation (R. Suleiman)

- ★ Online Monitoring (A. Vacheret)
- ★ Prompt Analysis (R. Holmes)
- ★ PZT Feedback Studies

• = MUST \star = Parasitic

Iterative Regression Algorithm

- 1. Declare Independent Variable (y) and N Dependent Variables (x_i)
- 2. Compute regression coefficient

$$b_{i} = \frac{\sum (y - \bar{y})(x_{i} - \bar{x}_{i})}{\sum (x_{i} - \bar{x}_{i})^{2}}$$

3. Regress x_i from y

$$y_{reg} = y - \bar{y} - b_i (x_i - \bar{x}_i)$$

4. Repeat for x_{i+1} using $y = y_{reg}$

December 7^{*th*}, 2002

Polynomial Parameterization Method

December 7^{th} , 2002

Matrix Inversion Algorithm

- 1. Declare y and x_i (same as in iterative algorithm)
- 2. Compute vector of regression coefficients

 $\mathbf{B} = \mathbf{Y}\mathbf{X}^{-1}$

$$X_{ij} = \sum (x_i - \bar{x}_i)(x_j - \bar{x}_j)$$
$$Y_i = \sum (x_i - \bar{x}_i)(y - \bar{y})$$

3. Compute Regressed y

$$y_{reg} = y - \bar{y} - \sum_{i} B_i (x_i - \bar{x}_i)$$

Conclusion

Data Acquisition

- ★ Review of Signals, Hardware, and Software
- ★ Overview of current/planned system
- \star Immediate Plans for the next ³He experiments

• Regression Analysis

- ★ Review of motivation
- ★ Iterative Algorithm with results
- ★ Matrix Inversion Algorithm